Skip to main content
Log in

On Minimal Absorption Index for an n-Dimensional Simplex

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Let \(n \in \mathbb{N}\) and let \({{Q}_{n}}\) be the unit cube \({{[0,1]}^{n}}\). For a nondegenerate simplex \(S \subset {{\mathbb{R}}^{n}}\), by \(\sigma S\) denote the homothetic copy of \(S\) with center of homothety in the center of gravity of \(S\) and ratio of homothety \(\sigma .\) Put \(\xi (S) = min{\text{\{ }}\sigma \geqslant 1:{{Q}_{n}} \subset \sigma S{\text{\} }}{\text{.}}\) We call \(\xi (S)\) an absorption index of simplex \(S\). In the present paper we give new estimates for minimal absorption index of the simplex contained in \({{Q}_{n}}\), i.e., for the number \({{\xi }_{n}} = min{\text{\{ }}\xi (S):S \subset {{Q}_{n}}{\text{\} }}.\) In particular, this value and its analogues have applications in estimates for the norms of interpolation projectors. Previously the first author proved some general estimates of \({{\xi }_{n}}\). Always \(n \leqslant {{\xi }_{n}} < n + 1\). If there exist an Hadamard matrix of order \(n + 1\), then \({{\xi }_{n}} = n\). The best known general upper estimate have the form \({{\xi }_{n}} \leqslant \tfrac{{{{n}^{2}} - 3}}{{n - 1}}\)\((n > 2)\). There exist constant \(c > 0\) not depending on \(n\) such that, for any simplex \(S \subset {{Q}_{n}}\) of maximum volume, inequalities \(c\xi (S) \leqslant {{\xi }_{n}} \leqslant \xi (S)\) take place. It motivates the making use of maximum volume simplices in upper estimates of \({{\xi }_{n}}\). The set of vertices of such a simplex can be consructed with application of maximum \(0/1\)-determinant of order \(n\) or maximum \( - 1/1\)-determinant of order \(n + 1\). In the paper we compute absorption indices of maximum volume simplices in \({{Q}_{n}}\) constructed from known maximum \( - 1/1\)-determinants via special procedure. For some \(n\), this approach makes it possible to lower theoretical upper bounds of \({{\xi }_{n}}\). Also we give best known upper estimates of \({{\xi }_{n}}\) for \(n \leqslant 118\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Klimov, V.S. and Ukhalov, A.Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki (Solving the Problems of Mathematical Analysis with the Use of Systems of Computer Mathematics), Yaroslavl: Yarosl. Gos. Univ., 2014.

  2. Nevskij, M. V., and Khlestkova, I. V., On minimal linear interpolation, in Sovremennye problemy matematiki i informatiki (Contemporary Problems of Mathematics and Computer Science),Yaroslavl: Yarosl. Gos. Univ., 2008, vol. 9, pp. 31–37.

  3. Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inform. Sist., 2009, vol. 16, no. 1, pp. 24–43.

    Google Scholar 

  4. Nevskii, M.V., On a property of n-dimensional simplices, Math. Notes, 2010, vol. 87, no. 4, pp. 543–555.

    Article  MathSciNet  MATH  Google Scholar 

  5. Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation),Yaroslavl: Yarosl. Gos. Univ., 2012.

  6. Nevskii, M.V. and Ukhalov, A.Yu., On numerical characteristics of a simplex and their estimates, Autom. Control Comput. Sci., 2017, vol. 51, no. 7, pp. 757–769.

    Article  Google Scholar 

  7. Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Autom. Control Comput. Sci., 2017, vol. 51, no. 7, pp. 770–782.

    Article  Google Scholar 

  8. Hall, M., Jr., Combinatorial Theory, Waltham (Massachusets)–Toronto–London: Blaisdall Publishing Company, 1967.

  9. Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vol. 241–243, pp. 519–598.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lassak, M., Parallelotopes of maximum volume in a simplex, Discrete Comput. Geom., 1999, vol. 21, pp. 449–462.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mangano, S., Mathematica Cookbook, Cambridge: O’Reilly Media Inc., 2010.

    Google Scholar 

  12. Nevskii, M., Properties of axial diameters of a simplex, Discrete Comput. Geom., 2011, vol. 46, no. 2, pp. 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  13. Scott, P.R., Lattices and convex sets in space, Q. J. Math. Oxford (2), 1985, vol. 36, pp. 359–362.

  14. Scott, P.R., Properties of axial diameters, Bull. Aust. Math. Soc., 1989, vol. 39, pp. 329–333.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project no. 1.10160.2017/5.1

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Nevskii or A. Yu. Ukhalov.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevskii, M.V., Ukhalov, A.Y. On Minimal Absorption Index for an n-Dimensional Simplex. Aut. Control Comp. Sci. 52, 680–687 (2018). https://doi.org/10.3103/S0146411618070209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618070209

Keywords:

Navigation