Skip to main content
Log in

Altered calcium currents and axonal growth in Nf1 haploinsufficient mice

  • Communication
  • Published:
Translational Neuroscience

Abstract

Mutations of the neurofibromin gene (NF1) cause neurofibromatosis type 1 (NF1), a disease in which learning disabilities are common. Learning deficits also are observed in mice with a heterozygous mutation of Nf1 (Nf1 +/−). Dysregulation of regulated neurotransmitter release has been observed in Nf1 +/− mice. However, the role of presynaptic voltage-gated Ca2+ channels mediating this release has not been investigated. We investigated whether Ca2+ currents and transmitter release were affected by reduced neurofibromin in Nf1 +/− mice. Hippocampal Ca2+ current density was greater in neurons from Nf1 +/− mice and a greater fraction of Ca2+ currents was activated at less depolarized potentials. In addition, release of the excitatory neurotransmitter, glutamate, was increased in neuronal cortical cultures from Nf1 +/− mice. Dendritic complexity and axonal length were also increased in neurons Nf1 +/− mice compared to wild-type neurons, linking loss of neurofibromin to developmental changes in hippocampal axonal/cytoskeletal dynamics. Collectively, these results show that altered Ca2+ channel density and transmitter release, along with increased axonal growth may account for the abnormal nervous system functioning in NF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.M. Costa, A.J. Silva, Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1, J. Child Neurol. 17 (2002) 622–626.

    Article  PubMed  Google Scholar 

  2. T. Jacks, T.S. Shih, E.M. Schmitt, R.T. Bronson, A. Bernards, R.A. Weinberg, Tumour predisposition in mice heterozygous for a targeted mutation in Nf1, Nat. Genet. 7 (1994) 353–361.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Cui, R.M. Costa, G.G. Murphy, Y. Elgersma, Y. Zhu, D.H. Gutmann, L.F. Parada, I. Mody, A.J. Silva, Neurofibromin regulation of ERK signaling modulates GABA release and learning, Cell. 135 (2008) 549–560.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Zhu, M.I. Romero, P. Ghosh, Z. Ye, P. Charnay, E.J. Rushing, J.D. Marth, L.F. Parada, Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain, Genes Dev. 15 (2001) 859–876.

    Article  CAS  PubMed  Google Scholar 

  5. H.F. Guo, J. Tong, F. Hannan, L. Luo, Y. Zhong, A neurofibromatosis-1-regulated pathway is required for learning in Drosophila, Nature. 403 (2000) 895–898.

    Article  CAS  PubMed  Google Scholar 

  6. R.M. Costa, N.B. Federov, J.H. Kogan, G.G. Murphy, J. Stern, M. Ohno, R. Kucherlapati, T. Jacks, A.J. Silva, Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1, Nature. 415 (2002) 526–530.

    Article  CAS  PubMed  Google Scholar 

  7. S. Yunoue, H. Tokuo, K. Fukunaga, L. Feng, T. Ozawa, T. Nishi, A. Kikuchi, S. Hattori, J. Kuratsu, H. Saya, N. Araki, Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras, J. Biol. Chem. 278 (2003) 26958–26969.

    Article  CAS  PubMed  Google Scholar 

  8. W.A. Catterall, A.P. Few, Calcium channel regulation and presynaptic plasticity, Neuron. 59 (2008) 882–901.

    Article  CAS  PubMed  Google Scholar 

  9. T.C. Sudhof, The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature. 375 (1995) 645–653.

    Article  CAS  PubMed  Google Scholar 

  10. L.A. Fieber, Ionic currents in normal and neurofibromatosis type 1-affected human Schwann cells: induction of tumor cell K current in normal Schwann cells by cyclic AMP, J. Neurosci. Res. 54 (1998) 495–506.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Xu, N. Chiamvimonvat, A.E. Vazquez, S. Akunuru, N. Ratner, E.N. Yamoah, Gene-targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells: a protein kinase A-mediated mechanism, J. Neurosci. 22 (2002) 9194–9202.

    CAS  PubMed  Google Scholar 

  12. L.A. Fieber, Voltage-Gated ion currents of schwann cells in cell culture models of human neurofibromatosis, J. Exp. Zool. A Comp Exp. Biol. 300 (2003) 76–83.

    Article  PubMed  Google Scholar 

  13. Y. Wang, J.H. Duan, C.M. Hingtgen, G.D. Nicol, Augmented sodium currents contribute to enhanced excitability of small diameter capsaicin-sensitive Nf1+/− mouse sensory neurons, J. Neurophysiol. (2010).

  14. J.M. Brittain, A.D. Piekarz, Y. Wang, T. Kondo, T.R. Cummins, R. Khanna, An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltagegated Ca2+ channels, J. Biol. Chem. 284 (2009) 31375–31390.

    Article  CAS  PubMed  Google Scholar 

  15. K. Goslin, G. Banker, Experimental observations on the development of polarity by hippocampal neurons in culture, J. Cell Biol. 108 (1989) 1507–1516.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Chen, B. Stevens, J. Chang, J. Milbrandt, B.A. Barres, J.W. Hell, NS21: re-defined and modified supplement B27 for neuronal cultures, J. Neurosci. Methods. 171 (2008) 239–247.

    Article  CAS  PubMed  Google Scholar 

  17. S. Patrakitkomjorn, D. Kobayashi, T. Morikawa, M.M. Wilson, N. Tsubota, A. Irie, T. Ozawa, M. Aoki, N. Arimura, K. Kaibuchi, H. Saya, N. Araki, Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2, J. Biol. Chem. 283 (2008) 9399–9413.

    Article  CAS  PubMed  Google Scholar 

  18. A.L. Taylor, S.J. Hewett, Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons, J. Biol. Chem. 277 (2002) 43881–43887.

    Article  CAS  PubMed  Google Scholar 

  19. E.I. Charych, B.F. Akum, J.S. Goldberg, R.J. Jornsten, C. Rongo, J.Q. Zheng, B.L. Firestein, Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95, J. Neurosci. 26 (2006) 10164–10176.

    Article  CAS  PubMed  Google Scholar 

  20. D.A. SHOLL, Dendritic organization in the neurons of the visual and motor cortices of the cat, J. Anat. 87 (1953) 387–406.

    CAS  PubMed  Google Scholar 

  21. J.F. Zhang, A.D. Randall, P.T. Ellinor, W.A. Horne, W.A. Sather, T. Tanabe, T.L. Schwarz, R.W. Tsien, Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons, Neuropharmacology. 32 (1993) 1075–1088.

    Article  CAS  PubMed  Google Scholar 

  22. N.M. Lorenzon, R.C. Foehring, Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. II. Postnatal development, J. Neurophysiol. 73 (1995) 1443–1451.

    CAS  PubMed  Google Scholar 

  23. C.S. Park, L. Zhong, S.J. Tang, Aberrant expression of synaptic plasticityrelated genes in the NF1+/- mouse hippocampus, J. Neurosci. Res. 87 (2009) 3107–3119.

    Article  CAS  PubMed  Google Scholar 

  24. C.M. Hingtgen, S.L. Roy, D.W. Clapp, Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene, Neuroscience. 137 (2006) 637–645.

    Article  CAS  PubMed  Google Scholar 

  25. B. Belhage, A. Frandsen, A. Schousboe, Temporal and spatial differences in intracellular Ca++ changes elicited by K+ and glutamate in single cultured neocortical neurons, Neurochem. Int. 29 (1996) 247–253.

    Article  CAS  PubMed  Google Scholar 

  26. T. Tokunaga, K. Miyazaki, M. Koseki, J.I. Mobarakeh, T. Ishizuka, H. Yawo, Pharmacological dissection of calcium channel subtype-related components of strontium inflow in large mossy fiber boutons of mouse hippocampus, Hippocampus. 14 (2004) 570–585.

    Article  CAS  PubMed  Google Scholar 

  27. K. Miyazaki, T. Ishizuka, H. Yawo, Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus, Neuroscience. 136 (2005) 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  28. K. Jun, E.S. Piedras-Renteria, S.M. Smith, D.B. Wheeler, S.B. Lee, T.G. Lee, H. Chin, M.E. Adams, R.H. Scheller, R.W. Tsien, H.S. Shin, Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 15245–15250.

    Article  CAS  PubMed  Google Scholar 

  29. R. Khanna, Q. Li, L.C. Schlichter, E.F. Stanley, The transmitter releasesite CaV2.2 channel cluster is linked to an endocytosis coat protein complex, Eur. J. Neurosci. 26 (2007) 560–574.

    Article  PubMed  Google Scholar 

  30. R. Khanna, Q. Li, J. Bewersdorf, E.F. Stanley, The presynaptic CaV2.2 channeltransmitter release site core complex, Eur. J. Neurosci. 26 (2007) 547–559.

    Article  PubMed  Google Scholar 

  31. C. Cepeda, M.S. Levine, Where do you think you are going? The NMDA-D1 receptor trap, Sci. STKE. 2006 (2006) e20.

    Article  Google Scholar 

  32. O. Thibault, P.W. Landfield, Increase in single L-type calcium channels in hippocampal neurons during aging, Science. 272 (1996) 1017–1020.

    Article  CAS  PubMed  Google Scholar 

  33. O. Thibault, R. Hadley, P.W. Landfield, Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity, J. Neurosci. 21 (2001) 9744–9756.

    CAS  PubMed  Google Scholar 

  34. T. Ozawa, N. Araki, S. Yunoue, H. Tokuo, L. Feng, S. Patrakitkomjorn, T. Hara, Y. Ichikawa, K. Matsumoto, K. Fujii, H. Saya, The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway, J. Biol. Chem. 280 (2005) 39524–39533.

    Article  CAS  PubMed  Google Scholar 

  35. M.I. Romero, L. Lin, M.E. Lush, L. Lei, L.F. Parada, Y. Zhu, Deletion of Nf1 in neurons induces increased axon collateral branching after dorsal root injury, J. Neurosci. 27 (2007) 2124–2134.

    Article  CAS  PubMed  Google Scholar 

  36. C.R. Tessier, K. Broadie, Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning, Development. 135 (2008) 1547–1557.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Khanna.

Additional information

These authors contributed equally

About this article

Cite this article

Wang, Y., Brittain, J.M., Wilson, S.M. et al. Altered calcium currents and axonal growth in Nf1 haploinsufficient mice. Translat.Neurosci. 1, 106–114 (2010). https://doi.org/10.2478/v10134-010-0025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10134-010-0025-8

Keywords

Navigation