Skip to main content
Log in

Molecular dynamics simulation of manipulation of metallic nanoclusters on stepped surfaces

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Molecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on stepped surfaces. Five surface forms are considered in the simulations. The system parts are made of pure transition metals and Sutton-Chen many-body potential is used as interatomic potential. The conditions which are subjected to change in the tests include: materials used for particles and substrate, and surface step conditions. In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Simulation results show the effect of the aforementioned working conditions on the particle behavior as well as changes in the pushing forces. Obtaining this sort of knowledge is highly beneficial for further experiments in order to be able to plan the conditions and routines which guarantee better success in the manipulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rieth, W. Schommers, J. Comput. Theor. Nanos. 1, 40 (2004)

    Article  Google Scholar 

  2. G. G. Pereira, Curr. Appl. Phys. 4, 255 (2004)

    Article  ADS  Google Scholar 

  3. G. Li, N. Xi, H. Chen, C. Pomeroy, M. Prokos, IEEE T. Nanotechnol. 4, 605 (2004)

    Article  ADS  Google Scholar 

  4. A. A. G. Requicha, Proceedings of the IEEE, Special Issue on Nanoelectronics and Nanoprocessing 91, 1922 (2003)

    Google Scholar 

  5. F. J. Rubio-Sierra, W. M. Heckl, R. W. Stark, Adv. Eng. Mater. 7, 193 (2005)

    Article  Google Scholar 

  6. M. Wilms, J. Conrad, K. Vasilev, M. Kreiter, G. Wegner, Appl. Surf. Sci. 238, 490 (2004)

    Article  ADS  Google Scholar 

  7. M. Sitti, B. Aruk, H. Shintani, H. Hashimoto, Adv. Robotics 17, 275 (2003)

    Article  Google Scholar 

  8. J. Lagoute, K. Kanisawa, S. Fölsch, Phys. Rev. B. 70, 245415 (2004)

    Article  ADS  Google Scholar 

  9. S. H. Mahboobi, A. Meghdari, N. Jalili, F. Amiri, Mod. Phys. Lett. B 23, 2695 (2009)

    Article  ADS  MATH  Google Scholar 

  10. S. H. Mahboobi, A. Meghdari, N. Jalili, F. Amiri, Curr. Appl. Phys. 9, 997 (2009)

    Article  ADS  Google Scholar 

  11. R. Saeidpourazar, N. Jalili, Appl. Math. Comput. 206, 618 (2008)

    Article  MATH  Google Scholar 

  12. B. Mokaberi, A. A. G. Requicha, IEEE T. Autom. Sci. Eng. 3, 199 (2006)

    Article  Google Scholar 

  13. S. W. Hla, K. F. Braun, V. Iancu, A. Deshpande, Nano Lett. 4, 1997 (2004)

    Article  ADS  Google Scholar 

  14. Y. Sugawar, Y. Sano, N. Suehir, S. Morit, Appl. Surf. Sci. 188, 285 (2002)

    Article  ADS  Google Scholar 

  15. S. H. Mahboobi, A. Meghdari, N. Jalili, F. Amiri, PhysicaE 42, 182 (2009)

    ADS  Google Scholar 

  16. M. Sitti, IEEE-ASMET. Mech. 9, 343 (2004)

    Article  Google Scholar 

  17. M. Sitti, H. Hashimoto, IEEE-ASMET. Mech. 5, 199 (2000)

    Article  Google Scholar 

  18. U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton, Science 248, 454 (1990)

    Article  ADS  Google Scholar 

  19. P. A. Thompson, M. O. Robbins, Science 250, 792 (1990)

    Article  ADS  Google Scholar 

  20. M. O. Robbins, P. A. Thompson, Science 253916 (1991)

  21. W. D. Luedtke, U. Landman, Phys. Rev. Lett. 73, 569 (1994)

    Article  ADS  Google Scholar 

  22. S. H. Mahboobi, A. Meghdari, N. Jalili, F. Amiri, Int. J. Nanomanuf. 5, 288 (2010)

    Google Scholar 

  23. H. Rafii-Tabar, Phys. Rep. 325, 240 (2000)

    Article  ADS  Google Scholar 

  24. Q. Dong, G. J. Wagner, W. K. Liu, Comput. Methods Appl. M. 193, 1603 (2004)

    Article  MATH  Google Scholar 

  25. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 1995)

    Google Scholar 

  26. H. Raffi-Tabar, H. M. Shodja, M. Darabi, A. Dahi, Mech. Mater. 38, 243 (2006)

    Article  Google Scholar 

  27. S. Nose, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  28. W. G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  29. A. P. Sutton, J. Chen, Phil. Mag. Lett. 61, 139 (1990)

    Article  ADS  Google Scholar 

  30. S. K. Nayak, S. N. Khanna, P. Jena, J. Phys. -Condens. Mat. 10, 10853 (1998)

    Article  ADS  Google Scholar 

  31. B. D. Todd, R. M. Lynden-Bell, Surf. Sci. 281, 191 (1993)

    Article  ADS  Google Scholar 

  32. J. P. K. Doye, D. J. Wales, New J. Chem. 22, 733 (1998)

    Article  Google Scholar 

  33. H. Rafii-Tabar, A. P. Sutton, Phil. Mag. Lett. 63, 217 (1990)

    Article  ADS  Google Scholar 

  34. S. H. Mahboobi, A. Meghdari, N. Jalili, F. Amiri, Physica E 42, 2364 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hanif Mahboobi.

About this article

Cite this article

Mahboobi, S.H., Meghdari, A., Jalili, N. et al. Molecular dynamics simulation of manipulation of metallic nanoclusters on stepped surfaces. centr.eur.j.phys. 9, 454–465 (2011). https://doi.org/10.2478/s11534-010-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-010-0070-4

Keywords

Navigation