Skip to main content
Log in

Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea

  • Original Research Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

Rates of physiological processes and bioenergetics of the Harris mud crab Rhithropanopeus harrisii were determined during a 7-day experiment on adult males (mean wet weight 0.83 ± 0.16 g) exposed to temperatures of 15°C and 20°C (S = 7). The results show that the change in temperature by 5°C caused detectable changes in locomotor activity, food consumption and faeces production and significant (p < 0.05) changes in metabolic rates. Food assimilation efficiency and the ammonia excretion rate did not change significantly (p > 0.05). The energy expended on metabolic processes was similar at both temperatures (15°C and 20°C) and amounted to 17.7 ± 6.4% and 16.7 ± 4.3% of the assimilated energy, respectively. Similar values were obtained for net production efficiency K2 (P/A) at 15°C and 20°C, i.e. 80.4 ± 22.4% and 82.9 ± 9.7%, respectively. The amount of energy available for production was 2-fold higher at a temperature of 20°C than at 15°C and amounted to 103.69 ± 25.61 and 206.40 ± 20.76 J d−1g−1 wet wt, respectively. The results show that from the bioenergetic point of view, higher experimental temperature is more “profitable” for adult R. harrisii specimens because it provides better conditions for the growth and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  • Bacevičius, E. & Gasiūnaitė Z.R. (2008). Two crab species-Chinese mitten crab (Eriocheir sinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus Maitland) in the Lithuanian coastal waters, Baltic Sea. Trans. Wat. Bull. 2: 63–68. DOI: 10.1285/i1825229Xv2n2p63

    Google Scholar 

  • Chen, J.C. & Chia P.G. (1996). Oxygen Uptake and Nitrogen Excretion of Juvenile Scylla serrata at Different Temperature and Salinity Levels. J. Crust. Biol. 16(3): 437–442. DOI: 10.1163/193724096X00441

    Article  Google Scholar 

  • Chen, J.C. & Kou T. (1996). Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii. Aquaculture. 145(1–4): 295–303. DOI: 10.1016/S0044-8486(96)01348-8

    Article  Google Scholar 

  • Choy, S.C. (1986). Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 31: 87–99

    Article  Google Scholar 

  • Christiansen, M.E. & Costlow J.D.Jr. (1975). The effect of salinity and cyclic temperature on larval develop of the mud crab Rhithropanopeus harrisii (Brachyura: Xantidae) reared in the laboratory. Mar. Biol. 32: 215–221. DOI: 10.1007/BF00399201

    Article  Google Scholar 

  • Conover, R.J. (1966). Assimilation of organic matter by zooplankton. Limnol. Oceanog. 11: 338–290. DOI: 10.4319/lo.1966.11.3.0338

    Article  Google Scholar 

  • Corte Rosaria, J. & Martin E.R. (2010). Behavioral Changes in Freshwater Crab Barytelphusa cunicularis after Exposure to Low Frequency Electromagnetic Fields. World J. Fish. Mar. Sci. 2(6): 487–494

    Google Scholar 

  • Crear, B.J. & Forteath G.N.R. (2002). Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygus. Aquac. Eng. 26: 239–250. DOI:10.1016/S0144-8609(02)00033-X

    Article  Google Scholar 

  • Czerniejewski, P. & Rybczyk A. (2008). Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland. Crustaceana. 81(11): 1289–1299. DOI: 10.1163/156854008X369483

    Article  Google Scholar 

  • Diamond, D.W., Scott L.K., Forward R.B.Jr. & Kirby-Smith W. (1989). Respiration and osmoregulation of the estuarine crab Rhithropanopeus harrisii (Gould): effect of the herbicide, alachlor. Comp. Biochem. Physiol. 93A: 313–318. DOI: 0.1016/0300-9629(89)90043-1

    Article  Google Scholar 

  • Elliott, J.M. & Davison W. (1975). Energy equivalents of oxygen consumption in animal energetic. Oecologia. 19:195–201

    Article  Google Scholar 

  • Forward, R.B.Jr. (2009). Larval Biology of the Crab Rhithropanopeus harrisii (Gould): A Synthesis. Biol. Bull. 216(3): 243–256

    Google Scholar 

  • Fowler, A.E., Forsström T., von Numers M. & Vesakoski O. (2013). The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat. Inv. 8(1): 89–96. DOI: 0.3391/ai.2013.8.1.10.

    Article  Google Scholar 

  • Gnaiger, E. & Bitterlich G. (1984). Proximate biochemical composition and caloric content calculate from elemental CHN analysis: a stoichiometric concept. Oecologia. 62: 289–298.

    Article  Google Scholar 

  • Gonçalves, F., Ribeiro R. & Soares M.V.M. (1995). Rhithropanopeus harrisii (Gould), an American crab in the Estuary of the Mondego River. J. Crust. Biol. 15(4): 756–762. DOI: 10.2307/1548824.

    Article  Google Scholar 

  • Guerin, J.L. & Stickle W.B. (1992). Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 114(3): 391–396. DOI: 10.1007/BF00350029

    Article  Google Scholar 

  • Hartnoll, R.G. (1982). Growth in the Biology of Crustacea. In D.E. Bliss (Eds.), Embryology, Morphology and Genetics 2 (pp 116–196). Academic Press.

    Google Scholar 

  • Hegele-Drywa, J. & Normant M. (2014). Non-native crab Rhithropanopeus harrisii (Gould, 1984) — a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia. 56(1): 125–139. DOI: 10.5697/oc.56-1.125

    Article  Google Scholar 

  • Hochachka, P.W. (1991). Temperature: the ectothermy option. In P.W. Hochachka & T.P. Mommsen (Eds.), Biochemistry and molecular ecology of fishes (pp 313–322). Amsterdam, Elsevier.

    Google Scholar 

  • Hulathduwa, Y.D., Stickle W.B. & Brown K.M. (2007). The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar. Biol. 152: 363–370.

    Article  Google Scholar 

  • Hutchison, V.H. & Dupré R.K. (1992). Thermoreulation. In M.E. Feder & W.W. Burggren (Eds.), Environmental physiology of the amphipods (pp 206–249). University of Chicago Press.

    Google Scholar 

  • Iseda, M., Otani M. & Kimura T. (2007). First record of an introduced crab Rhithropanopeus harrisii (Crusteacea: Brachyura: Panopeidae) in Japan. JPN. J. Benthol. 62: 39–44.

    Google Scholar 

  • Jakubowska M. & Normant M. (2011). Effect of temperature on the physiology and bioenergetics of adults of the Chinese mitten crab Eriocheir sinensis: considerations for a species invading cooler waters. Mar. Freshwater. Behav. Physiol. 44(3): 171–183. DOI:10.1080/10236244.2011.598283

    Article  Google Scholar 

  • Kinne, O. & Rotthauwe H.W. (1952). Biologische Beobachtungen und Untersuchungen über die Blutkonzentration an Heteropanope tridentatus Maitland (Decapoda). Kieler Meeresforsch. 8: 212–217 (in German).

    Google Scholar 

  • Klekowski, R.Z. & Fischer Z. (1993). Bioenergetyka ekologiczna zwierząt zmiennocieplnych. Warszawa, PAN (in Polish).

    Google Scholar 

  • Klekowski, R.Z. & Opaliński K.W. (1993). Metabolizm energetyczny. In R.Z. Klekowski & Z. Fisher (Eds.), Bioenergetyka ekologiczna zwierząt zmiennocieplnych (pp 35–82). Polska Akademia Nauk, WydziaŁ II Nauk Biologicznych.

    Google Scholar 

  • Kondzela, C.M. & Shirley T.C. (1993). Survival, feeding, and growth of juvenile Dungeness crabs from southeastern Alaska reared at different temperatures. J. Crust. Biol. 13: 25–35

    Article  Google Scholar 

  • Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of seawater analysis (pp 159–229). New York, Weinheim.

    Google Scholar 

  • Kotta, J. & Ojaveer H. (2012). Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est. J. Ecol. 61(4): 293–298. DOI: 10.3176/eco.2012.4.04

    Article  Google Scholar 

  • Kujawa, S. (1957). Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon. Wszechświat. 2: 57–59

    Google Scholar 

  • Lee, S.Y. (1997). Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar. Ecol. Prog. Ser. 159: 275–284

    Article  Google Scholar 

  • Lucas, A. (1993). Bioénergétique Des Animaux Aquatiques. Paris, Masson (in French).

    Google Scholar 

  • Maltby, L., Naylor C. & Calow P. (1990). Effect of stress on a freshwater benthic detritivore: Scope for growth in. Ecotox. Environ. Safety. 9(3): 285–291. DOI: 10.1016/0147-6513(90)90030-9

    Article  Google Scholar 

  • McCue, M.D. (2006). Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. 144 A: 381–394. DOI: 10.1016/j.cbpa.2006.03.011

    Article  Google Scholar 

  • Normant, M., Chrobak M. & Szaniawska A. (2002). Energy value and chemical composition (CHN) of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae) from the Baltic Sea. Therm. Acta. 394: 233–237. DOI: 10.1016/S0040-6031(02)00259-9

    Article  Google Scholar 

  • Normant, M. & Gibowicz M. (2008). Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters. J. Exp. Mar. Biol. Ecol. 355(2): 145–152. DOI: 10.1016/j.jembe.2007.12.014

    Article  Google Scholar 

  • Normant, M., Dziekoński M., Drzazgowski J. & Lamprecht I. (2007). Metabolic investigations of aquatic organisms with a new twin heat conduction calorimeter. Therm. Acta. 458(1–2): 101–106. DOI: 10.1016/j.tca.2007.01.025

    Article  Google Scholar 

  • Normant, M., Król M. & Jakubowska M. (2012). Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. (416–417): 215–220. DOI:10.1016/j.jembe.2012.01.001

    Google Scholar 

  • Normant, M. & Lamprecht I. (2006). Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus? J. Exp. Mar. Biol. Ecol. 334(1): 158–163. DOI: 10.1016/j.jembe.2006.01.022

    Article  Google Scholar 

  • Ojaveer, H., Galil B.S., Minchin D., Olenin S., Amorim A. et al. (2014). Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Pol. (44):160–165. DOI: 10.1016/j.marpol.2013.08.019.

    Google Scholar 

  • Paul, J.M., Paul A.J. & Kimker A. (1994). Compensatory feeding capacity of 2 Brachyuran crabs, Tanner and Dungeness, after starvation periods like those encountered in pots. Alaska Fish. Res. Bul. 1(2): 184–187

    Google Scholar 

  • Peng, S., Chen C., Shi Z. & Wang L. (2013). Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). Journal of Food and Nutrition Research. 1(4): 42–45. DOI: 10.12691/jfnr-1-4-2

    Google Scholar 

  • Pigliucci, M. & Preston K. 2004. The Evolutionary Biology of Complex Phenotypes. Oxford, Oxford University Press.

    Google Scholar 

  • Pirestani, S., Ali Sahari M., Barzegar M. & Seyfabadi S.J. (2009). Chemical compositions and minerals of some commercially important fish species from the South Caspian Sea. International Food Research Journal. 16: 39–44.

    Google Scholar 

  • Radford, C.A., Marsden I.M. & Davison W. (2004). Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 139A: 1–9. DOI:10.1016/j.cbpb.2004.02.015

    Article  Google Scholar 

  • Regnault, M. (1987). Nitrogen excretion in marine and fresh-water crustacean. Biol. Rev. 62(1): 1–24. DOI: 10.1111/j.1469-185X.1987.tb00623.x

    Article  Google Scholar 

  • Robertson, R.F., El-Haj A.J., Clarke A. & Taylor E.W. (2001). Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon. J. Exp. Mar. Biol. Ecol. 262(1): 113–129. DOI: 10.1016/S0022-0981(01)00286-6

    Article  Google Scholar 

  • Roche, D.G. & Torchin M.E. (2007). Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat. Inv. 2(3): 155–161. DOI:10.3391/ai.2007.2.3.1

    Article  Google Scholar 

  • Romero, M.C., Vanella F., Tapella F. & Lovrich G.A. (2006). Assimilation and oxygen uptake associated with two different feeding habits of Munida gregaria (=M. subrugosa) (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 333(1): 40–48. DOI: 10.1016/j.jembe.2005.11.018

    Article  Google Scholar 

  • Rosas, C., Cuzon G., Pascual C., Gaxiola G. et al. (2007). Energy balance of Octopus maya fed crab or artificial diet. Mar. Biol. 152: 371–381. DOI: 10.1007/s00227-007-0692-2

    Article  Google Scholar 

  • Rychter, A. (1997). Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia. 39(3): 325–335

    Google Scholar 

  • Sãnchez, A., Pascual C., Sãnchez A., Vargas-Albores F. et al. (2002). Acclimation of Adult Males of Litopenaeus Setiferus Exposed at 27 °C and 31 °C: Bioenergetic Balance. In: E E. Esobar-Briones & F. Alvarez (Eds.), Modern approaches to the study of Crustacea (pp 45–52). New York, Kluwer Academic/Plenum Publishers

    Chapter  Google Scholar 

  • Schmidt-Nielsen, K. (1997). Fizjologia zwierząt: Adaptacja do środowiska. Warszawa, PWN.

    Google Scholar 

  • Schlichting, C.D. & Pigliucci M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Schröer, M., Wittmann A.C., Grüner N., Steeger H.U., Bock C., Paul R. & Pörtner H.O. (2009). Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: a latitudinal comparison. J. Exp. Mar. Biol. Ecol. 372, 22–30.

    Article  Google Scholar 

  • Sébert, P., Pequeux A., Simon B. & Barthelemy L. (1995). Effects of hydrostatic pressure and temperature on the energy metabolism of the Chinese crab (Eriocheir sinensis) and the yellow eel (Anguilla Anguilla). Comp. Biochem. Physiol. 112(1): 131–136. DOI: 10.1016/0300-9629(95)00079-M

    Article  Google Scholar 

  • Smith, R.I. (1967). Osmotic regulation and adaptive reduction of water permeability in a brackish-water crab, Rhithropanopeus harrisii (Brachyura: Xanthidae). Biological Bulletin. 133: 643–658

    Article  Google Scholar 

  • Turoboyski, K. (1973). Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar. Biol. 23(4): 303–313. DOI: 10.1007/BF00389338

    Article  Google Scholar 

  • Vega-Villasante, F., Nolasco H. & Civera R. (1993). The digestive enzymes of the pacific brown shrimp Penaeus californiensis.: I-Properties of amylase activity in the digestive tract. Comp. Biochem. Phisiol. Part B: Comparative Biochemistry. 106(3): 547–550.

    Article  Google Scholar 

  • Wallace, J.C. (1973). Feeding, starvation and metabolic rate in the Shore crab Carcinus maenas. Mar. Biol. 20: 277–281. DOI: 10.1007/BF00354271

    Article  Google Scholar 

  • Weihrauch, D., Wilkie M.P. & Walsh P.J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 212: 1716–1730. DOI: 10.1242/jeb.036103

    Article  Google Scholar 

  • Whiteley, N.M., Roberston R.F., Meagor J., El Haj A. J. & Taylor E.W. (2001). Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Compar. Biochem. Pysiol. Mol. Integr. Physiol. 128(3): 593–604. DOI: 10.1016/S1095-6433(00)00337-8

    Article  Google Scholar 

  • Willmer, P., Stone G. & Johnson J. (2000). Environmental physiology of animals. Metabolism and energy. Oxford, Blackwell Science.

    Google Scholar 

  • Winberg, G.G. (1960). Rate of metabolism and food requirements of fishes. Transl. Ser. Fish. Res. Bd. Can. 194–202.

    Google Scholar 

  • Wolff, M. & Cerda G. (1992). Feeding Ecology of the crab Cancer Polyodon in La Herradura Bay, northern Chile. Feeding chronology, food intake, gross growth and ecological efficiency. Mar. Ecol. Prog. Ser. 89: 213–219. DOI: 10.3354/meps089213

    Article  Google Scholar 

  • Wyban, J., Walsh W.A. & Godin D.M. (1995). Temperature effects on growth, feeding rate and food conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138: 267–279. DOI: 10.1016/0044-8486(95)00032-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Hegele-Drywa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegele-Drywa, J., Normant, M. Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea. Ocean and Hydro 43, 219–227 (2014). https://doi.org/10.2478/s13545-014-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-014-0136-9

Key words

Navigation