Skip to main content
Log in

Sulfur in the marine environment

  • Review Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

Sulfur is an element commonly occurring in the environment. It is present in the atmosphere, in the hydrosphere, and in live organisms; it is one of the most important physicochemical and geological indicators. Depending on the natural conditions, sulfur compounds in the environment may play the role of electron acceptor or donor in the redox processes. These compounds influence the ion concentration and ion balance in benthic sediments. They also determine the speciation, bioavailability and toxicity of heavy metals. Comprehensive knowledge of the processes mediated by sulfur can be a valuable source of information about the past and present state of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreae M.O., Jaeschke W.A., 1992, Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions [in:] Sulphur cycling on the Continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies, SCOPE 48, Ed. Howarth R W., Chichester, John Wiley & Sons, pp. 27–61

    Google Scholar 

  • Abdollahi H., Wimpenny J., 1990, Effects of oxygen on the growth of Desulfovibrio desulfuricans, J. Gen. Microbiol., 136(6): 1025–1030, DOI: 10.1099/002 21287-136-6-1025

    Google Scholar 

  • Anderson E.F., Wilson D.J., 2000, A simple field test for acid volatile sulfide in sediments, J. Tennessee. Acad. Sci. 75(3–4): 53–56, http://www.highbeam.com/doc/1G1-78398540.html

    Google Scholar 

  • Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S., 2000, An Introduction to Environmental Chemistry, Warszawa, Scientific and Technical Press, pp. 234 (in Polish)

    Google Scholar 

  • Azad Md.A.K., Ohira S.-I., Oda M., Toda K., 2005, On-site measurements of hydrogen sufide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan, Atmos. Environ., 39(33): 6077–6087, DOI:10.1016/j.atmosenv.2005.06.042

    Article  Google Scholar 

  • Bates T.S., Charlson R.J., Gammon R.H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329: 319–321

    Article  Google Scholar 

  • Battersby N.S., 1988, Sulphate-reducting bacteria [in:] Methods on aquatic bacteriology, Ed. Austin B., Chichester, John Wiley & Sons, pp. 269–299

    Google Scholar 

  • Berner R.A., 1984, Sedimentary pyrite formation: An update, Geochim. et Cosmochim. Acta, 48(4): 605–615, DOI: 10.1016/0016-7037(84)90089-9

    Article  Google Scholar 

  • Berner R.A., Raiswell R., 1983, Burial of organic-carbon and pyrite sulfur in sediments over phanerozoic time-a new theory, Geochim. et Cosmochim. Acta, 47(5): 855–862, DOI: 10.1016/0016-7037(83)90151-5

    Article  Google Scholar 

  • Bitton G., 2005, Wastewater microbiology, New Jersey, John Wiley and Sons, pp. 749

    Book  Google Scholar 

  • Boon A.G., Vincent A.J., 2003, Odour generation and control [in:] The handbook of water and wastewater microbiology, Eds. Mara D., Horan N.J., San Diego, Academic Press, pp. 545–557

    Chapter  Google Scholar 

  • Borówka R.K., Cedro B., 2001, Skarby Ziemi: Co kryje Ziemia, Poznań, KURPISZ, pp. 239, (in Polish)

    Google Scholar 

  • Bottrell S.H., Newton R.J., 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75(1–4): 59–83, DOI: 10.1016/j.earscirev.2005.10.004

    Article  Google Scholar 

  • Böttcher M.E., Thamdrup B., Vennemann T.W., 2001, Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur, Geochim. et Cosmochim. Acta, 65(10): 1601–1609, DOI: 10.1016/S0016-7037(00)00628-1

    Article  Google Scholar 

  • Brouwer H., Murphy T., 1995, Volatile sulfides and their toxicity in freshwater sediments, Envir. Toxicol. Chem., 14(2): 203–208, DOI: 10.1897/1552-8618(1995)14[203:VSATTI]2.0.CO;2

    Article  Google Scholar 

  • Brüchert V., 1998, Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids, Geochim. et Cosmochim. Acta, 62(9): 1567–1586, DOI: 10.1016/S0016-7037(98)00089-1

    Article  Google Scholar 

  • Brüchert V., Pratt L.M., 1996, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. et Cosmochim. Acta, 60(13): 2325–2332, DOI: 10.1016/0016-7037(96)00087-7

    Article  Google Scholar 

  • Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M., Schulz H., 2003, Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone, Geochim. et Cosmochim. Acta, 67(23): 4505–4518, DOI: 10.1016/S0016-7037(03)00275-8

    Article  Google Scholar 

  • Butler I.B., Böttcher M.E., Rickard D., Oldroyd A., 2004, Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records, Earth Planet. Sci. Lett., 228(3–4): 495–509, DOI: 10.1016/j.epsl.2004.10.005

    Article  Google Scholar 

  • Canfield D.E., Jørgensen B.B., Fossing H., Glud R., Gundersen N.B. et al., 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113(1–2): 27–40

    Article  Google Scholar 

  • De Graaf W., Sinninghe Damsté J. S., De Leeuw J.W., 1992, Laboratory simulation of natural sulphurization: I. Formation of monomeric and oligomeric isoprenoid polysulphides by low-termperature reactions of inorganic polysulphides with phytol and phytadienes, Geochim. et Cosmochim. Acta, 56(12): 4321–4328, DOI: 10.1016/0016-7037(92)90275-N

    Article  Google Scholar 

  • Deming J.W., Baross J.A., 1993, The early diagenesis of organic matter: bacterial activity [in:] Organic geochemistry: Principles and Applications, Eds. M.H. Engel, S.A. Macko, New York, Plenum Press, pp. 119–144

    Chapter  Google Scholar 

  • Derda M., 1999, Sulfur isotopes in nature. Determination of sulfur isotope ratios in coal and petroleum by gas combustion, INCT Reports Series B, 6(99), Warszawa, Institute of Nuclear Chemistry and Technology, pp. 20 (in Polish)

    Google Scholar 

  • Di Toro D.M., Mahony J.D., Hansen D.J., Scott K.J., Hicks M.B. et al., 1990, Toxicity of cadmium in sediments: the role of acid-volatile sulfide, Environ. Toxicol. Chem., 9(12): 1487–1502, DOI: 10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2

    Article  Google Scholar 

  • Donahue M.A., Werne J.P., Meile Ch., Lyons T., 2008, Modeling isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin, Geochim. et Cosmochim. Acta, 72(9): 2287–2297, DOI: 10.1016/j.gca.2008.02.020

    Article  Google Scholar 

  • EPA, 1994, Chemicals in the environment: OPPT Chemical Fact Sheets: Carbonyl sulfide (CAS 463-58-1), http://www.epa.gov/chemfact/

  • Falkowska L., Korzeniewski K., 1995, Chemia atmosfery, Gdańsk, The University of Gdańsk Press, pp. 193 (in Polish)

    Google Scholar 

  • Ferek R.J., Andreae M.O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature, 307: 148–150, DOI: 10.1038/307148a0

    Article  Google Scholar 

  • Fossing H., Gallardo V.A., Jørgensen B.B., Hüttel M., Nielsen L.P. et al., 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374: 713–715, DOI: 10.1038/374713a0

    Article  Google Scholar 

  • Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. et Cosmochim. Acta, 43(7): 1075–1090, DOI: 10.1016/0016-7037(79)90095-4

    Article  Google Scholar 

  • Gagnon C., Mucci A., Pelletier E., 1996, Vertical distribution of dissolved sulphur species in coastal marine sediments, Mar. Chem., 52(3–4): 195–209, DOI: 10.1016/0304-4203(95)00099-2

    Article  Google Scholar 

  • Gao Y., Schofield O.M.E., Leustek T., 2000, Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase, J. Plant Physiol., 123: 1087–1096

    Article  Google Scholar 

  • George J., Purushothaman C.S., Shouche Y.S., 2008, Isolation and characterization of sulphate-reducting bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India, World J. Microb. Biot., 24(5): 681–685, DOI: 10.1007/s11274-007-9524-2

    Article  Google Scholar 

  • Grasby S.E., Allen C.C., Longazo T.G., Lisle J.T., Griffin D.W., Beauchamp B., 2003, Biogeochemical sulphur cycle in an extreme environment — life beneath a high arctic glacier, Nunavut, Canada, J. Geochem. Explor., 78–79: 71–74, DOI: 10.1016/S0375-6742(03)00026-8

    Article  Google Scholar 

  • Holser W.T., Mackenzie F.T., Maynard J.B., Schidlowski M., 1988, Geochemical cycles of carbon and sulfur [in:] Chemical cycles in the evolution of the earth, Ed. Gregor C.B., New York, Wiley-Interscience, pp. 105–173

    Google Scholar 

  • Iverson R.L., Nearhoof F.L., Andreae M.O., 1989, Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters, Limnol. Oceanogr., 34: 53–67

    Article  Google Scholar 

  • Janas U., 1998, Wpływ niedoboru tlenu i obecności siarkowodoru na makrozoobentos Zatoki Gdańskiej, PhD thesis, University of Gdańsk, Gdynia, pp. 155 (in Polish)

    Google Scholar 

  • Jørgensen B.B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22(5): 814–832

    Article  Google Scholar 

  • Jørgensen B.B., 1982, Mineralization of organic matter in the sea bed — the role of sulphate reduction, Nature, 296: 643–645, DOI: 10.1038/296643a0

    Article  Google Scholar 

  • Kamyshny A., Goifman A., Rizkov D., Lev O., 2003, Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides, Environ. Sci. Techol., 37(9): 1865–1872, DOI: 10.1021/es0201911

    Article  Google Scholar 

  • Keith S.M., Herbert R.A., Harfoot C.G., 1982, Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Microbiol., 53: 29–33, DOI: 10.1111/j.1365-2672.1982.tb04731.x

    Article  Google Scholar 

  • Kettle, A.J., Andreae M.O., Amouroux D., Andreae T.W., Bates T.S. et. al., 1999, A global data base of sea surface dimethyl sulfide (DMS) measurements and a simple model to predict sea surface DMS as a function of latitude, longitude, and month, Global Biogeochem. Cy. 13(2): 399–444, DOI: 10.1029/1999GB900004

    Article  Google Scholar 

  • Kholodov V.N., 2002, The role of H 2 S — contaminated basins in sedimentary ore formation, Limnology and Mineral Resources, 37(5): 393–411, DOI: 10.1023/A:1020251314915

    Article  Google Scholar 

  • Kohnen M.E.L., Jaap S., Damsté S.S., Kock-Van Dalen A.C., De Leeuw J.W., 1991, Di- or polysulphide — bound biomarkers in sulphur — rich geomacromolecules as revealed by selective chemolysis, Geochim. et Cosmochim. Acta, 55(5): 1375–1394, DOI: 10.1016/0016-7037(91)90315-V

    Article  Google Scholar 

  • Korzeniewski K., 1995, Podstawy oceanografii chemicznej, Gdańsk, University of Gdańsk Press, pp. 200 (in Polish)

    Google Scholar 

  • Kuenen J.G., 1975, Colourless sulfur bacteria and their role in the sulfur cycle, Plant Soil, 43(1–3): 49–76, DOI: 10.1007/BF01928476

    Article  Google Scholar 

  • Levine, J. S., 1989, Photochemistry of biogenic gases [in:] Global Ecology: Towards a Science of the Biosphere, Eds. Rambler M.B., Margulis L., Fester L.R., London, Academic Press, pp. 51–74

    Google Scholar 

  • Lin S., Huang K.-M., Chen S.-K., 2000, Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments, Cont. Shelf Res., 20(4–5): 619–635, DOI:10.1016/S0278-4343(99)00088-6

    Article  Google Scholar 

  • Lin S., Huang K.-M., Chen S.-K., 2002, Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment, Deep Sea Res. Part I, 49(10): 1837–1852, DOI: 10.1016/S0967-0637(02)00092-4

    Article  Google Scholar 

  • Lojen S., Ogrinc N., Dolenec T., Vokal B., Szran J. et al., 2004, Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia), Sci. Tot. Environ., 327(1–3): 265–284, DOI: 10.1016/j.scitotenv.2004.01.011

    Article  Google Scholar 

  • Lyons T.W., Werne J.P., Hollander D.J., Murray R.W., 2003, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195(1–4): 131–157, DOI:10.1016/S0009-2541(02)00392-3

    Article  Google Scholar 

  • Malin G., 2006, New pieces for the marine sulfur cycle jigsaw, Science, 314(5799): 607–608, DOI: 10.1126/science.1133279

    Article  Google Scholar 

  • McKay J.L., Longstaffe F.J., 2003, Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin, Sediment. Geol. 157(3–4): 175–195, DOI: 10.1016/S0037-0738(02)00233-6

    Article  Google Scholar 

  • Migdisov A.A., Ronov A.B., Grinenko V.A., 1983, The sulphur cycle in the lithosphere: Part 1. Reservois [in:] The global geochemical sulphur cycle, Eds. Ivanow M.V., Freney J.R., New York, Wiley, pp. 25–95

    Google Scholar 

  • Mudryk Z.J., Podgórska B., Ameryk A., Bola’ek J., 2000, The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdańsk, Oceanologia, 42(1): 105–117

    Google Scholar 

  • Neumann T., Rausch N., Leipe T., Dellwig O., Berner Z., Böttcher M.E., 2005, Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim. et Cosmochim. Acta, 69(14): 3619–3630, DOI: 10.1016/j.gca.2005.02.034

    Article  Google Scholar 

  • Norris, K.B., 2003. Dimethylsulfide emission: Climate control by marine algae?, Aquatic Sciences and Fisheries Abstracts, http://www.csa.com/discoveryguides/dimethyl/overview.php

  • Nyström M., Ruohomäki K., Kaipia L., 1996, Humic acid as a fouling agent in filtration, Desalination, 106(1–3): 79–87, DOI: 10.1016/S0011-9164(96)00095-1

    Google Scholar 

  • Ober J.A., 2010, Sulfur(Advance Release) [in:] Minerals Yearbook 2008: Vol.1 Metals & Minerals, US Geological Survey, 74: 1–17, http://minerals.usgs.gov/

    Google Scholar 

  • Parkes R. J., Gibson G.R., Mueller-Harvey I., Buckingham W. J., Herbert R.A., 1989, Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction, J. Gen. Microbiol., 135: 175–187, DOI: 10.1099/00221287-135-1-175

    Google Scholar 

  • Pempkowiak J., 1997, Zarys geochemii morskiej, Gdańsk, University of Gdańsk Press, pp. 171 (in Polish)

  • Pham M., Müller J.-F., Brasseur G.P., Granier C., Mégie G., 1996, A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources, Atmos. Environ. 30(10–11): 1815–1822, DOI: 10.1016/1352-2310(95)00390-8

    Article  Google Scholar 

  • Pronk J.T., Liem K., Bos P., Kuenen J.G., 1991, Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 57(7): 2063–2068

    Google Scholar 

  • Rickard, D., 1997, Kinetics of pyrite formation by the H 2 S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation, Geochim. et Cosmochim. Acta, 61(1): 115–134, DOI:10.1016/S00167037(96) 00321-3

    Article  Google Scholar 

  • Rickard D., Morse J.W., 2005, Acid volatile sulfide (AVS), Marine Chemistry 97(3–4): 141–197, DOI: 10.1016/j.marchem.2005.08.004

    Article  Google Scholar 

  • Schenau S.J., Passier H.F., Reichart G.J., De Lange G.J., 2002, Sedimentary pyrite formation in the Arabian Sea, Mar. Geol., 185(3–4): 393–402

    Article  Google Scholar 

  • Schippers A., Jørgensen B.B., 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. et Cosmochim. Acta, 66(1): 85–92, DOI: 10.1016/S0016-7037(01)00745-1

    Article  Google Scholar 

  • Schlegel H.G., 2003, Mikrobiologia ogólna, Warszawa, Polish Scientific Publishers PWN, pp. 735 (in Polish)

    Google Scholar 

  • SCOPE, 1993, Effects of increased ultraviolet radiation on global ecosystems: proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE) with the financial support of the CEC, UNEP, US EPA, the Barbara Gauntlett Foundation, and the US NSF: a research implementation plan addressing the impacts of increased UV-B radiation due to stratospheric ozone depletion on global ecosystems, Tramariglio, (Sassari) Sardinia, Paris, SCOPE, pp. 47

    Google Scholar 

  • Sievert S.M., Kiene R.P., Schulz-Vogt H.N., 2007, The sulfur cycle, Oceanography, 20: 117–123

    Article  Google Scholar 

  • Suits N.S., Arthur M.A., 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments, Chem. Geol., 163: 219–234, DOI: 10.1016/S0009-2541(99)00114-X

    Article  Google Scholar 

  • Šukytė V.J., Rinkevičienė E., Zelionkaitė V., 2002, The chemistry of sulfur in anoxic zones of the Baltic Sea, Environmental Research, Engineering and Management, 3(21): 55–60

    Google Scholar 

  • Thamdrup B., Fossing H., Jørgensen B.B., 1994, Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus Bay, Denmark), Geochim. et Cosmochim. Acta, 58(23): 5115–5129, DOI: 10.1016/0016-7037(94)90298-4

    Article  Google Scholar 

  • Uher G., 2006, Distribution and air — sea exchange of reduced sulphur gases in European coastal waters, Estuarine Coastal Shelf Sci., 70(3): 338–360, DOI: 10.1016/j.ecss.2006.05.050

    Article  Google Scholar 

  • Uher G., Andreae M.O., 1997, Photochemical production of carbonyl sulfide in North Sea water: A process study, Limnol. Oceanogr., 42(3): 432–442

    Article  Google Scholar 

  • Ulshöfer V.S., Andreae M.O., 1997, Carbonyl sulfide (COS) in the surface ocean and the atmospheric COS budget, Aquat. Geochem., 3(4): 283–303, DOI: 10.1023/A:1009668400667

    Article  Google Scholar 

  • Walker J.C., 1986, Global geochemical cycles of carbon, sulfur and oxygen, Mar. Geol., 70: 159–174, DOI: 10.1016/0025-3227(86)90093-9

    Article  Google Scholar 

  • Weiner J., 2003, Życie i ewolucja biosfery, Warszawa, Polish Scientific Publishers PWN, pp. 609 (in Polish)

    Google Scholar 

  • Wijsman J.W.M., Middelburg J.J., Herman P.M.J., Böttcher M.E., Heip C.H.R., 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74(4): 261–278, DOI: 10.1016/S0304-4203(01)00019-6

    Article  Google Scholar 

  • Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996, The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. et Cosmochim. Acta, 60(20): 3897–3912, DOI: 10.1016/0016-7037(96)00209-8

    Article  Google Scholar 

  • Vismann B., 1996, Sulfide species and total sulfide toxicity in the shrimp Crangon crangon, J. Exp. Mar. Biol. Ecol., 204(1–2): 141–154, DOI: 10.1016/0022-0981(96)02577-4

    Article  Google Scholar 

  • Zago C., Giblin A.E., 1994, Analysis of acid volatile sulfide and metals to predict the toxicity of Boston Harbor sediments, The Biological Bulletin, 187: 290–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jasińska.

About this article

Cite this article

Jasińska, A., Burska, D. & Bolałek, J. Sulfur in the marine environment. Ocean and Hydro 41, 72–82 (2012). https://doi.org/10.2478/s13545-012-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-012-0019-x

Key words

Navigation