Skip to main content
Log in

CaZrO3-based powders suitable for manufacturing electrochemical oxygen probes

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

Calcium zirconate powders doped with a small amount of CaO were synthesised using the Pechini method. X-ray analysis revealed that solid solution was formed in the concentration up to 51.5% mol CaO. For synthesis of stoichiometric CaZrO3, the highest temperature was required (1150°C), but introduction of excess CaO from 50.5 to 51.5% mol enabled us to lower the synthesis temperature to 800°C. The sintering behaviour of such samples under non-isothermal conditions was studied by dilatometric methods. Deviations were found in stoichiometry; by increasing the CaO concentration in CaZrO3 sinterability improved in comparison to CaZrO3 with stoichiometric composition. The presence of CaO as second phase caused deterioration of the sinterability of the CaZrO3-based samples. Pellets sintered at 1500°C for 2 h reached 96–98% of theoretical density. SEM and TEM observations were used to characterise the microstructure of the prepared samples. The electrical properties of CaZrO3-based samples were investigated by the AC-impedance spectroscopy method. It was found that introduction of excess CaO into the CaZrO3 structure caused an increase in ionic conductivity up to the solubility limit. The possibility of using CaZrO3-based samples for constructing prototype electrochemical oxygen probes to determine activity of oxygen dissolved in molten copper is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szczerba, Z. Pędzich, Ceramic International 36, 535 (2010)

    Article  CAS  Google Scholar 

  2. A. Obregón, J. L. Rodríguez-Galicia, J. L. Cuevas, P. Pena, C. Baudin, J. Eur. Ceram. Soc. 31, 61 (2011)

    Article  Google Scholar 

  3. C. Gargori, S. Cerro, R. Galindo, A. García, M. Llusar, G. Monrós, Ceramic International 38, 4453 (2012)

    Article  CAS  Google Scholar 

  4. J.E. Contreras, G.A. CastilloT, E.A. Rodrıguez, T.K. Das, A.M. Guzman, Materials Characterization 54, 354 (2005)

    Article  CAS  Google Scholar 

  5. M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981 (2001)

    Article  CAS  Google Scholar 

  6. J.G. Cheng, J.S. Zhou, J.B. Goodenough, Y. Sui, Y. Ren, M.R. Suchomel, Phys. Rev. B 83 644 (2011)

    Google Scholar 

  7. V.M. Orera, J.I. Pena, R.I. Merino, J.A. Lazaro, J.A. Valles, M.A. Rebolledo, Appl. Phys. Lett. 71, 2746 (1997)

    Article  CAS  Google Scholar 

  8. R.I. Merino, R.A. Pardo, J.I. Pena, G.F. De la Fuente, A. Larrea, V.M. Orera, Phys. Rev. B56, 10907 (1997)

    Google Scholar 

  9. R. Balda, S. García-Revilla, J. Fernańdez, R.I. Merino, J.I. Penã, V.M. Orera, J. Luminescence 129, 1422 (2009)

    Article  CAS  Google Scholar 

  10. Y. Suzuki, H.J. Hwang, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 84, 2713 (2001)

    Article  CAS  Google Scholar 

  11. Y. Suzuki, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 86, 1128 (2003)

    Article  CAS  Google Scholar 

  12. P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pędzich, J. Eur. Ceram. Soc. 32, 665 (2012)

    Article  CAS  Google Scholar 

  13. T. Yajima, K. Koide, N. Fukatsu, T. Ohashi, H. Iwahara, Sensors and Actuators B: Chemical, 14(1–3), 697 (1993)

    Article  CAS  Google Scholar 

  14. R.A. Davies, M.S. Islam, J.D. Gale, Solid State Ionics 126, 323 (1999)

    Article  CAS  Google Scholar 

  15. R.A. Davies, M.S. Islam, A.V. Chadwick, G.E. Rush, Solid State Ionics 130, 115 (2000)

    Article  CAS  Google Scholar 

  16. W. Englen, A. Buekenhoutd, Solid State Ionics 96, 55 (1997)

    Article  Google Scholar 

  17. D. Janke, Metallurgical Transactions 13B, 227 (1982)

    CAS  Google Scholar 

  18. A. Weyl, S. Wei, D. Janke, Steel research 65, 167 (1994)

    CAS  Google Scholar 

  19. G. Róg, M. Dudek, A. Kozłowska-Róg, M. Bućko, Electrochimica Acta 47, 4523 (2002)

    Article  Google Scholar 

  20. M. Dudek, E. Drożdż-Cieśla, J. Alloys Comp. 475, 846 (2009)

    Article  CAS  Google Scholar 

  21. M. Dudek, Materials Research Bulletin 44 1879 (2009)

    Article  CAS  Google Scholar 

  22. S. González-López, A. Romero-Serrano, R. Vargas-García, B. Zeifert, A. Cruz-Ramírez, Revista de Metalurgia 46, 219 (2010)

    Article  Google Scholar 

  23. M. Pollet, S. Marinel, G. Desgardin, J. Eur. Ceram. Soc. 24, 119 (2004)

    Article  CAS  Google Scholar 

  24. X. Guo, Computational Materials Science 20, 168 (2001)

    Article  CAS  Google Scholar 

  25. M.C. Martin, M.L. Mecartney, Solid State Ionics 161, 67 (2003)

    Article  CAS  Google Scholar 

  26. M. Dudek, Advances in Materials Science 1,14 (2008).

  27. M. Dudek, M. Bućko, Solid State Ionics 157, 183, (2003)

    Article  CAS  Google Scholar 

  28. M. Dudek, W. Bogusz, Ceramics, Polish Ceramic Bulletin 91, 168 (2005)

    Google Scholar 

  29. M. Dudek, G. Róg, W. Bogusz, A. Kozłowska -Róg, M.M. Bućko, Ł. Zych, Materials Science-Poland 24, 253 (2006)

    CAS  Google Scholar 

  30. S.Ch. Hwang, G.M. Choi, Solid State Ionics 179, 1042 (2008)

    Article  CAS  Google Scholar 

  31. S.Ch. Hwang, G.M. Choi, Solid State Ionics 177, 3099 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Dudek.

About this article

Cite this article

Dudek, M., Rapacz-Kmita, A. CaZrO3-based powders suitable for manufacturing electrochemical oxygen probes. cent.eur.j.chem. 11, 2088–2097 (2013). https://doi.org/10.2478/s11532-013-0332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0332-2

Keywords

Navigation