Skip to main content
Log in

Clinical Pharmacokinetics of Fluoxetine

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Fluoxetine is well absorbed after oral intake, is highly protein bound, and has a large volume of distribution. The elimination half-life of fluoxetine is about 1 to 4 days, while that of its metabolite norfluoxetine ranges from 7 to 15 days.

Fluoxetine has a nonlinear pharmacokinetic profile. Therefore, the drug should be used with caution in patients with a reduced metabolic capability (i.e. hepatic dysfunction).

In contrast with its effect on the pharmacokinetics of other antidepressants, age does not affect fluoxetine pharmacokinetics. This finding together with the better tolerability profile of fluoxetine (compared with tricyclic antidepressants) makes this drug particularly suitable for use in elderly patients with depression. Furthermore, the pharmacokinetics of fluoxetine are not affected by either obesity or renal impairment.

On the basis of results of plasma concentration-clinical response relationship studies, there appears to be a therapeutic window for fluoxetine. Concentrations of fluoxetine plus norfluoxetine above 500 µg/L appear to be associated with a poorer clinical response than lower concentrations.

Fluoxetine interacts with some other drugs. Concomitant administration of fluoxetine increased the blood concentrations of antipsychotics or antidepressants. The interactions between fluoxetine and lithium, tryptophan and monoamine oxidase inhibitors, in particular, are potentially serious, and can lead to the ‘serotonergic syndrome’. This is because of synergistic pharmacodynamic effects and the influence of fluoxetine on the bioavailability of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altamura AC. Drug resistance phenomena in major psychoses: their discrimination and causal mechanisms. Clinical Neuropharmacology 13 (Suppl. 1): 1–15, 1990

    Article  Google Scholar 

  • Altamura AC. Drug-resistance in major depression: definition, discrimination and possible pharmacological strategies. In Meitzer & Nerozzi (Eds) Current practices and future developments in the pharmacotherapy of mental disorders, pp. 139–148, Excerpta Medica, Amsterdam, 1991

    Google Scholar 

  • Altamura AC, De Novellis P, Guercetti G, Invernizzi G, Percudani M, et al. Fluoxetine compared with amitriptyline in elderly depression: a controlled clinical trial. International Journal of Clinical Pharmacological Research 9: 391–396, 1989

    CAS  Google Scholar 

  • Altamura AC, Mauri MC. Aspects of treatment of elderly depression: the fluoxetine experience. In Freeman (Ed.) The use of fluoxetine in clinical practice, Vol. 183, pp. 53–59, Royal Society of Medicine Services, London, New York, 1991

    Google Scholar 

  • Altamura AC, Melorio T, Invernizzi G, Colacurcio F, Gomeni R. Age-related differences in kinetics and side-effects of viloxazine in man and their clinical implications. Psychopharmacology 81: 281–285, 1983

    Article  PubMed  CAS  Google Scholar 

  • Altamura AC, Melorio T, Invernizzi G, Gomeni R. Influence of age on mianserin pharmacokinetics. Psychopharmacology 78: 380–382, 1982

    Article  PubMed  CAS  Google Scholar 

  • Altamura AC, Montgomery SA. Fluoxetine dose, pharmacokinetics and clinical efficacy. Reviews in Contemporary Pharmacotherapy 1: 75–81, 1990

    Google Scholar 

  • Altamura AC, Montgomery SA, Wernicke JF. The evidence for 20 mg a day fluoxetine as the optimal dose in the treatment of depression. British Journal of Psychiatry 153 (Suppl. 3): 103–106, 1988

    Google Scholar 

  • Altamura AC, Percudani M. The use of antidepressants for long-term treatment of recurrent depression: rationale, current methodologies, and future directions. Journal of Clinical Psychiatry 54 (Suppl. 8): 29–37, 1993

    PubMed  Google Scholar 

  • Aronoff GR, Bergstrom RF, Pottratz ST, Sloan RS, Wolen RL, et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clinical Pharmacology and Therapeutics 36: 138–144, 1984

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, et al. Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9: 117–124, 1993

    PubMed  CAS  Google Scholar 

  • Baron B, Ogden A, Siegel B, Stegeman J, Ursillo R, et al. Rapid downregulation of beta-adrenoceptors by coadministration of desipramine and fluoxetine. European Journal of Pharmacology 164: 125–134, 1988

    Article  Google Scholar 

  • Beasley Jr CM, Bosomworth JC, Wernick JF. Fluoxetine: relationships among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacology Bulletin 26: 18–24, 1990

    PubMed  Google Scholar 

  • Beasley CM, Masica DN, Potvin JH. Fluoxetine: a review of receptor and functional effects and their clinical implications. Psychopharmacology 107: 1–10, 1992

    Article  PubMed  CAS  Google Scholar 

  • Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 481–508, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom R, Wolen RL, Dhahir P, Hatcher B, Werner N, et al. Effect of food on the absorption of fluoxetine in normal subjects. Abstracts of the American Pharmaceutical Association Academy of Pharmaceutical Sciences 14: 110, 1984

    Google Scholar 

  • Bergstrom RF, Farid KZ, McClurg JE, Lemberger L. The pharmacokinetics of fluoxetine in elderly subjects. II World Conference on Clinical Pharmacology and Therapeutics, Washington, 31 July–5 August, 1983. Abstract no. 699, p. 120, 1983

  • Bergstrom RF, Lemberger L, Farid NA, Wolen RL. Clinical pharmacology and pharmacokinetics of fluoxetine: a review. British Journal of Psychiatry 153 (Suppl. 3): 47–50, 1988

    Google Scholar 

  • Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clinical Pharmacology and Therapeutics 51 (3): 239–248, 1992

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom RF, vanLier RBL, Lemberger L, Tenbarge JL. Absolute bioavailability of fluoxetine in beagle dogs. Abstracts of the American Pharmaceutical Association Academy of Pharmaceutical Sciences 16: 126, 1986a

    Google Scholar 

  • Bergstrom RF, Wolen RL, Lemberger L, Dhahir P, Barrett JL. Fluoxetine single dose-multiple dose kinetics. 39th National Meeting of the American Pharmaceutical Association Academy of Pharmaceutical Sciences, Washington, 1985. Vol. 15, p. 137, 1985

  • Bergstrom RF, Wolen RL, Lemberger L, Tenbarge JL, Masco HL. Fluoxetine steady state pharmacokinetics in depressed patients. 133rd Annual Meeting of the American Pharmaceutical Association, San Francisco, 16–20 March, 1986. Vol. 16, No. 1, Abstract no. P55, 1986b

  • Bloomer JC, Woods FR, Haddock RE, Lennard MS, Tucker GT. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. British Journal of Clinical Pharmacology 33: 521–523, 1992

    Article  PubMed  CAS  Google Scholar 

  • Bodkin JA, Teicher MH. Fluoxetine may antagonize the anxiolytic action of buspirone. Journal of Clinical Psychopharmacology 9: 150, 1989

    Article  PubMed  CAS  Google Scholar 

  • Boyer WF, Feighner JP. Pharmacokinetics and drug interactions. In Feighner & Boyer (Eds) Selective serotonin reuptake inhibitors, pp. 81–88, J. Wiley and Sons, New York, 1991

    Google Scholar 

  • Brøsen K, Gram IF, Sindrup S, et al. Pharmacogenetics of tricyclics and novel antidepressants: recent developments. Clinical Neuropharmacology 15 (Suppl. 1): 80–81, 1992

    Article  Google Scholar 

  • Brøsen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6 — the source of the sparteine/debrisoquine oxidation polymorphism. British Journal of Clinical Pharmacology 32: 136–137, 1991

    Article  PubMed  Google Scholar 

  • Byerley WF, McConnell EJ, McCabe RT, Dawson TM, Grosser BI, et al. Decreased beta-adrenergic receptors in rat brain after chronic administration of the selective serotonin uptake inhibitor fluoxetine. Psychopharmacology 94: 141–143, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cassady SL, Thaker GK. Addition of fluoxetine to clozapine. American Journal of Psychiatry 149: 1274, 1992

    PubMed  CAS  Google Scholar 

  • Centorrino F, Baldessarini RJ, Kondo J, Frankenburg FR, Volpicelli SA, et al. Serum concentrations of clozapine and its metabolites: effects of cotreatment with valproate or fluoxetine. American Journal of Psychiatry 151: 123–125, 1994

    PubMed  CAS  Google Scholar 

  • Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics. Journal of Clinical Psychopharmacology 10: 48–50, 1990

    Article  PubMed  CAS  Google Scholar 

  • Committee on Safety of Medicines. Fluvoxamine and fluoxetine — interaction with monoamine oxidase inhibitors, lithium and tryptophan. Current Problems No. P26: 1989

    Google Scholar 

  • Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. British Journal of Clinical Pharmacology 34: 262–265, 1992

    Article  PubMed  CAS  Google Scholar 

  • De Vane CL. Pharmacokinetics of the selective serotonin reuptake inhibitors. Journal of Clinical Psychiatry 53 (Suppl.): 13–20, 1991

    Google Scholar 

  • Dixit V, Nguyen H, Dixit VM. Solid-phase extraction of fluoxetine and norfluoxetine from serum with gas chromatography-electron-capture detection. Journal of Chromatography 563: 379–384, 1991

    Article  PubMed  CAS  Google Scholar 

  • Dumbrille-Ross A, Tang SW. Manipulations of synaptic serotonin: discrepancy of effects on serotonin S1 and S2 sites. Life Science 32: 2677–2684, 1983

    Article  CAS  Google Scholar 

  • Eisen A. Fluoxetine and desipramine: a strategy for augmenting antidepressant response. Pharmacopsychiatry 22: 272–273, 1989

    Article  PubMed  CAS  Google Scholar 

  • Farid NA, Bergstrom RF, Lemberger L, Ziege EA, Tenbarge J, et al. Studies on disposition of fluoxetine and radioactive isotopes. 15th Collegium International Neuro-Psychopharmacologicum Congress, Puerto Rico, 1986

  • Fichtner CG, Johe LH, Braun BG. Does fluoxetine have a therapeutic window? Lancet 7: 520–521, 1991

    Article  Google Scholar 

  • Fuller RW, Wong DT. Serotonin re-uptake blockers in vitro and in vivo. Journal of Clinical Psychopharmacology 7: 365–435, 1987

    Article  Google Scholar 

  • Goff DC, Brotman AW, Waites RN, McCormick S. Trial of fluoxetine added to neuroleptics for treatment-resistant schizophrenic patients. American Journal of Psychiatry 147: 492–494, 1990

    PubMed  CAS  Google Scholar 

  • Goff DC, Midha KK, Brotman AW, Waites M, Baldessarini RJ. Elevation of plasma concentrations of haloperidol after the addition of fluoxetine. American Journal of Psychiatry 148: 790–792, 1991

    PubMed  CAS  Google Scholar 

  • Goodnick PJ. Influence of fluoxetine on plasma levels of desipramine. American Journal of Psychiatry 146: 552, 1989

    PubMed  CAS  Google Scholar 

  • Goodnick PJ. Pharmacokinetics of second generation antidepressant: fluoxetine. Psychopharmacology Bulletin 27: 503–512, 1991

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Preskorn SH, Cotreau MM, Horst WD, Harmatz JS. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clinical Pharmacology and Therapeutics 52: 479–486, 1992

    Article  PubMed  CAS  Google Scholar 

  • Grimsley SR, Jann MW, Carter JG, Mello AP, Souza MJ. Increased carbamazepine plasma concentrations after fluoxetine coadministration. Clinical Pharmacology and Therapeutics 50: 10–15, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hansen TE, Dieter K, Keepers GA. Interaction of fluoxetine and pentazocine. American Journal of Psychiatry 147: 949–950, 1990

    PubMed  CAS  Google Scholar 

  • Jarvis MR. Clinical pharmacokinetics of tricyclic antidepressant overdose. Psychopharmacology Bulletin 27: 541–550, 1991

    PubMed  CAS  Google Scholar 

  • Kelly MW, Perry PJ, Holstad SG, Garvey MJ. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Therapeutic Drug Monitoring 11: 165–170, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ketai R. Interaction between fluoxetine and neuroleptics. American Journal of Psychiatry 150: 836–837, 1993

    PubMed  CAS  Google Scholar 

  • Kinkaid RL, McMullin MM, Crookman SB, Riders F. Report of a fluoxetine fatality. Journal of Analytical Toxicology 14: 327–329, 1990

    Google Scholar 

  • Lasher TA, Fleishaker JC, Steenwyk RC, Antal EJ. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 104: 323–327, 1991

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG, et al. Fluoxetine: clinical pharmacology and physiologic disposition. Journal of Clinical Psychiatry 46: 14–19, 1985

    PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Bergstrom RF, Farid KZ, Enas GG. Effect of fluoxetine on psychomotor performance, physiologic response, and kinetics of ethanol. Clinical Pharmacology and Therapeutics 37: 658–664, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF. The effect of fluoxetine on the pharmacokinetics and psychomotor response of diazepam. Clinical Pharmacology and Therapeutics 43: 413–419, 1988

    Google Scholar 

  • Lock JD, Gwirtsman HE, Targ EF. Possible adverse drug interactions between fluoxetine and other psychotropics. Journal of Clinical Psychopharmacology 10: 383–384, 1990

    Article  PubMed  CAS  Google Scholar 

  • Martensson B, Nyberg S, Toresson G, Brodin E, Bertilsson L. Fluoxetine treatment of depression. Acta Psychiatrica Scandinavica 79: 586–596, 1989

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, Baldwin D, Shah A, Green M, Fineberg N, et al. Fluoxetine treatment of depression. Clinical Neuropharmacology 13 (Suppl. 1): 71–75, 1990

    Article  Google Scholar 

  • Montgomery SA, James D, de Ruiter M, et al. Weekly oral fluoxetine treatment of major depressive disorder, controlled trial. 15th Collegium International Neuro-Psychopharmacologicum Congress, Puerto Rico, 1986

  • Nash JF, Bopp RJ, Carmichaell RH, et al. Determination of fluoxetine and norfluoxetine in plasma by gas chromatography with electron-capture detection. Clinical Chemistry 28: 2100–2102, 1982

    PubMed  CAS  Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, et al. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA and Cell Biology 10: 1–4, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Mazure CM, Bowers Jr MB, Jatlow PI. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Archives of General Psychiatry 48: 303–307, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nichols JH, Charlson JR, Lawson GM. Plasma fluoxetine and norfluoxetine by automated HPLC. Clinical Chemistry 38 (6): 1012, 1992

    Google Scholar 

  • Nies A, Robinson DS, Friedman MJ, et al. Relationship between age and tricyclic antidepressant plasma levels. American Journal of Psychiatry 134: 790–793, 1977

    PubMed  CAS  Google Scholar 

  • Orsulak PJ, Kenney JT, Debus JR, Crowley G, Wittman PD. Determination of the antidepressant fluoxetine and its metabolite norfluoxetine in serum by reversed-phase HPLC, with ultraviolet detection. Clinical Chemistry 34: 1875–1878, 1988

    PubMed  CAS  Google Scholar 

  • Otton SV, Wu D, Joffe RT, Cheung SW, Sellers EM. Inhibition by fluoxetine of cytochrome P450 activity. Clinical Pharmacology & Therapeutics 53: 401–409, 1993

    Article  CAS  Google Scholar 

  • Potter WZ, Manji HK. Antidepressants, metabolites and apparent drug resistance. Clinical Neuropharmacology (Suppl. 1) 13: 45–53, 1990

    Article  Google Scholar 

  • Preskorn SH. Pharmacokinetics of antidepressants: why and how they are relevant to treatment? Journal of Clinical Psychiatry 54 (Suppl.): 2–22, 1993

    Google Scholar 

  • Preskorn SH, Beber JH, Faul JC, Hirschfeld RMA. Serious adverse effects of combining fluoxetine and tricyclic antidepressants. American Journal of Psychiatry 147: 532, 1990

    PubMed  CAS  Google Scholar 

  • Renshaw PF, Guimaraes AR, Fava M, Rosenbaum JF, Pearlman JD, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. American Journal of Psychiatry 149: 1592–1594, 1992

    PubMed  CAS  Google Scholar 

  • Roethger JR. The importance of blood collection site for determination of basic drugs: a case with fluoxetine and diphenhydramine overdose. Journal of Analytical Toxicology 14: 191–192, 1990

    Google Scholar 

  • Rohrig TP, Prouty RW. Fluoxetine overdose: a case report. Journal of Analytical Toxicology 13: 305–307, 1989

    PubMed  CAS  Google Scholar 

  • Rosenthal J, Hemlock C, Hellerstein DJ, Yanowitch P, Kasch K, et al. A preliminary study of serotonergic antidepressants in the treatment of dysthymia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 16: 933–941, 1992

    Article  PubMed  CAS  Google Scholar 

  • Saletu B, Grunberger J. Classification and determination of cerebral bioavailability of fluoxetine: pharmacokinetic, pharmaco-EEG, and psychometric analyses. Journal of Clinical Psychiatry 46: 45–52, 1985

    PubMed  CAS  Google Scholar 

  • Schenker S, Bergstrom RF, Wolen RL, Lemberger L. Fluoxetine disposition and elimination in cirrhosis. Clinical Pharmacology and Therapeutics 44: 353–359, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brosen K, Gram LF, Hallas J, Skjelbo E, et al. The relationship between paroxetine and sparteine oxidation polymorphism. Clinical Pharmacology and Therapeutics 51: 278–287, 1992

    Article  PubMed  CAS  Google Scholar 

  • Sjöqvist F. Pharmacogenetics of antidepressants. In Dahl & Gram (Eds) Clinical pharmacology: psychiatry, pp. 181–191, Springer-Verlag, Berlin, Heidelberg, 1989

    Chapter  Google Scholar 

  • Sommi RW, Crismon ML, Bowden CL. Fluoxetine a serotonin-specific, second-generation antidepressant. Pharmacotherapy 7: 1–15, 1987

    PubMed  CAS  Google Scholar 

  • Suckow RF, Roose SP, Cooper TB. Effect of fluoxetine on plasma desipramine and 2-hydroxydesipramine. Biological Psychiatry 31: 200–204, 1992a

    Article  PubMed  CAS  Google Scholar 

  • Suckow RF, Zhang MF, Cooper TB. Sensitive and selective liquid-chromatographic assay of fluoxetine and norfluoxetine in plasma with fluorescence detection after precolumn derivatization. Clinical Chemistry 38: 1756–1761, 1992b

    PubMed  CAS  Google Scholar 

  • Tate JL. Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. American Journal of Psychiatry 146: 399–400, 1989

    PubMed  CAS  Google Scholar 

  • van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clinical Pharmacokinetics 24 (3): 203–220, 1993

    Article  PubMed  Google Scholar 

  • Vaughan DA. Interaction of fluoxetine with tricyclic antidepressants. American Journal of Psychiatry 145: 1478, 1988

    PubMed  CAS  Google Scholar 

  • von Ammon Cavanaugh S. Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics 31: 273–276, 1990

    Article  Google Scholar 

  • Wamsley JK, Byerley WF, McCabe RT, et al. Receptor alterations associated with serotonergic agents: an autoradiographic analysis. Journal of Clinical Psychiatry 48: 19–25, 1987

    PubMed  CAS  Google Scholar 

  • Wilens TE, Biederman J, Baldessarini RJ, McDermott SP, Puopolo PR, et al. Fluoxetine inhibits desipramine metabolism. Archives of General Psychiatry 49: 752, 1992

    Article  PubMed  CAS  Google Scholar 

  • Wright CE, Lasher Sisson TA, Steenwyk RC, Swanson CN. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 12: 103–106, 1992

    PubMed  CAS  Google Scholar 

  • Zanger UM, Vilbois F, Hardwick JP, Meyer UA. Absence of hepatic cytochrome P450I causes genetically deficient debrisoquine oxidation in man. Biochemistry 27: 5447–5454, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altamura, A.C., Moro, A.R. & Percudani, M. Clinical Pharmacokinetics of Fluoxetine. Clin. Pharmacokinet. 26, 201–214 (1994). https://doi.org/10.2165/00003088-199426030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199426030-00004

Keywords

Navigation