Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Artemether-Lumefantrine

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The combination of artemether and lumefantrine (benflumetol) is a new and very well tolerated oral antimalarial drug effective even against multidrug-resistant falciparum malaria. The artemether component is absorbed rapidly and biotransformed to dihydroartemisinin, and both are eliminated with terminal half-lives of around 1 hour. These are very active antimalarials which give a rapid reduction in parasite biomass and consequent rapid resolution of symptoms. The lumefantrine component is absorbed variably in malaria, and is eliminated more slowly (half-life of 3 to 6 days). Absorption is very dependent on coadministration with fat, and so improves markedly with recovery from malaria. Thus artemether clears most of the infection, and the lumefantrine concentrations that remain at the end of the 3- to 5-day treatment course are responsible for eliminating the residual 100 to 10 000 parasites. The area under the curve of plasma lumefantrine concentrations versus time, or its correlate the plasma concentration on day 7, has proved an important determinant of therapeutic response. Characterisation of these pharmacokinetic-pharmacodynamic relationships provided the basis for dosage optimisation, an approach that could be applied to other antimalarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiao XQ, Liu GY, Shan CQ, et al. Phase II trial in China of a new and rapidly-acting and effective antimalarial CGP 56697, for the treatment of Plasmodium. falciparum malaria. Southeast Asian J Trop Med Public Health 1997; 28: 476–81.

    CAS  Google Scholar 

  2. von Seidlein L, Jaffar S, Pinder M, et al. Treatment of African children with uncomplicated falciparum malaria with a new antimalarial drug, CGP 56697. J Infect Dis 1997; 176: 1113–6.

    Article  Google Scholar 

  3. van Vugt M, Brockman A, Gemperli B, et al. Randomized comparison of artemether-benflumetol and artesunate-mefloquine in treatment of multidrug-resistant falciparum malaria. Antimicrob Agents Chemother 1998; 42: 135–9.

    PubMed  Google Scholar 

  4. Hatz C, Abdulla S, Mull R, et al. Efficacy and safety of CGP 56697 (artemether and benflumetol) compared with chloroquine to treat acute falciparum malaria in Tanzanian children aged 1–5 years. Trop Med Int Health 1998; 3: 495–504.

    Article  Google Scholar 

  5. Hien TT, Day NPJ, Phu NH, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 1996; 335: 76–83.

    Article  CAS  Google Scholar 

  6. Hien TT, White NJ. Qinghaosu. Lancet 1993; 341: 603–8.

    Article  PubMed  CAS  Google Scholar 

  7. Price RN, Nosten F, Luxemburger C, et al. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg 1995; 89: 523–7.

    Article  PubMed  CAS  Google Scholar 

  8. Wernsdorfer WH, Landgraf B, Kilimali VAEB, et al. Activity of benflumetol and its enantiomers in fresh isolates of Plasmodium falciparum from East Africa. Acta Tropica 1998; 70: 9–15.

    Article  PubMed  CAS  Google Scholar 

  9. Watkins WM, Mosobo M. Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg 1993; 87: 75–8.

    Article  PubMed  CAS  Google Scholar 

  10. White NJ. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 1997; 41: 1413–22.

    PubMed  CAS  Google Scholar 

  11. White NJ. Preventing antimalarial drug resistance through combinations. Drug Resistance Updates 1998; 1: 3–9.

    Article  PubMed  CAS  Google Scholar 

  12. Atkinson JD, Ward SA. The use of independently acting drug combinations to reduce the rate of resistance acquisition in Plasmodium falciparum malaria: studies with lumefantrine, artemether, and co-artemether [abstract]. European Congress on Tropical Medicine; 1998 Sep 14–18; Liverpool.

  13. Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol 1998; 46: 553–62.

    Article  PubMed  CAS  Google Scholar 

  14. Looareesuwan S, Wilairatana P, Chokejindachai W, et al. Arandomized, double-blind, comparative trial of a new oral combination of artemether and benflumetol (CGP 56697) with mefloquine in the treatment of acute Plasmodium. falciparum malaria in Thailand. Am J Trop Med Hyg 1999; 60: 238–43.

    CAS  Google Scholar 

  15. van Vugt M, Wilairatana P, Gemperli B, et al. Efficacy of six doses of artemether-lumefantrine in the treatment of multidrug resistant falciparum malaria. Am J Trop Med Hyg. In press.

  16. Shmuklarsky MJ, Klayman DL, Milhous WK, et al. Comparison of beta-artemether and beta-arteether against malaria parasites in vitro and in vivo. Am J Trop Med Hyg 1993; 48: 377–84.

    PubMed  CAS  Google Scholar 

  17. Basco LK, Le Bras J. In vitro activity of artemisinin derivatives against African isolates and clones of Plasmodium falciparum. Am Journal Trop Med Hyg 1993; 49: 301–7.

    CAS  Google Scholar 

  18. Teja-Isavadharm P, Nosten F, Kyle DE, et al. Comparative bio-availability of oral, rectal and intramuscular artemether in healthy subjects — use of simultaneous measurement by high performance liquid chromatography with electrochemical detection and bioassay. Br J Clin Pharmacol 1996; 42: 599–604.

    PubMed  CAS  Google Scholar 

  19. ter Kuile F, White NJ, Holloway P, et al. Plasmodium falciparum: in-vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 1993; 76: 86–95.

    Google Scholar 

  20. Pradines B, Tall A, Fusai T, et al. In vitro activities of benflumetol against 158 Senegalese isolates of Plasmodium falciparum in comparison with those of standard antimalarial drugs. Antimicrob Agents Chemother 1999; 43: 418–20.

    PubMed  CAS  Google Scholar 

  21. Basco LK, Bickii J, Ringwald P. In vitro activity of lumefantrine (benflumetol) against clinical isolates of Plasmodium falciparum in Yaounde, Cameroon. Antimicrob Agents Chemother 1998; 42: 2347–51.

    PubMed  CAS  Google Scholar 

  22. Kamchonwongpaisan S, Meshnick SR. The mode of action of the antimalarial artemisinin and its derivatives. Gen Pharmacol 1996; 27: 587–92.

    Article  PubMed  CAS  Google Scholar 

  23. White NJ. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: 41–3.

    Article  CAS  Google Scholar 

  24. Melendez V, Peggins JO, Brewer TG, et al. Determination of the antimalarial arteether and its dethylated metabolite dihydroartemisinin in plasma by high performance liquid chromatography with reductive electrochemical detection. J Pharm Sci 1991; 80: 132–8.

    Article  PubMed  CAS  Google Scholar 

  25. Navaratnam V, Mansor SM, Chin LK, et al. Determination of artemether and dihydroartemisinin in blood plasma by high-performance liquid chromatography for application in clinical pharmacological studies. J Chromatogr (B) Biomed Appl 1995; 669: 289–94.

    Article  CAS  Google Scholar 

  26. Edwards G. Measurement of artemisinin and its derivatives in biological fluids. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: 37–9.

    Article  CAS  Google Scholar 

  27. Zeng MY, Lu ZL, Yang SC, et al. Determination of benflumetol in human plasma by reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Appl 1996; 681: 299–306.

    Article  PubMed  CAS  Google Scholar 

  28. Mansor SM, Navaratnam V, Yahaya N, et al. Determination of a new antimalarial drug, benflumetol, in blood plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl 1996; 682: 321–5.

    Article  PubMed  CAS  Google Scholar 

  29. van Vugt M, Ezzet F, Phaipun L, et al. The relationship between capillary and venous concentrations of lumefantrine (benflumetol). Trans R Soc Trop Med Hyg 1998; 92: 564–5.

    Article  PubMed  Google Scholar 

  30. Grace JM, Aguilar AJ, Trotman KM, et al. Metabolism of β-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P-450. Drug Metab Dispos 1998; 26: 313–17.

    PubMed  CAS  Google Scholar 

  31. van Agtmael MA, Van Der Graaf CA, Dien TK, et al. The contribution of the enzymes CYP2D6 and CYP2C19 in the demethylation of artemether in healthy subjects. Br J Pharmacol 1998; 125: 159–67.

    Article  Google Scholar 

  32. Leo KU, Grace JM, Li Q, et al. Effects of Plasmodium berghei infection on arteether metabolism and disposition. Pharmacology 1997; 54: 276–84.

    Article  PubMed  CAS  Google Scholar 

  33. Batty KT, Ilett KF, Edwards G, et al. Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. Br J Pharmacol 1998; 125: 159–67.

    Article  PubMed  CAS  Google Scholar 

  34. Murdoch RT, Ghabrial H, Mihaly GW, et al. Malaria infection impairs glucuronidation and biliary excretion by the isolated perfused rat liver. Xenobiotica 1991; 15: 71–82.

    Google Scholar 

  35. van Agtmael MA, Gupta V, van Boxtel CJ. Aglass of grapefruit juice makes new malaria treatment more effective [abstract A-081]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego (CA).

  36. Li Q-G, Peggins JO, Fleckenstein L, et al. Binding characteristics of 14C-arteether, 14C-artemether, and 14C-dihydroartemisinin to plasma proteins and red blood cells of human and animal species in-vivo and in-vitro [abstract PpA 144]. 21st Annual Meeting Experimental Biology; 1998; San Francisco.

  37. Lee IS, Hufford CD. Metabolism of antimalarial sesquiterpene lactones. Pharmacol Ther 1990; 48: 345–55.

    Article  PubMed  CAS  Google Scholar 

  38. Chi HT, Ramu K, Baker JK, et al. Identification of the in-vivo metabolites of the antimalarial arteether by thermospray high performance liquid chromatography/mass spectrometry. Biol Mass Spectrom 1991; 20: 609–28.

    Article  PubMed  CAS  Google Scholar 

  39. Novartis AG. Data on file.

  40. Na Bangchang K, Karbwang J, Thomas CG, et al. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol 1994; 37: 249–53.

    Article  PubMed  CAS  Google Scholar 

  41. Mordi MN, Mansor SM, Navaratnam V, et al. Single dose pharmacokinetics of oral artemether in healthy Malaysian volunteers. Br J Clin Pharmacol 1998; 43: 363–5.

    Article  Google Scholar 

  42. Bindschedler M, Degen P, Lu ZL, et al. Comparative bioavailability of benflumetol after administration of single oral doses of co-artemether under fed and fasted conditions to healthy subjects [abstract]. XIVth International Congress for Tropical Medicine and Malaria; 1996 Nov 17–22; Nagasaki.

  43. White NJ. Antimalarial pharmacokinetics. Br J Clin Pharmacol 1992; 34: 1–10.

    Article  PubMed  CAS  Google Scholar 

  44. Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990; 46: 673–87.

    Article  PubMed  CAS  Google Scholar 

  45. Davidian M, Giltinan AR. Nonlinear models for repeated measurements data. London: Chapman and Hall, 1995.

    Google Scholar 

  46. Field JW. Blood examination and prognosis in acute falciparum malaria. Trans R Soc Trop Med Hyg 1949; 43: 33–48.

    Article  PubMed  CAS  Google Scholar 

  47. Brewer TG, Peggins JO, Grate SJ, et al. Neurotoxicity in animals due to arteether and artemether. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: 33–6.

    Article  CAS  Google Scholar 

  48. Brewer TG, Grate SJ, Peggins JO, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg 1994; 51: 251–9.

    PubMed  CAS  Google Scholar 

  49. Price RN, van Vugt M, Phaipun L, et al. Adverse effects in patients with acute uncomplicated falciparum malaria treated with artemisinin derivatives. Am J Trop Med Hyg 1999; 60: 547–55.

    PubMed  CAS  Google Scholar 

  50. Nosten F, ter Kuile FO, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993; 341: 1054–6.

    Article  PubMed  CAS  Google Scholar 

  51. Price R, Nosten F, White NJ. Prolongation of the QTc interval in African children treated for Falciparum malaria. Am J Trop Med Hyg 1998; 59: 503.

    PubMed  CAS  Google Scholar 

  52. Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24: 474–90.

    Google Scholar 

  53. Molyneux ME, Looareesuwan S, Menzies IS, et al. Reduced hepatic blood flow and intestinal malabsorption in severe falciparum malaria. Am J Trop Med Hyg 1989; 40: 470–76.

    PubMed  CAS  Google Scholar 

  54. White NJ, Nosten F, Looareesuwan S, et al. Averting a malaria disaster. Lancet 1999; 353: 1965–7.

    Article  PubMed  CAS  Google Scholar 

  55. Nosten F, Luxemburger C, ter Kuile FO, et al. Treatment of multi-drug resistant Plasmodium falciparum malaria with 3-day artesunate-mefloquine combination. J Infect Dis 1994; 170: 971–7.

    Article  PubMed  CAS  Google Scholar 

  56. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28: 71–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hussein Z, Eaves J, Hutchinson DB, et al. Population pharmacokinetics of atovaquone in patients with acute malaria caused by Plasmodium falciparum. Clin Pharmacol Ther 1997; 61: 518–30.

    Article  PubMed  CAS  Google Scholar 

  58. Yorke W, Macfie JWS. Observations on malaria made during treatment of general paralysis. Trans R Soc Trop Med Hyg 1924; 18: 33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, N.J., van Vugt, M. & Ezzet, F.D. Clinical Pharmacokinetics and Pharmacodynamics of Artemether-Lumefantrine. Clin Pharmacokinet 37, 105–125 (1999). https://doi.org/10.2165/00003088-199937020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937020-00002

Keywords

Navigation