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Abstract:    A reliable prediction of the characteristics of roof collapse in deep tunnels is still one of the most important and 
challenging tasks in tunnel engineering. To investigate the collapse mechanisms and possible shapes of the collapsing blocks in 
deep tunnels, an analytical solution of shape curves for collapsing blocks is derived based on the nonlinear Hoek-Brown failure 
criterion by using the functional catastrophe theory. The obtained formulas are extremely simple. Furthermore, a judging criterion 
is proposed to distinguish whether the roof collapses of deep tunnels will occur or not. The effects of rock mass parameters used in 
the proposed method on the collapsing block shapes of deep tunnels are also discussed. The proposed analytical solution is verified 
by both the empirical method and the model test. 
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1  Introduction 
 

The collapse of a tunnel roof, which could cause 
a lot of harm to human life and property, is a major 
challenge in tunnel engineering. Due to the inherent 
uncertainties of rock mass in nature, the precise pre-
diction of tunnel roof collapses is very complex. 
Terzaghi (1946), who first used the stress-transfer 
theory to analyze the characteristics of tunnel col-
lapses, also developed a system to estimate the degree 
of tunnel safety. After Terzaghi, many researchers 
have extensively investigated the mechanisms of 
tunnel collapses by using the upper-bound theory 
(Fraldi and Guarracino, 2009; 2010; 2011; Huang and 
Yang, 2011; Huang et al., 2012; Fraldi et al., 2014).  

The catastrophe theory, found by Thom (1972), 
provides an innovative approach to study the discon-
tinuous phenomena. This theory has been proved to 
be effective in analyzing the stability problems in 
geology and geomechanics. Henley (1976) used the 
catastrophe theory to analyze the phenomena in ge-
ology and some examples of its usages in geology 
(e.g., volcanology, sedimentology, and structural 
geology) were presented. Pan et al. (2006) established 
a fold catastrophe model of tunnel rock burst and 
reported that the occurrences of rock burst are related 
to both the ratio of elastic modulus to descendent 
modulus of the rock mass and the rock mass crack 
growth degree. Based on the fold catastrophe theory, 
Miao et al. (2009) presented a model of the seepage 
flow system to analyze the dynamical behavior of 
water or gas flows in damaged rock, and the influ-
ences of different key parameters on the stability of 
seepage flow systems were obtained. With the catas-
trophe theory and the discontinuous deformation 
analysis (DDA) method, Xia et al. (2012) studied the 
stability of tunnel surrounding rock and obtained the 
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safety factors for tunnels, which can be adopted in 
practical projects to guarantee the safety of the tun-
nels. Tao et al. (2013) studied the mid-long-term 
landslide evolution across a low-latitude highland 
area in China by using the cusp catastrophe theory 
and determined the influence of human activities on 
landslide intensities. Ren et al. (2013) proposed a 
cusp catastrophe model to analyze the potential 
damage mode of the surrounding rock in the Gonghe 
tunnel, China and the failure criterion of the sur-
rounding rock was jointly derived by using the dis-
crete element method (DEM). 

The current research on tunnel collapse is gen-
erally based on the elementary catastrophe theory 
(ECT). In the ECT, the degenerate critical point of the 
total potential (one of seven elementary functions of 
state variable x) of the studied system is obtained by 
analyzing the first- and second-order partial deriva-
tives of the total potential. Then the critical value xc of 
the state variable is obtained when the catastrophe 
occurs. However, in a complex system, the total po-
tential of the system often has a complex mathemat-
ical form (such as a functional of the state function 
f(x)) rather than the elementary functions. Du (1994) 
proposed the functional catastrophe theory (FCT), of 
which the total potential is employed in the form of a 
functional instead of an elementary function, and he 
successfully solved some complex physical and 
economic problems with the FCT. In the FCT, it re-
quires to obtain the degenerate critical point of the 
total potential by analyzing the first- and second-order 
variations of the total potential. In a similar way, the 
critical value fc(x) of the state variable is obtained 
when catastrophe occurs. To investigate the shape 
curve f(x) of the collapsing blocks in deep tunnels by 
using the catastrophe theory, the potential of the 
studied system will be a functional based on f(x). 
Therefore, the FCT can be used to analyze tunnel 
stability problems. 

In this study, the detaching zone of a collapsing 
block is the studied system. Referring to the 
Hoek-Brown failure criterion, the potential of the 
studied system is first established. Then the FCT is 
employed to investigate the mechanisms of tunnel 
roof collapse. The analytical solution of the collaps-
ing block shape curve in deep tunnels is obtained and 
the judging criterion is put forward to distinguish 
whether the roof collapse of deep tunnels will occur 
or not. The effects of different parameters on the 
collapsing block shape are also discussed. Moreover, 

the proposed analytical solution is verified by both the 
empirical method and the model test. 

 
 

2  Functional catastrophe theory 

2.1  Catastrophic conditions for the functional 

There are seven fundamental models of ECT 
which have been summarized by Thom (1972). The 
seven elementary functions are defined by polyno-
mial functions, as shown in Table 1. According to the 
ECT, Eqs. (1) and (2) are used to judge the degenerate 
critical point of the potential. It means that the po-
tential in the critical points of Eqs. (1) and (2) is 
structurally unstable, i.e., a catastrophe is going to 
occur.  

 
0,DV                                     (1) 

det( ) 0,HV                                (2) 

 
where DV and det(HV) are the differential vector and 
the determinant of Hessian matrix of function V[x, y], 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
If the total potential of the studied system is de-

fined by a functional (Eq. (3)), it will be a challenge to 
determine the catastrophe occurrence of the studied 
system. 

 

   ( ) , ( ), ( ) d ,
b

a
J f x F x f x f x x                    (3) 

 
where the prime indicates the derivative of the func-
tion with respect to its variable, i.e., f(x)=∂f(x)/∂x. 

Du (1994) derived the necessary and sufficient 
conditions for a functional catastrophe, which are 
shown in Eqs. (4) and (5). They are formally similar 
with Eqs. (1) and (2), respectively. 

Table 1  Potential functions used in elementary  
catastrophe theory 

Name Potential function 

Fold  x3/3+ax 

Cusp  x4/4+ax2/2+bx 

Swallowtail  x5/5+ax3/3+bx2/2+cx 

Butterfly  x6/6+ax4/4+bx3/3+cx2/2+dx 

Elliptic umbilic  x3−3xy2+a(x2+y2)+bx+cy 

Hyperbolic umbilic  x3+y3+axy+bx+cy 

Parabolic umbilic x2y+y4+ax2+by2+cx+dy 
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0,J                                    (4) 
2 0,J                                   (5) 

 
where δJ and δ2J are the first- and second-order var-
iations of functional J[f(x)], respectively.  

According to Eqs. (3)–(5), the catastrophic con-
ditions for functional J[f(x)] can be written as  
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With the help of a subsection integral, the two 

specific forms of the catastrophic conditions for the 
functional are obtained: 
 

0,
( ) ( )

F F

f x x f x

   
     

                    (8) 
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       
              

  (9) 

 

2.2  Basic solution procedure for FCT to solve the 
problem of tunnel collapse 

Firstly, it is important to obtain the total potential 
of the studied system J[x, f(x), f(x)], and then to ob-
tain the F[x, f(x), f(x)]. Note that f(x) is a function 
describing the outline of the collapsing block. 

Secondly, using Eqs. (8) and (9), a group of 
differential equations about f(x) can be obtained. By 
integrating the differential equations, the shape curve 
(f(x)) of the collapsing block can be obtained. 

Finally, the unknown constants in f(x) can be 
determined by boundary transversality conditions and 
geometric compatibility equations.  

 
 

3  Catastrophe state analysis of a deep tun-
nel collapse 

 
The estimation of the roof stability of deep tun-

nels primarily lies in determining the shape and di-
mension of the collapsing blocks which can actually 

collapse from the roof of the tunnel. By using the 
upper-bound theorem, Fraldi and Guarracino (2010) 
proposed a mechanical model for deep tunnels and 
obtained the upper solution of collapsing block 
shapes based on the Hoek-Brown failure criterion. 
The aim of this study is to analyze the mechanisms 
and the shape of deep tunnel collapses by using an-
other method, FCT. The model assumptions are the 
same as Fraldi and Guarracino (2010). So the model 
can be used to analyze the problem presented in this 
study. A subtle difference in Fig. 1 with the original 
mechanical model is that the velocity u  is used in-
stead of displacement u. The reason for the difference 
is that the research object of the FCT and the upper- 
bound theorem are the total potential and total dissi-
pation of the studied system, respectively. 

To solve the proposed problem by using the ca-
tastrophe theory, some assumptions are made. In this 
study, only the gravity field is considered, regardless 
of the tectonic stress field, which is consistent with 
the relative reference (Fraldi and Guarracino, 2010). 
The behavior of the rock mass is elastic-perfect plas-
tic. The yield surface is convex and the plastic de-
formation rate can be obtained from the yield function 
through an associated flow rule. The changes in the 
geometry of the collapsing block can be regarded as 
insignificant through the onset of the collapse (rigid- 
plastic behavior). The problem can be considered 
plane. The Hoek-Brown failure criterion proposed by 
Hoek and Brown (1980) is adopted for the rock mass. 
As the total potential along the failure surface is 
caused by normal and shear stresses, the Hoek-Brown 
failure criterion used is expressed as  

 

n t
n c c t

c

, , (0,1), 0,

B

A A B
 

   


 
    

 
 (10) 

 
where σn is the normal stress, τn is the shear stress, A 
and B are material parameters characterizing the rock 
mass, σc and σt are the uniaxial compressive strength 
and the tensile strength of the rock mass, respectively. 

In Fig. 1, L is the half-width of the collapsing block, 
R is the tunnel radius, H is the height of the collapsing 
block, h is the intercept in y-axis of f(x), ρ is the weight 
per unit volume of the rock mass, w is the thickness of 
the plastic detaching zone, and g(x) is a known func-
tion describing the shape of a circular tunnel. 

2 2( ) .g x R x                          (11) 
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The total potential is obtained by computing the 

internal forces potential energy in the detaching zone 
and external loads potential energy on the detaching 
surface. Referring to the formula presented by Fraldi 
and Guarracino (2010), the total potential of the 
studied system consists of two parts, the strain energy 
of the internal forces on the detaching zone and the 
work of the applied loads of the detaching surface. 

By following a purely geometrical perspective 
and making reference to Fig. 1, the normal and tan-
gential plastic strain components of detaching surface 
can be written as 

 
2 1/2

n ( / )[1 ( ) ] ,u w f x                     (12) 
2 1/2

n ( / ) ( )[1 ( ) ] .u w f x f x                 (13) 

 
At impending collapse, the strain energy (Ui) of 

the internal forces on the detaching zone results in 
 

i n n n n

1/(1 ) 1 1/(1 )
t c

2

( ) (1 ) ( )

1 ( ) ,

B B

U

AB B f x

u w f x

   
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 

     
   

   (14) 

 
while the work of the applied loads per unit length 
(We) of the detaching surface is 

 

 e ( ) ( ) .W f x g x u                      (15) 

 
Then, the total potential of the detaching zone 

caused by normal and shear stresses can be expressed as  

0

1/(1 ) 1 1/(1 )
c t0
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[ ( ) (1 ) ( ) ] d .

L
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
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


 (16) 

 
Using the functional catastrophe theory, the 

function F is 
 

1/(1 ) 1 1/(1 )
c t

[ , ( ), ( )] [ ( ) ( )]

[ ( ) (1 ) ( ) ] .B B

F F x f x f x f x g x u

AB B f x u



   

   

  
    (17) 

 
The key in the catastrophic state analysis is to 

find the specific expression of f(x) with the help of 
Eqs. (8) and (9). 

Substituting Eq. (17) into Eqs. (8) and (9), the 
explicit forms of the group of differential equations of 
f(x) for the problem are 

 

 1/(1 ) 1 /(1 )
c

d
( ) ( ) 0,

d
B B BAB B f x

x
             (18) 

 
2

1/(1 ) 1 (2 1)/(1 )
c2

d
( ) (1 ) ( ) 0.

d
B B BAB B f x

x
          (19) 

 
Integrating Eq. (18), the detaching curve f(x) is 

obtained: 
 

1/ (1 )/ 1 1/
c( ) ( / ) ( ) ,B B B Bf x A x m h            (20) 

 
where m and h are two integration constants. 

Substituting Eq. (20) into Eq. (19), we can obtain: 
 

1/ (2 1)/ (1 )/ 1 1/
c (2 1)( ) 0.B B B B B BA B x m          (21) 

 
Eq. (21) is required to be zero for any value of x. 

This means that the value of B must be 0.5, which is 
the result of Eq. (5), i.e., one of the catastrophic con-
ditions. In addition, the parameter B determines the 
power exponent of f(x), so it also describes the shape 
of the collapsing block. Based on the value of B, the 
reduced form of f(x) can be obtained:  

 
2 1 2

c( ) ( / )( ) .f x A x m h                  (22) 

There are two unknown parameters m and h in 
Eq. (22), which can be determined by boundary con-
ditions. Obviously, point A moves along the y-axis 
and point B moves along the tunnel boundary  
as shown in Fig. 2. All the boundary conditions 

Fig. 1  Collapsing pattern of the deep tunnels
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mentioned above can be obtained from Wang and 
Wang (2007). It requires that Eq. (17) should satisfy 
both Eq. (23) and Eq. (24): 

 

0

0,
( )

x

F

f x 


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
                            (23) 
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           (24) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Substituting Eq. (17) into Eqs. (23) and (24), the 

explicit forms of the transversality conditions are 
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(26) 

 
Simplifying Eqs. (25) and (26), the values of m 

and h in the expression of collapsing block are  
determined: 

 
m=0,                                   (27) 

2 2 2 2 2
t / .h R L L R L                (28) 

 
Substituting the values of m and h into Eq. (22), 

the shape curve of collapsing block can be obtained: 

 
2 2

c

2 2 2 2 2
t

( ) ( / )

/ .

f x A x

R L L R L

 

 


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Now we obtain the curve which describes the 
shape and dimensions of the collapsing block of deep 
tunnels. The curve is a parabola with y-axis being the 
axis of symmetry and h being the y-intercept. 

The value of L is still unknown in Eq. (29). 
However, on account of its geometrical meaning, L 
can be easily obtained. It can be seen in Fig. 1 that 
there is a geometric compatibility condition which 
needs to be satisfied: 

 

( ) ( ).f x L g x L                         (30) 
 

Substituting Eqs. (11) and (29) into Eq. (30) 
results in 

 

2 2 2 2 2
c t( / ) / 0.A L L R L             (31) 

 

Then, the value of L can be obtained by solving 
Eq. (31). 

Moreover, it is possible to compute the overall 
weight of the collapsing block per unit length (P) by 
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(32) 

 
4  Examples and remarks 

4.1  Judging criterion for a deep tunnel collapse 

In Fig. 1, the height of the collapsing block H 
can be obtained from Eq. (28): 

 

2 2 2 2 2
t / .H h R L L R L             (33) 

 

A tunnel can be regarded as deep buried if the 
distance between the tunnel crown and the ground 
surface Har satisfies the following inequality: 

 

2 2 2
ar t / .H H L R L                 (34) 

Fig. 2  Boundary conditions of collapsing block
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4.2  Influence of different rock mass parameters 
on the collapsing block shape 

Based on Eq. (29), the shape curve of a col-
lapsing block for deep tunnels can be obtained. The 
influence of different rock mass parameters on the 
collapsing block shape is shown in Fig. 3. Note that 
both the width and the height of the collapsing block 
tend to decrease with the values of σc, σt (Fig. 3a), and 
A (Fig. 3b). On the contrary, the width and the height 
of the collapsing block tend to increase with the value 
of the density ρ (Fig. 3c). A highlight identified is that 
the collapsing block shape is sensitive to parameter A. 
The higher the values of σc, σt, and A are or the lower 
the value of ρ is, the smaller the collapsing blocks are.  

Table 2 shows the shape curve of the collapsing 
blocks for different tunnel radius R varying from 3 to 
7 m. The rock mass is characterized by the following 
parameters: A=0.15, B=0.5, ρ=25 kN/m3, σc=1.5 MPa, 
and σt=0.15 MPa. With reference to Table 2, it is 
worth noting that the half-width of the collapsing 
block (L) increases almost at the same rate with the 
increment of the tunnel radius (R) (when the radius 
doubles, the increment in the width of the collapsing 
block is about 127%), whereas the height of the col-
lapsing block (H) sharply increases with the incre-
ment of the tunnel radius (when the radius doubles, 
the increment in the height of the collapsing block is 
more than fivefold). Therefore, the ratio of the height 
to width (H/(2L)) also increases with the increment of 
the tunnel radius.  

Figs. 4a–4c show the height, width, and weight 
of the collapsing blocks for different tunnel radius, 
respectively. For tunnel design, the prediction and 
mitigation of the damage caused by construction- 
induced tunnel collapse and the determination of the 
overburden on the tunnel lining are major concerns. 
The results obtained in Fig. 4 can be helpful for tunnel 
engineers, as they cannot only be used to predict the 
height and width of the collapsing blocks under un-
supported conditions but also give a direct estimate of 
the overburden on the tunnel lining. 

 
 

5  Comparisons 

5.1  Comparison with the natural arch theory 

The natural arch theory proposed by Pro-
todyakonov (1907) has been widely employed (Meng 
et al., 2012; Qiu et al., 2012) to determine the range of 

roof collapses in tunnel engineering. It states that the 
rock mass above the natural arch is undisturbed while  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Dimensions of the collapsing blocks vs. tunnel 
radius 

R (m) L (m) H (m) H/(2L) 

3.00 2.58 3.45 0.67 

4.00 3.73 7.76 1.04 

5.00 4.81 13.45 1.40 

6.00 5.84 20.63 1.77 

7.00 6.86 29.28 2.13 

Fig. 3  Shapes of collapsing blocks vs. different rock 
parameters  
 (a) Variations of σc and σt ; (b) Variations of A; (c) Variations of ρ

σc=1.1 MPa  
σc=1.2 MPa
σc=1.3 MPa
σc=1.4 MPa
σc=1.5 MPa

R=3 m,
A=0.15,
B=0.5,
ρ=25 kN/m3,
σt /σc=1/10

(a)

Tunnel

A=0.11
A=0.12
A=0.13
A=0.14
A=0.15

R=3 m,
B=0.5,
ρ=25 kN/m3,
σc=1.5 MPa,
σt /σc=1/10

(b)

Tunnel

ρ=27 kN/m3

ρ=26 kN/m3

ρ=25 kN/m3

ρ=24 kN/m3

ρ=23 kN/m3

R=3 m,
A=0.15,
B=0.5,
σc=1.5 MPa,
σt /σc=1/10

(c)

Tunnel
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the part below is disturbed to collapse. In Fig. 5, N 
and H0 are the vertical and horizontal pushing forces 
on the natural arch, respectively, pv is the vertical 
uniform load, hna is the height of the natural arch, and 
a is the radius of the tunnel. According to the natural 
arch theory, the natural arch is in a shape of a parabola: 
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Comparing the results obtained by Eqs. (29) and 

(35), it can be found that the curves are both in the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
shape of a parabola. Therefore, the outline of the 
collapsing block in deep tunnels is in the form of a 
parabola, which agrees very well with the proposed 
failure shape according to the natural arch theory. 

5.2  Comparison with the model test 

Li (2013) employed the model test to study the 
deep tunnel collapse characteristics with a plane 
strain model test device (Fig. 6). The geometrical 
similarity ratio of the model tests was 1/30. A type of 
material, composed of barite, quartz, and vaseline, 
was selected to represent the surrounding ground. The 
weight ratio of the ingredients barite:quartz:vaseline 
was 8.0:5.0:0.6. The tunnel excavation process was 
modeled by the pressure release of an airbag inside 
the tunnel. The stress field of the model test was 
produced by gravity alone. According to Li (2013)’s 
research, the collapse observed in a model test is 
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Fig. 4  Variations of H/R (a), L/R (b), and the weight P (c) 
of the collapsing blocks with respect to tunnel radius  
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Fig. 5  Calculation model for the natural arch theory 
(Protodyakonov, 1907)  
(a) Sketch map; (b) Mechanical analysis  
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shown in Fig. 7a. The nonlinear curve fitting of the 
collapse is shown in Fig. 7b. The results show that the 
fitting is very good because the adjusted R2 is 0.983, 
which is nearly equal to 1. Note that the outline of the 
collapsing block is in the form of a parabola. The 
proposed method is thus verified by the laboratory 
model test. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 
The potential in the FCT is employed in the form 

of a functional while the potential in the ECT is em-
ployed in the form of an elementary function. The 
former method greatly excels the latter in solving 
some complex problems. A major contribution of this 
paper is that the FCT is the first to investigate the 
collapse mechanisms and possible collapsing block 
shapes of deep tunnels. Some conclusions can be 
drawn as follows: 

1. Based on the nonlinear Hoek-Brown failure 
criterion, an analytical solution of the shape curve for 
the collapsing blocks of deep tunnels is derived using 
the FCT. The obtained formulas cannot only be used 
to predict the height and width of the collapsing block 
under unsupported conditions but also give a direct 
estimate of the overburden on the tunnel lining. Due 
to the simplicity of the obtained formulas, they can be 
easily used by tunnel engineers and researchers.  

2. According to the FCT, based on the nonlinear 
Hoek-Brown failure criterion, a judging criterion is 
proposed to distinguish whether the roof collapse of 
deep tunnels will occur or not, and the outline of the 
collapsing blocks in deep tunnels is in the form of a 
parabola. The influences of rock mass parameters on 
the shape curves of collapsing blocks in deep tunnels 
are obtained. It is shown that the higher the values of 
σc, σt, and A are or the lower the value of ρ is, the 
smaller the collapsing blocks are.  

3. To validate the analytical solution, the results 
obtained in this paper are compared with those ob-
tained by both an empirical method and a model test. 
By analyzing the natural arch theory proposed by 
Protodyakonov (1907) and the results of a plane strain 
model test, it can also be concluded that the outline of 
the collapsing blocks is in the form of a parabola. The 
agreements indicate the validity of the proposed 
method. 
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中文概要： 
本文题目：基于霍克-布朗准则的深埋隧道塌方机制泛函突变分析 

Functional catastrophe analysis of collapse mechanisms for deep tunnels based on the 
Hoek-Brown failure criterion  

研究目的：分析深埋隧道的塌方机制并推导塌方体形状曲线的解析表达式。 

创新要点：基于霍克-布朗准则，采用泛函突变理论推导得到了深埋隧道塌方体形状曲线的解析表达式，

并据此分析了围岩参数变化对塌方体形状的影响规律。 
研究方法：通过理论分析建立深埋圆形隧道的解析模型（图 1），采用泛函突变理论推导基于霍克-布朗准

则的隧道塌方体形状曲线解析表达式，并研究围岩参数变化对塌方体形状的影响规律（图 3和

4，表 2）。通过与自然拱理论和模型试验结果的对比（图 5–7）验证本文解析解的正确性。 

重要结论：采用泛函突变理论推导了基于霍克-布朗准则的深埋隧道塌方体形状曲线解析表达式。该解析

表达式简洁直观，不仅可以预测无支护条件下隧道的塌落体尺寸，还可以估算塌落围岩作用

于衬砌上的荷载。 
关键词组：深埋隧道；隧道塌方；泛函突变理论；霍克-布朗准则 


