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Abstract: The Global Influenza Surveillance Network is crucial for monitoring epidemic risk in participating
countries. However, at present, the network has notable gaps in the developing world, principally in Africa and
Asia where laboratory capabilities are limited. Moreover, for the last few years, various influenza viruses have been
continuously emerging in the resource-limited countries, making these surveillance gaps a more imminent challenge.
We present a spatial-transmission model to estimate epidemic risks in the countries where only partial or even no
surveillance data are available. Motivated by the observation that countries in the same influenza transmission
zone divided by the World Health Organization had similar transmission patterns, we propose to estimate the
influenza epidemic risk of an unmonitored country by incorporating the surveillance data reported by countries of
the same transmission zone. Experiments show that the risk estimates are highly correlated with the actual influenza
morbidity trends for African and Asian countries. The proposed method may provide the much-needed capability
to detect, assess, and notify potential influenza epidemics to the developing world.
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1 Introduction

The Global Influenza Surveillance Network
(GISN) of the World Health Organization (WHO)
is an essential foundation for monitoring and man-
aging an influenza pandemic. At present, the
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GISN is collecting and processing influenza virolog-
ical data at the global scale, which comprises 136
national influenza centers in 106 countries and 5
collaborating centers for reference and research on
influenza (http://www.influenzacentre.org/centre_
GISN.htm). The GISN system has proven to be
valuable, but it leaves severe spatial gap, principally
in Asia and Africa (Fig. 1). Moreover, only 21 coun-
tries with national surveillance networks are report-
ing their influenza surveillance data to the WHO
in a standard form (http://www.who.int/influenza/

http://www.influenzacentre.org/centre_GISN.htm
http://www.influenzacentre.org/centre_GISN.htm
http://www.who.int/influenza/gisrs_laboratory/flunet/en/
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Fig. 1 Global influenza morbidity levels reported by the WHO in Feb. 2010

gisrs_laboratory/flunet/en/). For most devel-
oping countries, the data are available only
discontinuously.

Our work attempts to map the influenza epi-
demic risk of different countries at the global scale.
There are a variety of reasons for mapping the
geographical distribution of the influenza epidemic
risk (Lavanchy, 1999). First, it allows an imme-
diate visualization of the extent and magnitude
of the public health problem (He et al., 2015b).
Second, when based on empirical evidence, maps
could support carefully weighted assessments by
decision makers on the advantages and disadvan-
tages of alternative courses of action (Hay et al.,
2013; Nelson et al., 2015). These may range from
helping plan international intervention strategies
(Kenah et al., 2011) to advice for individuals on
whether to vaccinate and provide prophylaxis be-
fore travel (http://www.who.int/ith/other_health_
risks/infectious_diseases/en/).

The 2009 influenza A(H1N1) pandemic taught
us that monitoring influenza epidemic risk at the
global scale is of great importance; however, little
research focused on resource-limited countries due
to the lack of surveillance data (Briand et al., 2014).
Since 2009, there has been a rapid growth of interest
in developing large-scale spatial-transmission mod-
els for influenza surveillance (He et al., 2013). There
were roughly four groups of spatial-transmission
models categorized by different assumptions about

the characteristic of disease transmission between
different members (Riley, 2007). Each member could
represent an individual, a household, or a country,
depending on the scale of research. For the multi-
group models, the disease could transmit only be-
tween members in the same group (Ferguson et al.,
2005; Longini et al., 2005). For network models,
the infection risk of a member is zero unless it con-
nects to an infected member in the transmission
network (Eubank et al., 2004). The distance-based
models assume that any infected member could in-
fect all susceptible members within range (Fergu-
son et al., 2001; Keeling et al., 2001). The pairwise
probability of infection is usually a monotonically
decreasing function of distance. The patch models
are similar to multi-group models, except that the
members in the home-patch could also be infected
by members in adjacent or close patches (Cooper
et al., 2006; Hollingsworth et al., 2007). Wang
and Li (2014) introduced the metapopulation data
and summarized relevant progress in recent years.
Besides the spatial-transmission models, traditional
Bayesian and Markov models were used extensively
in epidemic risk estimations (Best et al., 2005; Zhou
et al., 2013). These models have been successfully
used in visualizing and mapping epidemic risks at
different scales. However, they cannot be applied
directly to regions where no surveillance data are
available.

At the global scale, the epidemic risk of the

http://www.who.int/influenza/gisrs_laboratory/flunet/en/
http://www.who.int/ith/other_health_risks/infectious_diseases/en/
http://www.who.int/ith/other_health_risks/infectious_diseases/en/
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influenza varies significantly from continent to conti-
nent. For example, most H5N1 and H7N9 cases were
reported in Asia. Research indicated that the level of
economic development also plays a part in influenza
transmission, which partly explains why the devel-
oping countries in Asia and Africa had higher risks
of influenza epidemics (Oshitani et al., 2008). On
the other hand, despite the fact that influenza risks
vary from country to country, recent research indi-
cated that the influenza dynamics of many countries
are strongly correlated in time after the 2009 H1N1
pandemic (He et al., 2015b). Similar climate or envi-
ronment might result in similar patterns of influenza
transmission in nearby countries (Tamerius et al.,
2013). At present, the WHO divides the world into
18 influenza transmission zones according to similar
influenza transmission patterns (WHO, 2014). In-
tuitively, if a country lacks surveillance data, one
might be able to estimate its epidemic risk using
the surveillance data for countries in the same trans-
mission zone. As a special case, He et al. (2015a)
approximated the influenza morbidity in Saudi Ara-
bia, which was unavailable, using the data collected
from nearby countries.

This paper presents a novel spatial-transmission
model to estimate the influenza epidemic risk which
could be measured by different means, such as the
morbidity or the reproductive number of the in-
fluenza. We use the simple measure of the total mor-
bidity to represent the influenza epidemic risk, which
has been widely used in previous research (Zhou and
Shen, 2010; Zhou et al., 2011; He et al., 2015b).
To extend our model to countries where no surveil-
lance data are available, we build a hybrid spatial-
transmission model according to the characteristics
of influenza transmission. At the global scale, a net-
work model is first built over countries where surveil-
lance data are available. We use the classic multi-
dimensional scaling (MDS) formulation and attempt
to preserve the spatial difference of influenza morbid-
ity between different countries. Then, we add a sec-
ond layer of the multi-group model over all countries
including those with no surveillance data. We de-
fine 18 groups, each group representing an influenza
transmission zone. Assuming that the countries in
the same transmission zone have similar epidemic
risks, we minimize the differences of epidemic risks
among countries in the same transmission zone. Fi-
nally, we integrate the network model and the multi-

group model into one optimization formulation and
transform it into a generalized eigenvalue problem.

2 Data and material

The WHO gathers the influenza morbidity data
of 130 countries (or regions) and has published the
data by the FluNet (http://www.who.int/influenza/
gisrs_laboratory/flunet/en/). The morbidity is of
weekly resolution and is divided by subtypes, i.e.,
subtype A(H5), A(H1), A(H1N1)pdm09, A(H3),
A(not subtyped), B(Yamagata lineage), B(Victoria
lineage), and B(Lineage not determined). A typi-
cal example of the morbidity examined is shown in
Fig. 2. Our model is built and evaluated using the
WHO influenza morbidity in a week-by-week fash-
ion, and the period covered by our experiments is
260 weeks from Jan. 2009 to Dec. 2013.

At present, the GISN has covered most coun-
tries in the western world. However, the influenza
surveillance data for 28 (of 56) African and 15 (of
48) Asian countries (or regions) remain unavailable.
Moreover, of all the countries and regions report-
ing surveillance data to the WHO, only 21 coun-
tries have their own surveillance networks, allowing
a standardized form of reporting. However, for most
countries, the surveillance data are incomplete. For
the countries covered by the GISN, the average miss-
ing rates are 26.50% for African countries and 24.22%

for Asian countries.

3 Method

Our method is designed to estimate the epi-
demic risks by preserving both global variations and
regional similarities in disease transmission. Suppose
xi,p is the morbidity number of influenza subtype p

(p ≤ 8) for the ith country (region). The spatial
difference of influenza morbidity between countries i
and j is defined using the usual squared difference as

δi,j =

8∑

p=1

(xi,p − xj,p)
2. (1)

Suppose yi indicates the epidemic risk of coun-
try i, and k is the total number of countries and re-
gions where influenza surveillance data are available.
To estimate yi and preserve the spatial variations of
epidemic risk, we employ the MDS formulation as

http://www.who.int/influenza/gisrs_laboratory/flunet/en/
http://www.who.int/influenza/gisrs_laboratory/flunet/en/
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Fig. 2 Typical example of the influenza morbidity of India published by the FluNet (This image was used here
with WHO’s copyright permission. References to color refer to the online version of this figure)

(Williams, 2002)

min
y1,y2,...,yk

k∑

i=1

k∑

j=1

(‖yi − yj‖2 − δi,j)
2, (2)

to calculate the epidemic risks such that the morbid-
ity difference between countries is preserved as well
as possible.

To combine the above optimization with the re-
gional similarity criterion, we transform problem (2)
into its dual maximization form. Suppose Δ =

[δi,j ]k×k is the risk variation matrix, e the column
vector of ones, I the identity matrix, and K the
standardized dissimilarity matrix written as

K = −1

2
(I − eTe)Δ(I − eTe).

It has been shown in Williams (2002) that, given the
epidemic risk vector y = [y1, y2, . . . , yk]

T, the solu-
tion of problem (2) is y =

√
αw where α and w

are the first eigenvalue and eigenvector of K, respec-
tively. Suppose the length of y is restricted, e.g.,
constrained by a constant as yTy = α. Problem (2)
can be written equivalently as the following maxi-
mization form:

max
y

yTKy. (3)

Suppose only k out of n countries (or regions) report
their influenza surveillance data to the WHO. Given
the extended matrix K defined as

K =

(
K 0k,n−k

0n−k,k 0n−k,n−k

)

n×n

,

problem (3) can be written equally as

max
y

yTKy. (4)

Note that y = [yT, yk+1, . . . , yn]
T includes the epi-

demic risks for n − k countries (or regions) where
no surveillance data are available for the examined
week. To estimate y, we assume that the countries
in a same influenza transmission zone have similar
epidemic risks. Suppose S = [sij ]n×n represents the
transmission similarity matrix and

sij =

{
0, Zi �= Zj , (5a)

1, Zi = Zj , (5b)

where Zi ∈ {1, 2, . . . , 18} indicates which influenza
transmission zone the ith country is in. To preserve
the geographical similarity of influenza transmission
in each zone, we minimize the squared difference of
epidemic risks for countries in the same zone as

min
y1,y2,...,yn

n∑

i,j=1

sij(yi − yj)
2. (6)

Suppose D = [di,j ]n×n is a diagonal matrix
where dii =

∑n
j=1 sij . The matrix L = I − D is

known as the Laplacian matrix. By simple reduc-
tion, problem (6) can be written as

min
y

yTLy. (7)

Since our method aims to preserve both global
variations and regional similarities of the influenza
epidemic risk, we attempt to maximize problem (4)
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and minimize problem (7) simultaneously, which can
be achieved by

max
y

yTKy

yTLy
. (8)

The objective function (8), known as the gener-
alized Rayleigh quotient, is equivalent to the follow-
ing generalized eigenvalue problem:

Ky = λLy. (9)

The maximum of function (8) is achieved when y is
the eigenvector corresponding to the largest eigen-
value of the above generalized eigenvalue problem.
It is worth noting that, since we use the largest gen-
eral eigenvalue as the estimated risk, matrix L does
not have to be of full rank for computation.

4 Experiments and results

One important hypothesis of our method is the
high correlation of epidemic risks among countries in
the same influenza transmission zone. There are sev-
eral widely used measures to evaluate the epidemic
risk, such as the total morbidity, basic reproductive
number, and effective reproductive number. Guided
by Occam’s Razor, we use the simple measure of the
total morbidity to represent the actual influenza epi-
demic risk, which has been widely used in previous
research (Best et al., 2005; Hay et al., 2013).

To examine the hypothesis, we arrange the ac-
tual influenza epidemic risk for each country through
the examined period as a vector, and calculate the
Pearson correlation coefficients of the epidemic risks
between all 130 countries (regions) examined. The
average correlation coefficients between countries in
the same transmission zone range from 0.75 (West-
ern Africa zone, σ = 0.05) to 0.90 (North Africa
zone, σ = 0.05) (except the Southern Africa zone
which has only one country), which are significantly
higher than the average correlation of all countries
examined (ρ = 0.15, σ = 0.05).

To examine the Laplacian MDS method, we
compare the estimated risk with the actual risk mea-
surement for all the countries covered by the GISN.
Fig. 3a shows an example of the estimated risk for
different countries in the 8th week of 2010. The
top 10 countries with the highest estimated risks
were China, Japan, Egypt, Romania, USA, Rus-
sian, Mexico, Greece, Singapore, and France, which
were consistent with the actual risk measurements.
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Fig. 3 Results for the countries covered by the GISN:
(a) comparison of the estimated risk and the actual
risk measurement in the 8th week of 2010; (b) the
correlation between the estimated risks and the actual
risk measurements of different countries for all the
examined weeks from Jan. 2009 to Dec. 2013

The full correlation results are shown in Fig. 3b, in
which we compare the Laplacian MDS (solid line,
0.90 ≤ ρ ≤ 0.99, σ = 0.05) with the classic MDS
(dotted line, 0.69 ≤ ρ ≤ 0.98, σ = 0.05). Gener-
ally, the average correlation between the estimated
risk and the actual risk measurement is strong for
both the Laplacian MDS (ρ = 0.93, σ = 0.05) and
the classic MDS (ρ = 0.89, σ = 0.05). The perfor-
mance of the Laplacian MDS seems more stable than
that of the classic MDS. The reason might be that
the output of the classic MDS does not have to be
positive, which could result in an underestimation
of the epidemic risk. On the other hand, since the
Laplacian MDS attempts to smooth the output, it
leads to positive estimates and more stable results
for epidemic risk mapping.

By taking advantage of the correlations between
countries in the same transmission zone, the Lapla-
cian MDS can be used to fill the surveillance gaps
in African and Asian countries (areas). Fig. 4 shows
an example of the global influenza epidemic risk es-
timation. The risk estimates for African countries
during the examined period indicate that, though no
cases were reported, the influenza epidemic risks in
unmonitored African countries during the H1N1 pan-
demic period are not negligible, which is consistent
with later findings (WHO Regional Office for Africa,
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Estimated risk

Low High

Fig. 4 The estimated influenza epidemic risks in Feb. 2010

2009). Thanks to the high correlation between the
estimated risk and the actual risk measurements, the
Laplacian MDS can provide useful indicators of in-
fluenza epidemics at the global scale. For example,
a series of H1N1 outbreaks were reported by Egypt
and Kenya in June 2009. Though no surveillance
data were reported to the WHO, our method pre-
dicted that the epidemic risk was not negligible in
nearby countries such as Morocco, Ethiopia, Alge-
ria, Tunisia, and Mauritius, where outbreaks of the
H1N1 virus were confirmed later (ECDC, 2009).

Fig. 5 compares the estimates and the actual risk
measurements for all African countries. The color of
the pixels in each row represents the epidemic risk
for each country. For most of the African countries
reporting to the WHO, their influenza surveillance
data were incomplete. The black gaps in Fig. 5a
illustrate the missing data, where the missing rate
ranged from less than 1% to over 99% (Chad). Com-
paring Figs. 5a and 5b, one may see that given the
data missing challenge, the estimated risk still cap-
tures the high and low points of the actual influenza
epidemic risk. Since the proposed method is designed
to predict the epidemic risks of unmonitored coun-
tries using the data collected from nearby countries,
the risk estimates of countries in the same transmis-
sion zone showed similar patterns during the H1N1
pandemic period.

For each country or area in Africa and Asia,
the correlation coefficient between the temporal se-
quence of estimates and the actual risk measure-

ments is listed in Table 1. Though the Laplacian
MDS was not designed to preserve temporal pat-
terns, the correlation for the countries in Africa
and Asia was relatively high. The average correla-
tion for different African transmission zones ranged
from 0.79 (Middle Africa, σ = 0.05) to 0.99 (South-
ern Africa, σ = 0.05). Further observation shows
that the average correlation for European coun-
tries (ρ = 0.92, σ = 0.05) or American countries
(ρ = 0.95, σ = 0.05) is higher than that of African
(ρ = 0.81, σ = 0.05) or Asian countries (ρ = 0.85,
σ = 0.05). This might be caused by the higher
missing rate in African and Asian surveillance data,
which resulted in less smooth trends and lower tem-
poral correlations.

To evaluate the predicted risks for the coun-
tries with no surveillance data, we designed a leave-
one-out experiment where the morbidity data of the
countries examined were assumed to have been miss-
ing in risk estimation. The leave-one-out experiment
examined one country at a time, and the correla-
tion between the actual risk and the predicted risk
of the countries examined was computed (Table 1).
Compared with the previous experiment where all
morbidity data were used for risk estimation, the av-
erage correlation coefficient of the leave-one-out ex-
periment dropped about 13% on average for African
and Asian countries. However, for all countries, a
positive correlation between the predicted risk and
actual risk was observed, and the correlation for 53%
countries was higher than 0.70 (σ = 0.05), which
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(a) (b)

Fig. 5 The actual risk measurement (a) and the estimated risk (b) for all African countries of five influenza
transmission zones (References to color refer to the online version of this figure)

Table 1 Correlation coefficients between the temporal sequence of estimates and the actual risk measurement
for Asian and African countries (σ = 0.05)

African Country Missing Temporal Leave-1-out Asian Country Missing Temporal Leave-1-out
zone or area rate (%) correlation correlation zone or area rate (%) correlation correlation

Eastern
Africa

Ethiopia 23.46 0.71 0.69
Eastern
Asia

China 0.00 0.99 0.73
Kenya 0.00 0.90 0.74 Japan 0.00 0.99 0.78
Madagascar 5.00 0.79 0.72 Mongolia 0.38 0.72 0.62
Mauritius 40.00 0.91 0.81 North Korea 0.38 0.94 0.89
Mozambique 63.08 0.64 0.61

Central
Asia

Kazakhstan 23.85 0.80 0.73
Rwanda 29.23 0.73 0.62 Kyrgyzstan 16.54 0.75 0.54
Uganda 15.77 0.86 0.71 Uzbekistan 82.69 0.59 0.58
Tanzania 14.62 0.72 0.66

Southern
Asia

Afghanistan 54.23 0.72 0.52
Zambia 21.92 0.75 0.64 Bangladesh 20.38 0.95 0.82

Middle
Africa

Cameroon 5.00 0.91 0.79 Bhutan 41.15 0.74 0.61
Central AR 25.77 0.75 0.70 India 5.38 0.95 0.85
Chad 99.99 – – Iran 0.77 0.92 0.75
Congo 86.15 0.63 0.52 Nepal 0.55 0.97 0.67
DR Congo 23.08 0.72 0.56 Pakistan 0.00 0.81 0.74

Northern
Africa

Algeria 9.62 0.80 0.80 Sri Lanka 2.31 0.90 0.82
Egypt 0.00 0.96 0.88

Southeast
Asia

Cambodia 0.77 0.98 0.90
Morocco 37.31 0.72 0.64 Indonesia 20.38 0.73 0.71
Tunisia 33.08 0.69 0.62 Lao PDR 37.69 0.71 0.69

Southern
Africa

Malaysia 0.00 0.86 0.85
South Africa 0.00 0.99 0.73 Philippines 2.69 0.92 0.87

Singapore 3.08 0.93 0.73

Western
Africa

Burkina Faso 51.54 0.65 0.65 Thailand 1.54 0.91 0.64
Cote dIvoire 14.62 0.96 0.82 Viet Nam 1.54 0.95 0.72
Ghana 0.00 0.93 0.79

Western
Asia

Armenia 36.54 0.72 0.68
Mali 28.08 0.72 0.61 Azerbaijan 41.54 0.74 0.62
Niger 67.69 0.66 0.56 Bahrain 51.92 0.66 0.42
Nigeria 21.15 0.84 0.71 Georgia 10.77 0.83 0.72
Senegal 0.00 0.97 0.78 Iraq 0.00 0.78 0.66
Sierra Leone 45.00 0.73 0.67 Israel 39.23 0.81 0.75
Togo 26.54 0.89 0.83 Jordan 38.46 0.65 0.64

Oman 5.77 0.76 0.69
Qatar 41.92 0.82 0.77
Turkey 13.85 0.81 0.74
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indicated that the predicted risk might be a useful
indicator of actual influenza risk in countries where
surveillance data are not available.

To compare with the temporal-transmission
models, we fitted a hidden Markov model and a
Bayesian model to estimate the actual risk measure-
ment. The Bayesian method achieved an average
correlation of 0.77 (σ = 0.05) and 0.83 (σ = 0.05)
for African and Asian countries, respectively, which
were comparable with the Laplacian MDS. The aver-
age correlation achieved by the hidden Markov model
was notably lower for African countries (ρ = 0.47,
σ = 0.05), which was caused possibly by inadequate
training data.

In the previous experiments we used the morbid-
ity number to estimate the epidemic risks. In fact,
one can also use the prevalence data, which is the
fraction of infected population in a country, to esti-
mate the influenza epidemic risk. The yearly average
correlation between the estimated risk and actual
epidemic risk ranged from 0.83 to 0.92 (σ = 0.05)
from the year 2009 to 2013, which was high but lower
than the correlation achieved using morbidity num-
bers. The main reason might be that the high cor-
relation was contributed mainly by the high peaks
in morbidity trends. Most peaks in the morbidity
data were countries of large populations; however,
the peaks in the prevalence data were relatively low,
resulting in lower correlation results.

5 Discussion and conclusions

One of the most important challenges of global
influenza surveillance is the lack of data (Briand
et al., 2014), especially in the developing countries
where most epidemics emerged. To fill the surveil-
lance gaps, we estimated the influenza epidemic risks
in countries with incomplete or even no surveillance
data based on the morbidity data collected in nearby
countries. Experiments showed that the estimated
risks were strongly correlated with the actual in-
fluenza epidemic risk in general, which could pro-
vide early warnings of potential influenza epidemics
in countries lacking the infrastructure required for
traditional surveillance. Moreover, for the coun-
tries with incomplete surveillance data, the proposed
method could continuously provide weekly epidemic
risk estimates. Though our method focuses on in-
fluenza surveillance at the global scale, the Laplacian

MDS could also be extended for monitoring other in-
fectious diseases on different scales.

The proposed method extends the coverage of
disease surveillance to resource-limited countries,
which is potentially very useful for disease control
and prevention; however, it still has limitations.
First, due to the lack of ground-truth knowledge,
it is difficult to fully evaluate the risk estimates for
countries with no surveillance data. Moreover, the
lack of international standards for reporting risk fac-
tors and morbidity data reduces the accuracy of the
estimates (Briand et al., 2014). Another limitation
of the Laplacian MDS is that it considers only the
geographical correlation of epidemic risks. To fur-
ther improve the results, we plan to combine the
geographical and temporal correlations for disease
surveillance in resource-limited countries.
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