Skip to main content
Log in

Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper presents the design principles and fabrication techniques for simultaneously forming non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers by masked-maskless combined anisotropic etching. Four resonant beams are located at the surface of a silicon substrate, whereas the gravity centre of a proof mass lies within the neutral plane of four crab-leg supporting beams on the same substrate. Compared with early reported mechanical structures, the simple structure not only eliminates the bending moments caused by in-plane acceleration, and thereby avoiding the rotation of the proof mass, but also providing sufficiently small rigidity to X and Y axes accelerations, potentially leading to a large sensitivity for measuring the in-plane acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, M., Burrer, C., Esteve, J., Bausells, J., Marco, S., 1993. Etching front control of <110> strips for corner compensation. Sens. Actuat. A, 37-38:727–732. [doi:10.1016/0924-4247(93)80123-X]

    Article  Google Scholar 

  • Burns, D.W., Horning, R.D., Herb, W.R., Zook, J.D., Guckel, H., 1996. Sealed-cavity resonant microbeam accelerometer. Sens. Actuat. A, 53(1–3):249–255. [doi:10.1016/0924-4247(96)01135-1]

    Article  Google Scholar 

  • Burrer, C., Esteve, J., Lora-Tamayo, E., 1996. Resonant silicon accelerometers in bulk micromachining technology—an approach. J. Microelectromech. Syst., 5(2):122–130. [doi:10.1109/84.506200]

    Article  Google Scholar 

  • Chen, D., Wu, Z., Liu, L., Shi, X., Wang, J., 2009. An electromagnetically excited silicon nitride beam resonant accelerometer. Sensors, 9(3):1330–1338. [doi:10.3390/s90301330]

    Article  Google Scholar 

  • Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2009. A New Two-Beam Differential Resonant Micro Accelerometer. IEEE Conf. on Sensors, p.158–163. [doi:10.1109/ICSENS.2009.5398209]

  • Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2010. A High Sensitivity Uniaxial Resonant Accelerometer. IEEE 23rd Int. Conf. on Micro Electro Mechanical Systems, p.260–263. [doi:10.1109/MEMSYS.2010.5442517]

  • Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2011. A New Biaxial Silicon Resonant Micro Accelerometer. IEEE 24th Int. Conf. on Micro Electro Mechanical Systems, p.529–533. [doi:10.1109/MEMSYS.2011.5734478]

  • Fedder, G.K., 1994. Simulation of Microelectromechanical Systems. PhD Thesis, University of California, Berkeley.

    Google Scholar 

  • Ferrari, V., Ghisla, A., Marioli, D., Taroni, A., 2005. Silicon resonant accelerometer with electronic compensation of input-output cross-talk. Sens. Actuat. A, 123–124:258–266. [doi:10.1016/j.sna.2005.03.067]

    Article  Google Scholar 

  • Huang, P.S., Ren, T.L., Lou, Q.W., Liu, J.S., Liu, L.T., Li, Z.J., 2003. Design of a triaxial piezoelectric accelerometer. Integr. Ferroelectr., 56(1):1115–1122. [doi:10.1080/10584580390259722]

    Article  Google Scholar 

  • Li, X.X., Bao, M.H., Shen, S.Q., 1996. Maskless etching of three-dimensional silicon structures in KOH. Sens. Actuat. A, 57(1):47–52. [doi:10.1016/S0924-4247(97)80094-5]

    Article  Google Scholar 

  • Manut, A., Syono, M.I., 2006. Effects of Mechanical Geometries on Resonance Sensitivity of MEMS Out-of-Plane Accelerometer. IEEE Int. Conf. on Semiconductor Electronics, p.25–28. [doi:10.1109/SMELEC.2006.381013]

  • Mayer, G.K., Offereings, H.L., Sandmaier, H., Kühl, K., 1990. Fabrication of non-underetched convex corner in anisotropic etching of (100) silicon in aqueous KOH with respect to novel micromechanical elements. J. Electroch. Soc., 137(12):3947–3951. [doi:10.1149/1.2086334]

    Article  Google Scholar 

  • Olsson, R.H., Wojciechowski, K.E., Baker, M.S., Tuck, M.R., Fleming, J.G., 2009. Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. J. Microelectromech. Syst., 18(3):671–678. [doi:10.1109/JMEMS.2009.2020374]

    Article  Google Scholar 

  • Pinto, D., Mercier, D., Kharrat, C., Colinet, E., Nguyen, V., Reig, B., Hentz, S., 2009. A Small and High Sensitivity Resonant Accelerometer. Proc. Eurosensors 23rd Conf. on Procedia Chemistry, p.536–539. [doi:10.1016/j.proche.2009.07.134]

  • Puers, B., Sansen, W., 1990. Compensation structures for convex corner micromachining in silicon. Sens. Actuat. A, 23(1–3):1036–1041. [doi:10.1016/0924-4247(90)87085-W]

    Article  Google Scholar 

  • Qiu, A., Su, Y., Zhu, X., Shi, Q., 2009. Bulk-Micromachined Silicon Resonant Accelerometer. IEEE Int. Conf. on Information and Automation, p.1289–1292. [doi:10.1109/ICINFA.2009.5205115]

  • Roessig, T.A., Howe, R.T., Pisano, A.P., Smith, J.H., 1997. Surface-Micromachined Resonant Accelerometer. Proc. of Int. Solid State Sensors and Actuators Conf., p.859–862. [doi:10.1109/SENSOR.1997.635237]

  • Seok, S., Chun, K., 2006. Inertial-grade in-plane resonant silicon accelerometer. Electr. Lett., 42(19):1092–1094. [doi:10.1049/el:20061774]

    Article  Google Scholar 

  • Seok, S., Seong, S., Lee, B., Kim, J., Chun, K., 2002. A High Performance Mixed Micromachined Differential Resonant Accelerometer. Proc. IEEE Sensors, p.1058–1063. [doi:10.1109/ICSENS.2002.1037259]

  • Seshia, A.A., Palaniapan, M., Roessig, T.A., Howe, R.T., Gooch, R.W., Schimert, T.R., Montague, S., 2002. A vacuum packaged surface. J. Microelectromech. Syst., 11(6):784–793. [doi:10.1109/JMEMS.2002.805207]

    Article  Google Scholar 

  • Su, S.X.P., Yang, H.S., Agogino, A.M., 2005. A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology. IEEE Sens. J., 5(6): 1214–1223. [doi:10.1109/JSEN.2005.857876]

    Article  Google Scholar 

  • Wang, J., Shang, Y., Tu, S., Liu, L., Chen, D., 2011. Micro-Machined Resonant Accelerometer with High Sensitivity. 6th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, p.527–530. [doi:10.1109/NEMS.2011.6017409]

  • Wu, X.P., Ko, W.H., 1989. Compensating corner undercutting in anisotropic etching of (100) silicon. Sens. Actuat., 18(2):207–215. [doi:10.1016/0250-6874(89)87019-2]

    Article  Google Scholar 

  • Zhang, Q., Liu, L., Li, Z., 1996. A new approach to convex corner compensation for anisotropic etching of (100) Si in KOH. Sens. Actuat. A, 56(3):251–254. [doi:10.1016/S0924-4247(96)01312-X]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Han.

Additional information

Project (No. 61076110) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Jq., Feng, Rs., Li, Y. et al. Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers. J. Zhejiang Univ. - Sci. C 14, 65–74 (2013). https://doi.org/10.1631/jzus.C1200251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200251

Key words

CLC number

Navigation