Skip to main content
Log in

Compaction-interaction packing model: regarding the effect of fillers in concrete mixture design

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

An Erratum to this article was published on 25 January 2013

Abstract

For the design of defined-performance concrete, predicting the material properties of concrete becomes more and more important. To be able to select the right type of fillers and control the water demand in such mixtures, an extension to the compressible packing model was developed to optimize the particle packing of aggregates as well as powders in concrete. Modelling mixtures with particles smaller than 125 μm requires advanced interaction equations, taking due account of surface forces like van der Waals forces, electrical double layer forces and steric forces. In this paper the equations for the newly developed compaction-interaction packing model are presented, including the additional effects of agglomerating particles on the wall and loosening effect. Calculated packing densities are related to the results of compressive strength experiments on 50 mortar mixtures. Higher packing densities leave less space for voids to be filled with water, which reduces the water demand and increases the strength of concrete mixtures. This is shown by the cement spacing concept. The relation between the cement spacing factor and strength can be used as a tool to predict concrete strength in defined-performance concrete mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

α :

Packing density of a mixture (–)

α e :

Experimentally determined packing density of a mixture for a prescribed packing process and K value (–)

α i :

Packing density of size class i (–)

α t :

Calculated packing density of a mixture (–)

β :

Virtual packing density of a mixture (–)

β i :

Virtual packing density of size class i (–)

β ti :

Calculated virtual packing density of a mixture when size class i is dominant (–)

\( {\varphi_{cem}} \) :

Partial volume occupied by the cement in a stable particle structure (–)

\( \varphi_{cem}^* \) :

Maximum partial volume that the cement may occupy given the presence of other particles (–)

φ i :

Partial volume: the volume occupied by size class i in a unit volume (–)

\( \varphi_i^* \) :

Maximum partial volume that size class i may occupy given the presence of the other particles (–)

\( {\varphi_{mix}} \) :

Partial volume of all the particles of a mixture in a unit volume (–)

a ij :

Factor which describes the loosening effect caused by the particles in size class j on the packing density of the particles in size class i (–)

b ij :

Factor which describes the wall effect caused by the particles in class j on the packing of the particles in class i (–)

C :

Parameter in Féret’s equation (N/mm2)

C a :

Compaction-interaction constant within the loosening effect a ij,c (–)

C b :

Compaction-interaction constant within the wall effect b ij,c (–)

d c :

Transition diameter in the CIPM below which compaction-interaction is taken into account (m)

d i :

Diameter of size class i. In the CIPM i = 1 for the largest diameter (m)

f c :

Concrete compressive strength (N/mm2)

i :

Integer denoting the dominant size class in a mixture

j :

Integer denoting a size class in a mixture

K :

Compaction index (–)

K cem :

The sum of all K i values representing the size classes of the cement (–)

K i :

Partial compaction index of size class i within CIPM (–)

K t :

Compaction index of a mixture within CIPM (–)

n :

Number of size classes in a mixture

r cem :

Volume fraction of the cement in a mixture (–)

r i :

Volume fraction of size class i, by definition \( r_{i} = {{\varphi _{i} } \mathord{\left/ {\vphantom {{\varphi _{i} } {\sum\limits_{{i = 1}}^{n} {\varphi _{i} } }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{{i = 1}}^{n} {\varphi _{i} } }}{\text{ and }}\sum\limits_{{i = 1}}^{n} {r_{i} = 1} \) (–)

V :

Volume (m3)

V a :

Volume of the air in a mixture (m3)

V c :

Volume of the cement particles in a mixture (m3)

V ew :

Volume of excess water in a mixture (m3)

V p :

Volume of all the particles in a mixture (m3)

V vw :

Volume of void water in a mixture (m3)

V w :

Volume of the water in a mixture (m3)

w 0,a :

Function for maximum range of loosening effect (–)

w 0,b :

Function for maximum range of wall effect (–)

w a :

Constant denoting the maximum range of loosening effect (–)

w b :

Constant denoting the maximum range of wall effect (–)

CIPM:

Compaction-interaction packing model

CSF:

Cement spacing factor

References

  1. Abrams DA (1919) Design of concrete mixtures, bulletin 1. Structural Materials Research Laboratory, Lewis Institute, Chicago

  2. Ben Aïm R, Le Goff P (1967) Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires. Powder Technol 1(5):281–290

    Google Scholar 

  3. Bolomey J (1935) Granulation et prevision de la résistance probable des bétons. Travaux 19(30):228–232

    Google Scholar 

  4. de Larrard F (1999) Concrete mixture proportioning: a scientific approach. E & FN Spon, London

    Google Scholar 

  5. Dewar JD (1999) Computer modelling of concrete mixtures. E & FN Spon, London

    Book  Google Scholar 

  6. Dhir RK, McCarthy MJ, Paine KA (2005) Engineering property and structural design relationships for new and developing concretes. Mater Struct 38(275):1–9

    Google Scholar 

  7. Fennis SAAM (2011) Design of ecological concrete by particle packing optimization. Dissertation, Delft University of Technology

    Google Scholar 

  8. Fennis SAAM, Walraven JC, den Uijl JA (2008) Optimising particle packing to reduce the cement content in concrete. In: Dhir RK, Hewlett PC, Csetenyi LJ, Newlands MD (eds) Role for concrete in global development. IHS BRE Press, Watford, pp 407–418

  9. Fennis SAAM, Walraven JC, den Uijl JA (2009) The use of particle packing models to design ecological concrete. Heron 54(2/3):185–204

    Google Scholar 

  10. Féret R (1897) Etudes sur la constitution intime des mortiershydrauliques. Bulletin de la Socit d’Encouragement pour l’IndustrieNationale 2:1591–1625

    Google Scholar 

  11. Flatt RJ (2004) Dispersion forces in cement suspensions. Cem Concr Res 34:399–408

    Article  Google Scholar 

  12. Funk JE, Dinger DR (1994) Predictive process control of crowded particulate suspensions—applied to ceramic manufacturing. Kluwer, Boston

    Google Scholar 

  13. Furnas CC (1929) Flow of gasses through beds of broken solids, bureau of mines bulletin 307. U.S. Bureau of Mines, Washington

  14. German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, Princeton

    Google Scholar 

  15. Gray WA (1968) The packing of solid particles. Chapman and Hall, London

    Google Scholar 

  16. Kjeldsen AM (2007) Consolidation behavior of cement-based systems. Influence of inter-particle forces. Dissertation, Technical University of Denmark

    Google Scholar 

  17. Kronlöf A (1997) Filler effect of inert mineral powder in concrete. Dissertation, VTT Technical research centre of Finland

    Google Scholar 

  18. Marquardt I (2002) Ein Misschungskonzept für selbstverdichtenden Beton auf der Basis der Volumenkenngrössen und Wasseransprüche der Ausgangsstoffe. Dissertation, Universität Rostock

    Google Scholar 

  19. Mechling J, Lecomte A, Diliberto C (2007) The influence of the clinker composition on concrete compressive strength. In: Concrete under severe conditions: environment & loading CONSEC 2007, Tours, France

  20. Mikulić D, Gabrijel I,Milovanović B (2008) Prediction of concrete compressive strength. In: International RILEM symposium on concrete modelling—CONMOD’08, Delft, The Netherlands

  21. Neville AM (1995) Properties of concrete. Longman, Harlow

    Google Scholar 

  22. Popovics S (1998) History of mathematical model for strength development of Portland cement concrete. ACI Mater J95(5):593–600

    Google Scholar 

  23. Popovics S (2011) Another look at the relationship between strength and composition of concrete. ACI Mater J 108(2):115–119

    Google Scholar 

  24. Powers TC (1968) The properties of fresh concrete. Wiley, New York

    Google Scholar 

  25. Reschke T (2000) Der Einfluss der Granulometrie der Feinstoffe auf die Gefügeentwicklung und die Festigkeit von Beton. Dissertation, VBT Verlag Bau + Technik GmbH, Düsseldorf

  26. Schwanda F (1966) Das rechnerische Verfahren zur Bestimmung des Hohlraumes und Zementleimanspruches von Zuschlägen und seine Bedeutung für Spannbetonbau. ZemBeton 37:8–17

    Google Scholar 

  27. Souwerbren C (1998) Betontechnologie, 10th edn. StichtingBetonprisma, ‘s-Hertogenbosch, The Netherlands

  28. Stovall T, de Larrard F, Buil M (1986) Linear packing density model of grain mixtures. Powder Technol 48:1–12

    Article  Google Scholar 

  29. Toufar W, Born M, Klose E (1976) Beitrag zur Optimierung der Packungsdichte Polydisperser körniger Systeme. Freiberger Forschungsheft A 558. VEB Deutscher Verlag für Grundstoffindustrie, pp 29–44

  30. Wong HHC, Kwan AKH (2008) Packing density of cementitious materials: measurement and modelling. Mag Concr Res 60(3):165–175

    Google Scholar 

  31. Yu AB, Standish N (1991) Estimation of the porosity of particle mixtures by linear-mixture packing model. IndEngChem Res 30:1372–1385

    Google Scholar 

  32. Yu AB, Feng CL, Yang RY (2003) On the relationship between porosity and interparticle forces. Powder Technol 130:70–76

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs. The experiments were performed by the technicians of the Stevin Laboratory of Delft University of Technology, which is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. M. Fennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennis, S.A.A.M., Walraven, J.C. & den Uijl, J.A. Compaction-interaction packing model: regarding the effect of fillers in concrete mixture design. Mater Struct 46, 463–478 (2013). https://doi.org/10.1617/s11527-012-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9910-6

Keywords

Navigation