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Abstract
Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the
success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or
extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations
in unprecedented ways. In this prospective paper, we focus on recent advances and remaining challenges in this emerging field. Examples are
ultralight-weight, negative mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and repro-
grammable mechanical metamaterials.

Introduction
Stone Age, Copper Age, Bronze Age, Iron Age: We name the
eras of mankind after mechanical materials. Is the Metamaterial
Age next? Physicists, material scientists, and engineers alike
are already working at going beyond (“meta”) what nature
has given to us. Significant recent advances in three-
dimensional printing on the micro- and macro-scale help
them to succeed. The goal is to rationally design and realize tai-
lored artificial media with mechanical characteristics distinct
from their constituents to achieve, e.g., effectively stronger,
tougher, or lighter materials. In some cases, one can even go
beyond what seemed to be fundamental restrictions.

As usual, the mechanics of solid bodies deals with deforma-
tions and motions resulting from external forces via Newton’s
law. For sufficiently small deviations from equilibrium,
Hooke’s law can be applied. For the paradigm of an elastic
Hooke’s spring, it simply states that force and extension are
proportional. When considering general mechanical materials
under arbitrary compression, stretching, and shearing,
Hooke’s law translates into rank-two tensors for stress and
strain, which are connected via the rank-four elasticity tensor
(Box 1). Mechanical waves in an isotropic material are an illus-
trative example. Generally, they can have one longitudinal po-
larization (like for acoustic sound waves in a gas or fluid) and
two orthogonal transverse polarizations (like usually for elec-
tromagnetic waves). These three polarizations make elastody-
namics even richer than acoustics and electromagnetism.

It is hard to say when the first mechanical metamaterial was
conceived. However, more than a century ago, Lamb already

discussed the possibility of backward waves in vibrating elastic
plates.[1] For a backward wave, mechanical energy and phase
fronts move in opposite directions. Today, researchers assign
negative refractive indices to such waves and speculate about
the possibility of perfect lenses. Materials that expand laterally
upon stretching have a negative Poisson’s ratio ν and belong to
an early class of unusual artificial mechanical materials discov-
ered by Lakes in 1987.[2] These structures are coined auxetics
and can, e.g., be applied in shock absorbers. Auxetics have
been reviewed extensively elsewhere[3] and shall not be in
the focus of the present prospective paper. Furthermore, we ex-
clude acoustic metamaterials based on sound propagation in air
or liquids, for which solids are often considered as hard-wall
boundaries only (see reviews[4,5]). As outlined in Fig. 1, we
do, however, dive into the amazing conceptual and experimen-
tal progress regarding light-weight, negative mass density, neg-
ative modulus, pentamode, anisotropic mass density, Origami,
nonlinear, bistable, and reprogrammable mechanical metamate-
rials made in recent years.

Light-weight metamaterials
Essentially all ordinary bulk solids have a mass density above
ρ≈ 1000 kg/m3. In order to expand the property space of mate-
rials toward very low densities, it is necessary to introduce
voids to the material, e.g., as illustrated in Fig. 1(b). Highly reg-
ular cellular materials can be designed by the tessellation of a
large number of unit cells comprising slender beams, leading
to micro-architectured lattice materials, as reviewed in Fleck,
Deshpande, and Ashby.[6] Taking this approach to extreme,
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Box 1. Linear elasticity of mechanical materials.

Mechanical wave propagation

It is amazing how complex the combination of Newton’s and Hooke’s laws can become when applied to three-dimensional elas-
tic solids.[81–83] In its simplest form, Hooke’s law states that the force of a spring is proportional to its extension. In more general,
the force turns into the rank-two stress tensor s

↔
and the extension into the rank-two strain tensor e

↔
. The strain is related to the

displacement vector �u = �u(�r) at position �r via

elm = 1

2

∂ul
∂rm

+ ∂um
∂rl

( )
. (1)

Stress and strain are connected via the rank-four elasticity tensor C
↔
, i.e.,

sij =
∑3
l,m=1

Cijlmelm. (2)

We will review some selected properties of the elasticity tensor below. At finite frequencies, internal resonances may occur, lead-
ing to a phase-shifted response of inner masses inside of metamaterial unit cells, which can be expressed by a frequency-
dependent mass density ρ(ω). Different resonance frequencies may occur for different oscillation directions, in which case

we get a dynamic mass-density tensor r
↔

v( ). Assuming that r
↔

is diagonal (with generally different diagonal elements though),
switching to the frequency domain, and exploiting the so-called minor symmetries Cijlm = Cijml, Newton’s law becomes

− riiv
2ui =

∑3
j,l,m=1

Cijlm
∂2ul

∂rj ∂rm
. (3)

Elastostatics corresponds to ω = 0. In elastodynamics, inserting a plane-wave ansatz �u = �u 0 exp i �k · �r
( )

with wave vector

�k = �̂k �k
∣∣∣ ∣∣∣ = �̂k k leads to the Christoffel equation

−dilrii
v

k

( )2
+
∑3
j,m=1

Cijlmk̂jk̂m

( )
u0l = 0, (4)

with Kronecker symbol δil and phase velocity ω/k. The dispersion relation �k(v) and the three eigenpolarizations �u 0 for each di-

rection �̂k follow from the Christoffel equation. To describe metamaterials as effective media, the wavelength 2π/k must be much

larger than the metamaterial lattice constant (trivially fulfilled in the static case). In general, �k and �u 0 can include angles different
from 0° or 90°. For ordinary materials, where all Cijkl > 0 and ρii > 0, (ω/k)2 is positive, hence the wave vector is real, which means
that all mechanical waves actually propagate. In contrast, purely imaginary wave vectors corresponding to exponentially decay-
ing contributions result if all Cijkl(ω) > 0 and ρii(ω) < 0 or if all Cijkl(ω) < 0 and ρii(ω) > 0. If components of the elasticity tensor
and of the mass-density tensor are negative simultaneously, various types of unusual backward waves can result—as discussed in
this prospective article.

Selected properties of the elasticity tensor

For the mathematical ideal of an isotropic material, the elasticity tensor can be represented by two independent scalar quantities,
the choice of which, however, is not unique. The table gives an overview.

λ + 2G λ G or μ B or K ν E

Longitudinal
modulus

First Lamé
coefficient

Second Lamé
coefficient/shear modulus

Bulk modulus Poisson’s
ratio

Young’s modulus

C11 C12 C44= C11−C12
2

C11+2C12
3

C12
C11 + C12

C11 −
2C 2

12

C11 + C12

Here we have used the so-called Voigt notation Cij = Ciijj for i, j = 1,2,3 and C44 =C2323.
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metallic structures based on hollow beams with mass densities
as low as ρ = 0.9 kg/m3 have been realized[7] (not counting the
air mass in the voids). For comparison, the mass density of air
under ambient conditions is ρ = 1.2 kg/m3. The mechanical
properties (such as stiffness and strength, i.e., the maximum
stress before failure) of such lattice materials are obviously gov-
erned by the volume fraction of the constituent material.
Moreover, details of the design, in particular the nodal connec-
tivity (or coordination number) of the truss structure have a pro-
nounced influence, too. Deshpande and co-workers
demonstrated that, for static loading conditions, two limiting
cases of micro-architectured materials can be distinguished,
namely bending- and stretching-dominated structures.[8]

Examples for the former are random foams or hexagonal
structures. Stretching-dominated structures typically consist
of triangulated and octet-truss lattice structures in two and
three dimensions, respectively.[9] It has been shown that the
normalized effective stiffness of the metamaterial Eeff/E0,
with E0 being the Young’s modulus of the parent or constituent
material from which the trusses are made, scales according to a
power law Eeff/E0 = A(σeff/ρ0)

b versus the relative density,
which is defined as the ratio of the density of the lattice mate-
rial, ρeff, to the one of the bulk material ρ0. The constant A is
dimensionless and depends on the geometry of the lattice ma-
terial and cannot exceed the value of 1. Similarly, the relative
strength scales according to σeff/σ0∝ (ρeff/ρ0)

c. For bending-
dominated lattice materials, one finds b = 3 and c = 2, respec-
tively. These exponents lead to a very unfavorable scaling of
the mechanical properties with decreasing density. In contrast,
one finds more favorable exponents of b = c = 1 for stretching-
dominated materials.[6] It has been demonstrated that octet-truss

metamaterials made by projection micro-stereolithography fol-
lowed by nanoscale coating techniques[10] yield an exponent
near b = 1, indeed. The fabricated structures have typical truss
diameters of about 50 μm and are either made of solid polymer
or alumina, hollow metal, or ceramic tubes. Nevertheless, it is
obvious from the equation given above that even for materials
with b = 1, the stiffness to density ratio of the metamaterial,
Eeff/ρeff, just cannot exceed that of the parent material, E0/ρ0,
at least as long as E0 can be considered as constant, i.e.,
size-independent. Therefore, the term “ultra-stiff”[10] coined
for such lattice materials should be taken with a grain of salt.

The Young’s modulus of a given material can hardly be al-
tered by changing the size of the components (or the micro-
structure of the material). In sharp contrast, the effective
metamaterial strength can be varied by orders of magnitude.
Thus, it is feasible to create ultralight materials with a higher
strength-to-stiffness ratio compared with the parent material(s).
For metals, such size effects originate from the suppression of
dislocation motion or nucleation with decreasing dimensions,
as reviewed in.[11] For brittle materials, the strength is limited
by crack nucleation at the largest flaw in the material. On mac-
roscopic length scales, this process can be well described by
Weibull statistics. In the nanometer regime, it has been argued
that the strength may become insensitive to flaws. It may even
reach the limit of theoretical strength,[12] as the stress required
to nucleate the crack from a flaw increases with decreasing di-
mensions. This reasoning assumes that the size of the largest
flaw does not exceed the smallest dimension of a component,
e.g., the thickness of a thin film or a small platelet. Based on
this approach, it has been demonstrated that the miniaturization
of lattice materials with trusses in the submicron regime creates

The relations given in the table remain valid for cubic symmetry, but here three independent scalar quantities are generally need-
ed to represent the elasticity tensor.

Pentamode metamaterials can be cubic, but they are special in that a single scalar quantity, the bulk modulus B (= inverse of the
compressibility), suffices to represent the elasticity tensor. In Voigt notation we get

Cij = B ∀ i, j = 1, 2, 3; Cij = 0, else. (5)

Pentamode metamaterials are sometimes referred to as “meta-liquids”. One should be aware though that the displacement vector,
and hence the elasticity tensor, has no meaning for ordinary liquids or gases (as one does not usually track individual particles
there)—in sharp contrast to pentamode metamaterials.

Dynamic mass density

For mass-and-spring resonances with eigenfrequenciesΩi inside of the mechanical metamaterial unit cells, the effective behavior
can be described by a mass-density tensor with components

rii(v) = r+ Dri
v2

V2
i − v2

, (6)

where ρ = ρii(0) ∀ i is the good old static scalar mass density as measured by a mass balance and Δρi is a quantity characterizing
the oscillator strengths of the resonances. For simplicity, we have omitted damping.
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Figure 1. Overview on mechanical metamaterials. The five rows illustrate (a) auxetic, (b) light-weight, (c) negative-parameter (i.e., negative mass density and/or
moduli at finite frequency ω≠ 0), (d) pentamode, and (e) Origami mechanical metamaterials. The left column shows a combination of the Milton map (bulk
modulus B versus shear modulus G) and the Ashby map (one elastic modulus versus mass density ρ). The parameters are zero at the crossing of the three
arrows, pointing into the positive directions. In each entry, ordinary solids (black) are compared with the corresponding metamaterials (red). The center column
exhibits blueprints of (extended) unit cells highlighting characteristic structural elements, the right column optical or electron micrographs of fabricated
structures. These metamaterials can (a) be easily compressible, yet not easily deformable; (b) be light-weight, yet ultrastrong; (c) exhibit complete band gaps or
support backward waves; (d) be easily deformable, but not easily compressible; (e) be deployable, light-weight, bistable, and reprogrammable. Applications
could be as (a) shock absorbers, (b) support structures, (c) reflectors or concentrators, (d) mechanical cloaks, and (e) structures for space missions. Figures
reproduced with permission: (a) © 1987 AAAS; (b) © 2014 PNAS; (c) © 2000 AAAS; (d) © 2012 AIP; (e) © 2014 AAAS.
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materials with strength-to-density ratios σeff/ρeff exceeding those
of ordinary as well as that of engineered cellular materials.[13–15]

The fabrication of these metamaterials has become possible by
three-dimensional dip-in direct laser writing of polymer tem-
plates.[16] Subsequently, these templates are coated via
atomic-layer deposition of alumina, with layer thicknesses in
the range of 10–100 nm.

In[13] the polymer has been removed after fabrication, and
the final lattice structure hence consists of hollow alumina
tubes. It was demonstrated that the scaling exponent, c, for
the strength for such hollow-tube octet-truss structures is small-
er than 2, indicating that it is possible to make use of the
stretching-dominated geometry although the trusses are hollow.
For such structures, three competing failure mechanisms can be
distinguished, including fracture of the tube wall, beam buck-
ling of a truss member, and shell buckling of the tube
wall.[17] For alumina wall thicknesses <50 nm, the structures
showed a significant recoverability from compressive strains
as large as 50%. On this basis, it has been argued that local
buckling becomes the dominating factor for very thin alumina
shells.[17]

Bauer et al.[14] took a somewhat different approach by fab-
ricating lattice materials in which the polymer remains as core
inside the trusses. Here, the strength of the structure is limited
by local buckling of trusses, which occurs when a stiff alumina
shell fails by cracking. The strength of these core–shell poly-
mer–ceramic composites is estimated to be of the order of
GPa.[15] The effective strength of these metamaterials reaches
up to several 100 MPa.

These examples just touch upon the potential strengths of
lattice materials. Nevertheless, they do demonstrate convinc-
ingly that the outlined[6] expansion in mechanical property
space by design of lattice materials is achievable in reality, es-
pecially if one takes advantage of size effects. With foreseeable
further improvements regarding three-dimensional micro- and
nano-manufacturing, hierarchical micro-architectured light-
weight materials with tailored stiffness, strength, and toughness
with the “overall macroscopic volumes” required for real-world
applications are expected to become available in the near fu-
ture. So far, these small overall structures should rather be con-
sidered as prototypes.

Negative mass densities and negative
elastic moduli
Under the static conditions discussed so far, the mass density of
a material cannot be negative. Likewise, the elastic moduli must
be positive for any stable and unconstrained material. Negative
effective parameters are allowed though at finite frequencies
near local resonances. These can have small resonance frequen-
cies equivalent to wavelengths much larger than the lattice
constant of a periodic metamaterial structure. Under these con-
ditions, a discussion in terms of effective mechanical material
parameters is possible. A negative mass density ρ means that
an elastic body accelerates out of phase with respect to a har-
monically varying driving force. For a negative bulk modulus

B, the body would compress upon dynamic stretching.
Combining B < 0 and ρ < 0 leads to the counterpart of double-
negative or negative-index metamaterials in optics[5,18] (also
see Box 1).

For example, spherical metal cores coated with a compliant
rubber shell, packed to a simple-cubic lattice in a host material
have been considered early on as depicted in Fig. 1(c).[19] Each
core–shell unit forms a simple mass- and spring model, which
can exhibit a Mie-type resonance frequency far below the
Bragg resonance frequency of the lattice.[19,20] Depending of
the order of these resonances, negative effective values of the
mass density and/or of the elastic moduli can be accomplished.
More specifically, numerical predictions have shown that cylin-
drical or spherical cores embedded into a host material can
yield collective Mie oscillations that give rise to negative lon-
gitudinal moduli λ + 2G, negative shear moduli G, or negative
bulk moduli B.[21] A large material contrast between host mate-
rial and inclusion helps to obtain pronounced resonances. An
additional coating layer can be used to broaden the spectral re-
sponse—if desired. By combining these designed ingredients,
negative refraction and anomalous dispersion can be achieved
for specific polarizations. Combined with a negative mass den-
sity,[22,23] the mechanical energy-flow (Poynting) vector points
into a direction opposite to that of the phase-velocity vector.
Corresponding experiments have used rubber spheres suspend-
ed in water[24] (taking advantage of the high-velocity contrast
permitting to omit shear contributions) or silicone rubber em-
bedded in a water-based gel host, leading to a negative index
of refraction.[25]

Other publications predict a negative bulk modulus transi-
tion induced by interplay of different force potentials.[26]

Furthermore, a chiral route toward negative elastic refraction
has lately been discussed.[27–31] As usual, an object is called
chiral if it cannot be brought into congruence with its mirror
image by translations and rotations. Helices or screws are par-
adigms. Chiral or handed media can exhibit activity (like in op-
tics), which means that an incident linear polarization is rotated
upon propagation through the medium. Earlier studies suggest-
ed the construction of acoustically active media by embedding
chiral microstructures in a host material,[27–29] which have been
realized in cellular lattices that exhibit auxetic properties as
well.[30] Other authors have perforated chiral microstructures
into thin steel plates and were able to experimentally detect
negative refraction of a longitudinally polarized wave.[31] By
combining dipolar-like and rotational resonances of the oscil-
lating chiral center piece, a collective mode is induced that ex-
hibits both negative effective mass density and negative
longitudinal modulus.

Pentamode metamaterials
Transformation optics is a powerful and intuitive design princi-
ple,[32,33] which maps fictitious coordinate transformations
onto actual material-parameter distributions, thereby achieving
specific desired functions. Invisibility cloaking has been a par-
adigm, because this function appeared impossible for a long
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time. Unfortunately, the three-dimensional linear elastome-
chanical equations (see Box 1), unlike the Maxwell equations
in electromagnetism, are not form-invariant under general coor-
dinate transformations, at least not for the elasticity tensors of
ordinary solids and for scalar mass densities.[32] Thus, transfor-
mation optics cannot easily be translated to mechanics—neither
to the static nor to the dynamic case. Flexural waves in thin
plates[34] or seismic Rayleigh waves on the earth’s surface[35]

are notable exceptions. Both examples are effectively two-
dimensional and exhibit a single approximately transverse po-
larization. The direct lattice-transformation approach[36] also
uses coordinate transformations for design, however, without
making reference to effective mechanical material parameters.
So far, this approximate approach has been limited to two-
dimensional static situations though.[36]

In three dimensions, a solution to the lack of form-invariance
in mechanics is based on pentamode metamaterials.[37] Their
two-dimensional cousins are bimode metamaterials.[38]

Pentamode materials can be represented by a pseudo elasticity
tensor with only one non-zero eigenvalue that is of the pure com-
pression type. Loosely speaking, pentamode metamaterials can
be seen as meta-liquids or anti-auxetics with G = 0 yet B≠ 0
(also see Box 1). It is interesting to note in passing that all con-
ceivable linear elasticity tensors of three-dimensional materials
can, in principle, be synthesized on the basis of pentamode
metamaterials.[39] Specific three-dimensional microstructures
were independently suggested many years ago by Sigmund[40]

using numerical topology optimization and by Milton and
Cherkaev.[39] Their considerations are analytical and include iso-
tropic as well as anisotropic versions. For the isotropic case, they
suggested a lattice of double-cone elements, touching only at sin-
gular points. These points form a diamond lattice as illustrated in
Fig. 1(d). However, fabrication of corresponding three-
dimensional polymer microstructures[41] has become possible
only recently by virtue of three-dimensional dip-in direct laser
writing.[16] Herein, the touching points are approximated by
small but finite connections. If their diameter is of the order of
1% of the metamaterial lattice constant, the effective metamaterial
bulk modulus B can be more than three orders of magnitude larg-
er than the effective shear modulus G.[41] Hence, Poisson’s ratio
comes very close to ν = 0.5 from below. This behavior has been
confirmed by static experiments on macroscopic structures[42] and
by numerical calculations of the phonon band structure,[43] in
which the transversely polarized shear modes appear as flat
branches. In a large-frequency region, even only a single isotropic
longitudinal phonon or vibration mode can be achieved.[43]

We note in passing that pentamode behavior with B/G≫ 1
has also been predicted theoretically for disordered jammed
packings of harmonic particles.[44]

Owing to stress concentration close to the double-cone tips,
the pentamode metamaterial bulk modulus is mainly deter-
mined by the tip diameter. In contrast, the thick part of the
double-cones is of much lesser importance.[45] Thus, presently
experimentally accessible pentamode metamaterials have vol-
ume filling fractions as low as ≈1%, i.e., they can be extremely

light-weight (see above). In fact, the mass density can be ad-
justed largely independently via the diameter of the thick part
of the double-cones over a fairly large range. Equivalently,
this allows for independently tailoring the phonon phase veloc-
ity and wave impedance.[45] Ultra-compliant heavy metamate-
rials, the opposite of strong ultralight metamaterials discussed
above, are an example.

Anisotropic versions of pentamode
metamaterials
Anisotropic versions of pentamode[46] (and bimode[47]) me-
chanical metamaterials as well as effectively anisotropic lami-
nates composed of isotropic pentamode metamaterials have
been considered as well.[45] As in any laminate metamate-
rial,[48] the anisotropy originates from the layering. If the
bulk moduli of the layers are identical, whereas their mass den-
sities are different, an anisotropic dynamic mass-density tensor

r
↔
arises.[45] Likewise, an anisotropic elasticity tensor C

↔
results

for the opposite configuration. This setup has been used for
early experimental demonstrations of static elastic (“unfeelabil-
ity”) cloaking in cylindrical core–shell structures.[49] Herein,
the shell around a massive stiff hollow core has a particular
smaller bulk modulus than the surrounding, whereas the mass
densities of shell and surrounding are nearly identical.

Effective anisotropy can also be achieved by making the
unit cell itself less symmetrical than the three-dimensional pen-
tamode diamond lattice[46] (or the two-dimensional hexagonal
lattice,[47] respectively). For example, one double-cone connec-
tion point can be shifted along the space diagonal of the face-
centered cubic unit cell.[39,46] However, one should no longer
call these structures pentamode (or bimode) because they
have less than five (two) easy modes—even for small double-
cone connection diameters. Correspondingly, anisotropy is in-
herently connected to finite shear forces. Maximum anisotropy
is even connected to zero Poisson’s ratio and a transition toward
auxetic behavior.[46]

Anisotropic mechanical metamaterials
Crystalline materials rarely exhibit truly isotropic mechanical
properties. Even a simple-cubic lattice in the long-wavelength
limit generally leads to anisotropic mechanical behavior (also
see Box 1). Ideal pentamode metamaterials discussed above
are one notable exception, isotropic auxetics with ν =−1
(also coined dilational metamaterials) another one.[50] In gene-
ral, specific anisotropies may be desirable as just discussed for
transformation elastodynamics.

Broadly speaking, anisotropic mechanical metamaterials
can be realized by laminates,[48] fiber composites, and perfora-
tions, to name just a few established concepts. In anisotropic
metamaterials, the displacement vectors are not always purely
parallel or perpendicular with respect to the propagation wave
vector. Thus, the purely longitudinal and the two transverse po-
larizations of isotropic materials turn into one quasi-
longitudinal and two quasi-transverse modes. Anisotropy can
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be expressed through the stiffness tensor (see Box 1). At finite
frequencies, it can also be mapped onto the mass-density tensor

r
↔
, which leads to a modified version of Newton’s Second

Law.[51]

Milton and Willis[51] suggested that an anisotropic mass-
density tensor can be created by introducing anisotropy to
local resonances in the unit cell (or motif) rather than by the
metamaterials translational lattice. A simple example is an oscil-
lating internal mass attached to different Hooke’s springs in the
three spatial directions.[52] Lai and co-workers modified this ap-
proach by introducing multiple masses into the unit cell. This
crystal with simple-cubic translational lattice exhibits resonances
with negative values of the scalar mass density and three inde-
pendent negative elastic moduli. Depending on the propagation
direction of the wave, this structure can mimic a fluid permitting
only longitudinal waves or a hybrid fluid–solid behavior with
longitudinal and shear wave propagation.[53]

Iso-frequency surfaces are an alternative way for illustrating
the fingerprint of anisotropic mechanical metamaterial proper-
ties. The surface shape depends on the magnitude and the sign
of the individual elastic parameters. For mixed signs, hyperbolic
dispersion relations result that lead to negative refraction, which
has recently been shown experimentally in airborne acoustic
metamaterials.[54] A prominent application of mechanical meta-
materials with hyperbolic dispersion is the so-called hyperlens.
Evanescent waves emitted by a subwavelength source are radiat-
ed by conversion into propagating elastic waves in the curved
hyperlens. Recent experiments[55] show that these partial
waves can even be magnified and guided toward the far field.

Following the original idea of Milton and Willis, several ex-
perimental efforts have worked towards constructing metama-
terials with an effectively anisotropic mass-density tensor.
Theoretical efforts were devoted to study the elastic response
of locally resonant structures consisting of asymmetrically
coated elliptical cores embedded in a rigid background. As ex-
pected, the in-plane mechanical displacements along the main
axes were different. Through modified Newton’s law, this
behavior can be mapped onto an effectively anisotropic mass-
density tensor.[56] The same conclusions were reached a few
years later for a similar structure through analytical predictions
and finite-element calculations.[57] Importantly, the mass-
density tensor always merges into the good old scalar mass
density in the low-frequency limit. Intuitively, at mechanical
standstill, the mass of a body has no orientation. These ideas,
which were tested in experiments comprising resonators with
elliptical micro-perforated coatings, showed good agreement
between simulated and measured effective mass densities.
Furthermore, transmission measurements for wave propagation
along two principal directions demonstrated the existence of
band gaps induced by the respective singly negative compo-
nents of the mass-density tensor.[58]

By clamping the mass of the coated core in the aforemen-
tioned metamaterial, the mechanical wave behaves just like
light in a free-electron Drude metal. In other words, the

resonance frequency goes to zero. Equivalently, the effective
mass density at low frequencies goes to −∞ and remains neg-
ative below a cut-off frequency. This behavior is analogous to
that of a membrane in a narrow channel.[59] Instead of a chan-
nel, a soft solid is filled into the holes of a perforated rigid and
immovable material to constitute a mechanical metamaterial
with extreme anisotropy.[60] The effective mass-density-tensor
component along the perforations is of the above Drude form,
whereas the in-plane component goes to +∞ corresponding to
an immovable body. These systems have shown their potential
for spoof acousto-elastic surface waves and transmission en-
hancement in thin plates.[61,62] The complementary medium
composed of rigid bars in a soft background works equally
well.[63] In a similar configuration of square rods in a non-rigid
host, one also obtains a complex anisotropy for both, the mass
density and the elasticity tensor.[64]

Origami and programmable
metamaterials
Origami is the traditional Asian art of paper folding, Kirigami ad-
ditionally allows for introducing cuts into the paper. Today, by
using free available computer programs such as
“TreeMaker”,[65] one can design the Origami folding patterns of
almost arbitrary complex three-dimensional structures—including
Origami (Kirigami) mechanical metamaterials.[66,67] Instead of
paper, one can likewise start from a thin polymer sheet with inden-
tations defining the creases or from rigid structures with hinges in-
stead of the creases.[68] Effectively, one can think of the creases as
torsional Hooke’s springs.[69] Temperature-responsive polymer-
gels instead of paper are yet another option.[70]

Paper is an inextensible constituent material, yet the meta-
materials made thereof can effectively be highly flexible. For
the simple example of a one-dimensional accordion folding,
it is immediately clear that the Origami metamaterial can be
compressed by nearly 100%. The effective elastic moduli,
mass density, and wave velocity clearly depend on the degree
of compression. In this fashion, the metamaterial properties
are tunable. One may even be able to open or close phonon
stop bands or band gaps. Additionally, Origami metamaterials
are deployable, which is an attractive feature for space applica-
tions. Indeed, the famous Miura folding has originally been en-
gineered to deploy satellite solar panels in space.[71] Miura
metamaterials can have negative or positive effective
Poisson’s ratios.[66,72–74] In the assembled state, Origami meta-
materials can be extremely light-weight, yet rigid. In principle,
most lithographically fabricated metamaterials discussed above
could be made by Origami as well.

The nonlinear mechanical properties of Origami metamate-
rials are even more interesting: One finds bistable behavior of
each unit cell.[70,73] Switching one cell leads to a defect in
the lattice.[73] Importantly, the effective linear metamaterial
mechanical properties around such a stable state can be signifi-
cantly different for the different stable states. This behavior al-
lows for going beyond tuning[75–77] in that one can rationally
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and reversibly choose a stable state. The metamaterial will then
stay in that state without further external stimulus (in contrast,
pure tuning requires maintaining the stimulus); see Fig. 1(e). In
this sense, the metamaterial properties are programmable or re-
programmable[73] (also see[68,78,79]). If the constituent material
had an infinitely large stretching modulus, the Miura folding
would exhibit only one degree of freedom[66,71]; bistability
could not occur. However, real materials can bend and the
total energy is the sum of crease and bending energy, allowing
for bistable behavior.[70,73] A simple example of a building
block that exhibits bistable behavior is a circular piece of
paper folded once along its diameter. Buckling up or down
leads to two stable states.

Conclusions and perspectives
Mechanical metamaterials can be seen as “matter made to
order”. Scientists turn into artists or designers when conceiving
such artificial solids. The field is simply fun and cool. The re-
sulting properties addressed in this prospective article range
from highly strange via extreme to mind-boggling. But will
this field really have an impact on our every-day life in the
not-too-distant future? A “yes” requires progress with respect
to at least two frontiers.

First, fabrication needs another boost. Three-dimensional
printing techniques can now make thousands of complex
shaped microscopic metamaterial unit cells in reasonable
time, but real-world applications likely demand yet more than
a thousand times more. Currently, three-dimensional laser-
based additive manufacturing attracts huge attention world-
wide. Once this technology makes the anticipated jump from
prototyping to industrial mass fabrication, mechanical metama-
terials could be a huge beneficiary.

Second, “killer” properties and functions may still need to
be identified. Have we thought big enough? Has the community
focused too much on the linear elastic regime? We have, for ex-
ample, mentioned mechanical bistability. Bistable switching in
the stress–strain curve under strain control corresponds to hys-
teretic behavior under stress control. Hysteretic behavior means
that the metamaterial absorbs energy in one cycle of compres-
sion and expansion. The energy is given by the enclosed area.
Such mechanical metamaterials could thus be used as revers-
ible shock absorbers, i.e., they would absorb the energy of an
impact, yet, unlike for a car bumper, maintain their structural
integrity. Ideally, this mechanical nonlinearity would originate
exclusively from the metamaterial structure and not from the
constituent materials. In this spirit, recent theoretical work
has mathematically constructed mechanical metamaterials
with any desired nonlinearity of the Poisson’s ratio.[80]

In brief, bringing mechanical metamaterials from cool sci-
ence towards real-world products requires that we keep on
working hard and let our imagination fly.
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