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The dynamical fluctuations of biological signals provide a unique window to construe the underlying 
mechanism of the biological systems in health and disease. Recent research evidences suggest that a wide 
class of diseases appear to degrade the biological complexity and adaptive capacity of the system. Heart 
rate signals are one of the most important biological signals that have widely been investigated during the 
last two and half decades. Recent studies suggested that heart rate signals fluctuate in a complex manner. 
Various entropy based complexity analysis measures have been developed for quantifying the valuable 
information that may be helpful for clinical monitoring and for early intervention. This study is focused 
on determining HRV dynamics to distinguish healthy subjects from patients with certain cardiac problems 
using symbolic time series analysis technique. For that purpose, we have employed recently developed 
threshold based symbolic entropy to cardiac inter-beat interval time series of healthy, congestive heart 
failure and atrial fibrillation subjects. Normalized Corrected Shannon Entropy (NCSE) was used to quan-
tify the dynamics of heart rate signals by continuously varying threshold values. A rule based classifier 
was implemented for classification of different groups by selecting threshold values for the optimal sepa-
ration. The findings indicated that there is reduction in the complexity of pathological subjects as com-
pared to healthy ones at wide range of threshold values. The results also demonstrated that complexity 
decreased with disease severity.
 
Keywords: HRV analysis – biological signals – complexity – optimal variability

Introduction

The temporal fluctuation of complex biological signals such as heart rate, respiratory 
rate and brain signals manifest dynamic process [18]. Complex dynamics enable a 
physiological control system to respond to internal and external fluctuations. The 
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changes that occur with aging and disease are associated with the loss of complexity 
in the dynamics of integrated processes [12]. The complexity analysis of physiologi-
cal signals originated with the examination of cardiovascular dynamics of elderly and 
pathological subjects suffering from different cardiovascular diseases.

Heart rate variability (HRV) is an important dynamical variable of the cardiovas-
cular system, which refers to the beat-to-beat alterations in heart rate [19]. It has 
become a valuable non-invasive tool for describing the role of sympathetic and para-
sympathetic branches of autonomic nervous system (ANS) in the cardio-circulatory 
system regulation [19]. Numerous studies have been performed in connection with 
HRV related cardiac issues. A reduction of HRV has been associated with increased 
risk of sudden cardiac death in post-infarction patients [1, 19] and risk of develop-
ment of coronary artery disease in the growth restricted children in later life [3–5].

Kaplan and his coworkers [10] were the pioneers who directly examined the com-
plexity of the heart beat intervals and systolic blood pressure from radial artery in 
young and elderly subjects in metronome and quiet breathing conditions. The authors 
found reduction in the system complexity in both metronome and free breathing con-
dition for elderly subjects as compared to healthy young subjects. 

Costa and co-authors proposed multiscale entropy (MSE), a novel technique, to 
measure complexity over multiple scales [6, 7] by quantifying the regularity of the 
finite length time series using sample entropy [17], a modification of approximate 
entropy algorithm [15]. They employed MSE method to cardiac inter beat interval 
time series of healthy and pathological (AF and CHF) subjects. They investigated that 
for scale one, which is the only scale considered by traditional entropy based algo-
rithms, the entropy of heartbeat time series of healthy subjects was smaller than 
entropy of time series of AF and CHF subjects. In contrast, for sufficiently large time 
scale, the entropy of time series of healthy subjects is assigned higher entropy values 
than time series of both pathological groups. The MSE method focuses on quantify-
ing the information expressed by the physiological dynamics over multiple scales.

Analysis of symbolic sequences generated from biological signals appears to be a 
valuable tool to consistently characterize the dynamics of biological systems [11, 14, 
20]. Kurths et al. (1995) used both static and dynamic transformations to characterize 
heart rate variability and found that cardiac risk patients exhibit more ordered patterns 
[11]. Park and Yi (2004) used symbolic entropy to examine the complexity of heart-
beat signals at different threshold values [14]. They calculated Corrected Shannon 
Entropy (CSE) and Corrected Conditional Entropy (CCE) of symbolic sequences 
extracted from heartbeat time series at various threshold values for classifying 
healthy and pathological subjects. 

In our previous study we have used threshold based symbolic entropy to explore 
the complex dynamics of stride interval time series of healthy and neurodegenerative 
disease subjects [2]. NCSE was used to quantify the dynamics of these subjects at 
different threshold values. The findings revealed that mean value of NCSE for healthy 
subjects was greater than that of diseased subjects. Decrease in NCSE with advanced 
disease was also observed [2]. In this study, we have examined the complexity of 
heartbeat interval time series of healthy and pathological (CHF and AF) subjects. Our 
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approach focused on quantifying the information expressed by cardiac dynamics at 
different threshold values by using symbolic entropy and then using this information 
to implement a rule based classifier for classification of healthy and pathological 
subjects. 

Materials and Methods 

The symbolic treatment of the time series involves the transformation of original 
measurements into temporal patterns consisting of few symbols [11, 20]. In doing so 
some detailed information is lost but invariant robust dynamics are preserved and can 
be analyzed. Various data symbolization procedures have been used [2, 11, 20]. In the 
present study, following procedure was used for transforming the RR interval time 
series into symbol sequences and for quantifying heart rate dynamics.

Given a RR interval time series Y = {Yi, i = 1, …, N}. The time series is trans-
formed into symbol sequence yξ = {yi

ξ, i = 1, …, N} having fixed number of ξ values 
labeled from zero to ξ – 1. The heartbeat time series was transformed into symbol 
sequences by using quantization level 2 (symbols ‘0’ and ‘1’) and following criterion:

Where τ is the threshold and Y is the mean value of the time series. The symbol 
sequence is then divided to make word sequence of length L of three or more  
symbols.

Finally the code series is generated as 

For a symbol sequence of length L, number of all possible words is ξL, where ξ is the 
quantization level. Shannon entropy of order L is defined as

The estimate is affected by random error in numbers and also by a systematic error 
or bias. Eguia et al. (2000) report the leading correction for the entropy [8]. The 
Corrected Shannon Entropy (CSE) can be obtained as
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Where M is the total number of words and is the number of occurring words among 
the possible words. The value of CSE will be maximum for a certain word length L 
and quantization level ξ, when all M words occur with uniform distribution in a data 
series. 

NCSE is defined as

We have used the quantization level ξ = 2 for data symbolization and word length 
L = 3 for the formation of word code series. All possible word are 23 = 8 (0–7). 

The data was not normally distributed and Kruskal–Wallis test, the non-parametric 
analogue of ANOVA was used for comparing three groups. The significant results of 
Kruskal–Wallis test reveal that at least one of the samples is different from other sam-
ples and does not identify which sample pairs actually differ. For paired comparison, 
after Kruskal–Wallis test we conducted a series of Wilcoxon Mann–Whitney tests to 
investigate which groups significantly differ. Bonferroni correction was used to control 
for inflation of type I error and significance level was adjusted to (p < 0.05/3 = 0.016) 
for interpreting results. In order to elaborate the robustness of the NCSE for classifica-
tion of different groups, paired comparison using Wilcoxon Mann–Whitney test was 
reported in the table. The area under receiver operator curve was derived to quantify the 
classification accuracy between different groups at various threshold values [13].

Data sets

The RR interval time series data sets for analysis were taken from the physionet data-
bases [9]. The fluctuations in the cardiac inter beat interval (RR interval) time series 
data of normal sinus rhythm (NSR) subject, congestive heart failure (CHF) subjects 
and Atrial Fibrillation (AF) subjects were studied [9]. The data of NSR subjects was 
taken from 24-hour holter monitor recordings of 72 subjects consisting of 35 men and 
37 female (54 from RR-interval normal sinus rhythm database and 18 from MIT BIH 
normal sinus rhythm database). The age of the measured group was 54.6 ± 16.2 
(mean ± SD) range 20–78 years. ECG data was sampled at 128 Hz. Atrial Fibrillation 
(AF) data was taken from “MIT-BIH Atrial Fibrillation database (afdb)” [9]. The 

CSE L SE L
M
R( , ) ( , )

ln
ξ ξ

ω
= +

−1
2 2

(5)

CSE L
M

M
M

max ( , ) log
ln

 = − 





+ −



2

1 1
2 2 (6)

NCSE L CSE L
CSE L

( , ) ( , )
( , )max



= (7)



256	 Wajid Aziz et al.

Acta Biologica Hungarica 65, 2014

Ta
bl

e 
1

Pa
ire

d 
sa

m
pl

e 
co

m
pa

ris
on

 o
f 7

2 
N

SR
, 1

5 
C

H
F_

C
 a

nd
 2

4 
A

F 
su

bj
ec

ts
 u

si
ng

 W
ilc

ox
on

 M
an

n–
W

hi
tn

ey
 te

st
 w

ith
 B

on
fe

rr
on

i c
or

re
ct

io
n 

(0
.0

5/
3  

= 
0.

01
6)

 
fo

r i
nt

er
pr

et
in

g 
re

su
lts

T (m
s)

N
C

SE
 p

er
ce

nt
ile

M
ea

n 
ra

nk
s 

of
 p

ai
re

d 
gr

ou
ps

 a
nd

 le
ve

l o
f s

ig
ni

fic
an

ce

25
th

50
th

75
th

N
SR

 v
s 

C
H

F_
C

NSR


 v
s AF


C

H
F_

C
 v

s A
F

m
ed

ia
n

NSR


C
H

F_
C

Si
g.

NSR


AF


Si
g.

C
H

F_
C

AF


Si
g.

2
0.

59
2

0.
69

2
0.

77
7

45
.6

0
36

.3
3

n.
s.

59
.4

3
15

.7
1

**
*

29
.5

3
14

.0
4

**
*

4
0.

59
4

0.
69

4
0.

77
8

45
.3

1
37

.7
0

n.
s.

59
.1

9
16

.4
2

**
*

29
.6

7
13

.9
6

**
*

6
0.

66
3

0.
77

0
0.

84
8

37
.3

1
76

.1
3

**
*

48
.0

9
49

.7
3

n.
s.

30
.2

0
13

.6
3

**
*

8
0.

76
4

0.
84

5
0.

91
9

38
.4

3
70

73
**

*
52

.7
6

35
.7

1
**

30
.0

0
13

.7
5

**
*

10
0.

88
3

0.
94

5
0.

97
9

47
.5

9
26

.7
7

**
56

.1
3

25
.6

3
**

*
22

.4
0

18
.5

0
n.

s.

12
0.

88
1

0.
94

5
0.

98
0

47
.7

4
26

.0
7

**
55

.9
7

26
.0

8
**

*
21

.9
3

18
.7

9
n.

s.

14
0.

84
7

0.
93

3
0.

97
6

50
.5

6
12

.5
3

**
*

56
.9

7
23

.1
5

**
*

16
.0

7
22

.4
6

n.
s.

16
0.

81
0

0.
90

8
0.

96
9

49
.7

9
16

.2
0

**
*

55
.0

8
28

.7
5

**
*

15
.5

3
22

.8
9

**

18
0.

71
0

0.
81

2
0.

92
9

49
.0

3
19

.8
3

**
*

50
.4

9
42

.5
2

n.
s

12
.0

0
24

.5
0

**

20
0.

69
7

0.
81

2
0.

92
9

49
.1

7
19

.2
0

**
*

50
.4

3
42

.1
3

n.
s

12
.6

0
24

.6
3

**
*

25
0.

49
0

0.
65

0
0.

85
2

48
.1

9
23

.9
0

**
*

45
.5

4
57

.3
8

n.
s.

11
.0

0
25

.6
3

**
*

30
0.

46
9

0.
54

9
0.

84
9

49
.0

7
19

.6
7

**
*

45
.9

2
56

.2
5

n.
s.

10
.6

0
25

.8
8

**
*

35
0.

38
6

0.
42

9
0.

77
7

47
.5

3
28

.5
3

*
42

.4
0

66
.8

1
**

*
10

.6
7

25
.8

3
**

*

40
0.

31
0

0.
37

9
0.

68
4

46
.3

6
32

.6
7

n.
s.

40
.2

1
73

.3
8

**
*

10
.6

7
25

.8
3

**
*

n.
s.  

= 
no

n-
si

gn
ifi

ca
nt

, *
si

g.
 <

 0
.0

16
, *

*s
ig

. <
 0

.0
03

, *
**

si
g.

 <
 0

.0
00

3.



Heart rate signals quantified by NCSE	 257

Acta Biologica Hungarica 65, 2014

individual recordings were of 10 hours duration. The CHF group comprised of 44 
subjects, 29 men and 15 women aged 55.5 ± 11.4, range 22–78 years. The data of 29 
CHF subjects was obtained from RR interval congestive heart failure data and 15 
from MIT_BIH Bidmic congestive heart failure database [9]. CHF subjects can be 
classified into four groups according to New York Heart Association (NYHA) func-
tional classification system. This system classifies the patients according to the symp-
toms to everyday activity and quality of life of patient. Based on NYHA functional 
classification system, CHF subject were divided into three classes. Class CHF_A 
comprises of 12 CHF subjects belonging to NYHA classes I and II. Class CHF_B 
includes those 17 subjects which are classified as NYHA class III in congestive heart 
failure RR interval database. CHF_C includes 15 subjects from MIT_BIH Bidmic 
congestive heart failure database who are suffering from severe heart failure and clas-
sified as NYHA Class III_IV by the authors of the database. 

Results

The normalized corrected Shannon entropy (NCSE) of symbol sequences derived 
from interbeat interval time series of NSR, CHF_A, CHF_B, CHF_C and AF subjects 
was computed. The time series data was converted into symbol sequences by using 

Fig. 1. Boxplot of NCSE values for NSR, CHF_C and AF subjects at various threshold values. The single 
black line inside each box is the median NCSE value at a specified threshold. The edges of the box rep-
resent 25th and 75th percentile. The 50% of subjects in a group lie within the box and remaining 50% of 
subjects lie between the box and whiskers with some exceptions called outliers. The outliers are the NCSE 

values represented by (•) that lie outside the boundaries of whiskers
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word length 3 and quantization level 2. The procedure for word length and quantiza-
tion level selection is detailed in the reference [2].

In Figure 1, the shape and spread of NCSE values for NSR, CHF_C and AF sub-
jects is presented using boxplot at various thresholds. The boxplot is a useful way to 
visualize the range, medians value, normality and skewness of distribution. The 
median values of NCSE derived from the time series of all three groups increased at 
smaller thresholds and then after reaching a maximum value gradually decreased with 
the increase in threshold value. The NCSE value of NSR subjects reached a maxi-
mum value at threshold value of 10 ms, CHF_C subjects at 8 ms and AF subjects at 
12 ms. The maximal NCSE value for NSR subjects (0.9729) was higher than the 
maximal NCSE value of both CHF_C group (0.9589) and AF subjects (0.8492). In 
Table 1, the paired comparison of NSR vs CHF_C, NSR vs AF and CHF_C vs AF 
subjects at various thresholds using Wilcoxon Mann–Whitney test is presented. The 
table includes NCSE percentiles, mean ranks and significance level of paired groups 
at various threshold values. Higher mean rank shows higher NCSE value that indi-
cates which groups can be considered as having higher complexity. The mean ranks 
of NSR subjects were significantly higher in the threshold range 10–35 ms for 
CHF_C subjects. The mean ranks of NSR subjects were significantly higher than AF 
for threshold values less than 16 ms except 6 ms. The findings indicate that the 
healthy subjects are more complex than both pathological groups at various threshold 
ranges.

Table 2
Area under receiver operator curve at different threshold values. Area under 
ROC depicts degree of separation between the groups (AUC = 0.5 is equivalent 
to simple guessing and AUC = 1 is equivalent to perfect separation between the 

classes)

τ (ms) NSR vs CHF_C NSR vs AF CHF_C vs AF

  2 0.61 0.96 0.90

  4 0.59 0.95 0.90

  6 0.95 0.52 0.93

  8 0.87 0.68 0.92

10 0.74 0.82 0.60

12 0.75 0.81 0.58

14 0.94 0.85 0.66

16 0.89 0.77 0.69

18 0.84 0.58 0.80

20 0.84 0.59 0.81

25 0.78 0.62 0.88

30 0.84 0.61 0.89

35 0.71 0.75 0.89

40 0.66 0.85 0.89
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In Table 2, area under receiver operator curve at different thresholds for separating 
various groups is given. The area under receiver operator (AUC) is well-recognized 
index for quantifying the degree of separation between the groups. The maximum 
value of AUC is 1, showing perfect separation of two groups and a value of 0.5 cor-
respond to group separation by pure chance. The optimal separation between  
NSR vs AF subjects is obtained at threshold of 2 ms (AUC = 0.96, p-val-
ue = 2.84 × 10–11), the optimal separation between NSR vs CHF_C (AUC = 0.94, 
p-value = 7.17 × 10–08) and CHF_C and AF (AUC = 0.93, p-value = 1.07 × 10–05) 
groups was obtained at threshold of 6 ms. The receiver operator curve for optimal 
separation various groups is shown in the Fig. 2.

As observed in Table 2, maximum separation between NSR and CHF_C can be 
achieved at the threshold of 6 ms and maximum separation between NSR and AF can 
be achieved at the threshold of 2 ms. Therefore, NCSE values of NSR, CHF_C and AF 
are plotted in Figure 3 for thresholds of 6 ms and 2 ms. It can be observed from the 
figure that all three classes are separable with good accuracy. Moreover, NSR class has 
similar values for threshold of 2 ms and 6 ms where change in the threshold value from 
2 ms to 6 ms has caused lot of change in the NCSE values of AF and CHF_C.

Hence, a simple rule based classifier is implemented which is described as below,

Fig. 2. Receiver operator curve for optimal separation between (a) NSR vs CHF_C (b) NSR vs AF  
(c) CHF_C vs AF subjects. Area under ROC depicts degree of separation between the groups (AUC = 0.5 

is equivalent to simple guessing and AUC = 1 is equivalent to perfect separation between the classes)

Rule 1:     
Rule 2: 

If NCSE ms NCSE ms Class NSR
If

( ) ( ) . ,6 2 0 04≤ + =
    NCSE ms NCSE ms AND
NCSE ms NCSE ms

( ) ( ) .
( ) . ( ) .

6 2 0 04
6 2 05 2 2

> +
≥ − + 11905

6 2 0 04
,

( ) ( ) .
   CHF

Rule 3:    
Class

If NCSE ms NCSE ms AND
=

> +
NNCSE ms NCSE ms Class( ) . ( ) . ,6 2 05 2 2 1905< − + =   AF
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Fig. 3. NCSE values of NSR, CHF_C and AF at τ = 2 ms and τ = 6 ms

Fig. 4. Boxplot of NCSE values for CHF_A, CHF_B and CHF_C subjects at various threshold values. 
The single black line inside each box is the median NCSE value at a specified threshold. The edges of the 
box represent 25th and 75th percentile. The 50% of subjects in a group lie within the box and remaining 
50% of subjects lie between the box and whiskers with some exceptions called outliers. The outliers are 

the NCSE values represented by (●) that lie outside the boundaries of whiskers
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Applying these rules, confusion matrix for classes of NSR, CHF_C and AF is given 
in Table 3. An overall accuracy of 95% is achieved and sensitivities of NSR, CHF_C 
and AF are found to be 99%, 80% and 92% respectively. Specificities of NSR, 
CHF_C and AF are found to be 100%, 80% and 88%, respectively. 

Physicians often assess the heart failure stages according to the NYHA functional 
classification system. In present study, CHF subjects were divided into three classes 
based on the NYHA functional classification system. In Fig. 4, median and interquar-
tile ranges of NCSE values for CHF_A, CHF_B subjects and CHF_C at various 
thresholds are represented using boxplot. The NCSE values for all groups initially 

Table 3
Confusion matrix of NSR, CHF_C and AF.  

The rows represent the actual classes and columns represent predicted classes

NSR CHF_C AF

NSR 71 0 0

CHF 1 12 2

AF 0 3 22

Table 4
Paired sample comparison of 12 CHF_A, 17 CHF_B and 15 CHF_C with NSR 
subjects at threshold of 6 ms using Wilcoxon Mann–Whitney test with 

Bonferroni correction (0.05/3 = 0.016) for interpreting results

CHF_A

NCSE percentile  
(6 ms threshold)

25th 50th 75th

0.6633 0.7801 0.8832

P value with NSR n.s.

AUC with NSR 0.63
CHF_B

NCSE percentile  
(6 ms threshold)

25th 50th 75th

0.9294 0.9558 0.9891

P value with NSR *

AUC with NSR 0.75
CHF_C

NCSE percentile  
(6 ms threshold)

25th 50th 75th

0.7482 0.8049 0.8721

P value with NSR **

AUC with NSR 0.95

n.s. = non-significant, *sig. < 0.016, **sig. < 0.0003. Area under ROC depicts degree of separation 
between the groups (AUC = 0.5 is equivalent to simple guessing and AUC = 1 is equivalent to perfect 
separation between the classes).
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increased with the increase in the threshold value and then after reaching maximum 
value started to decrease. The NCSE values of CHF_A subjects were initially smaller 
than that of CHF_B subjects at threshold values less than 18 ms and then progres-
sively increased with the increase in the threshold value. However, no statistically 
significant difference is found between CHF_A and CHF_B. On comparing mild 
class subjects (CHF_A) and severe disease class subjects (CHF_C), NCSE of CHF_C 
subjects was initially smaller than CHF_A subjects, then increased rapidly at thresh-
old of 6 ms and decreased progressively for threshold values greater than 10 ms.  
At threshold values of 14 and 16 ms, the NCSE of CHF_A subjects is significantly 
higher than CHF_C subjects. The results showed that the complexity of CHF_C 
group is smaller than CHF_A at thresholds range of 10 ms to 40 ms. 

Table 4 shows values of NCSE at 6 ms for CHF_A, CHF_B and CHF_C cases. The 
value of NCSE is increased with the severity of the disease at the threshold value of 
6 ms. The values of AUC and p-value show that as severity of the disease gets mild-
er, the NCSE values approach to the NCSE values of NSR at threshold value of 6 ms. 
NCSE values of CHF_B at 6 ms are significantly different from NCSE (p-value =  
0.009) and AUC is 0.75. As the severity of disease is increased from CHF_A to 
CHF_C, AUC also increased from 0.63 to 0.95. 

Discussion

HRV is a reliable and reproducible technique used to assess autonomic function that 
serves as marker of cardiovascular disease. Human heart is not a periodic oscillator 
and a large range of complex rhythms are displayed by it in both health and disease 
states. Linear time and frequency domain measures are often mot sufficient to quan-
tify these complex dynamics. Various efforts have been made to apply nonlinear 
techniques to analyze HRV [6, 7, 11, 14, 18, 20]. 

Symbolic dynamics is a promising tool in several fields of complexity analysis. 
The application of Symbolic analysis to analyze the behavior of physiological system 
requires a partition of the signal in order to convert it into symbol sequences. A well-
chosen partition is vitally important for reflecting whole internal complex of dynam-
ical systems. In our previous study [2], the complexity of stride interval time series 
of control and neurodegenerative disease subjects was assessed using threshold 
dependent symbolic entropy. Normalized corrected Shannon entropy (NCSE) was 
used for quantifying the dynamics of healthy and pathological signals by varying 
threshold value. The value of NCSE depends on the distribution of patterns generated 
on the basis of partitions at different threshold values. The uniform distribution of 
patterns manifests equal pattern probability. The NCSE will reach to a maximum 
value showing that time series is more complex. If the distribution of patterns is non-
uniform or dominated by a specific pattern, the NCSE will decrease and time series 
will be less complex. The distribution of patterns is affected by the value of threshold 
chosen. 
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The rule based classifier implemented by extracting the information in the heart 
rate signals separated the healthy and pathological groups (CHF and AF) with good 
accuracy. An optimal amount of variability in the rhythms of biological system such 
as heart rate signals is directly related to the health and is characterized by higher 
complexity. Under pathological conditions, variations in the heart rate signals are 
either periodic (CHF) indicating decrease in the optimal amount of variability or 
random (AF) manifesting increase beyond the optimal variability [6]. The alterna-
tions in the optimal variability (either increase or decrease) are associated with dis-
ease resulting in the loss of complexity. NCSE yielded significantly higher complex-
ity for healthy subjects than the both pathological subjects and decreased with disease 
severity. The results support the hypothesis that loss of complexity is a defining fea-
ture of pathological dynamics. The findings reveal that NCSE within wide range of 
threshold values is a resilient candidate for measuring inherent complexity of bio-
logical signals in a good agreement with recent affirmations of multiscale entropy  
[6, 7]. 

Conclusions

In the present study, threshold based symbolic entropy was applied to cardiac inter-
beat interval signals of healthy and pathological subjects. The symbolic sequences 
were quantified using normalized corrected Shannon entropy (NCSE). On the basis 
of the information extracted from these signals a rule based classifier was imple-
mented for classification of healthy, low variability disease (CHF) subjects and high 
variability disease (AF) subjects. This classifier separated the different with good 
accuracy at various threshold values. The results demonstrated that NCSE was found 
to be significantly higher in the optimal variability group (NSR subjects) than both 
high and low variability pathological groups. The higher NCSE value shows that 
dynamics of healthy subjects are more complex that represents the underlying physi-
ological system is capable of making flexible adaptations in an ever changing envi-
ronment. The findings reveal that NCSE within wide range of threshold values is a 
resilient candidate for measuring inherent complexity of biological signals in a good 
agreement with recent affirmations of multiscale entropy.
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