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Abstract

An automatic inversion using ridge regression algorithm is devel-
oped in the space domain to analyze the gravity anomalies of sedimen-
tary basins, among which the density contrast decreases with depth
following a prescribed exponential function. A stack of vertical prisms
having equal widths, whose depths become the unknown parameters to
be estimated, describes the geometry of a sedimentary basin above the
basement complex. Because no closed form analytical equation can be
derivable in the space domain using the exponential density-depth func-
tion, a combination of analytical and numerical approaches is used to re-
alize forward gravity modeling. The depth estimates of sediment-
basement interface are initiated and subsequently improved iteratively by
minimizing the objective function between the observed and modeled
gravity anomalies within the specified convergence criteria. Two gravity
anomaly profiles, one synthetic and a real, are interpreted using the pro-
posed technique to demonstrate its applicability.
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1. INTRODUCTION

Gravity method plays an important role in the studies related to sedimentary
basin modeling because detectable gravity anomalies can be observable on
the surface of the Earth due to the presence of significant density contrast be-
tween sediment infill and the underlying basement. These observed gravity
anomalies, considered to have been made on topographic elevations, can be
modeled to decipher the geometry of the basement structure below the sedi-
mentary load. Due to deficit in density of sedimentary rocks with the under-
lying basement complex, negative gravity anomalies are usually observed
over sedimentary basins. It is well-known that the interpretation of gravity
anomalies for subsurface density structure(s) is a non-unique problem, be-
cause the surface gravity anomalies can be explained by a variety of mass
distributions at different depths (Blakely 1995). Such an ambiguity in gravity
interpretation is often tackled by assigning a mathematical geometry to the
anomalous mass with a known density and then to invert the anomalies for
the unknown parameters such that the estimated structure is geologically
sensible. Using a priori information in model space (derived from drilling/
other geophysical data) would further reduce the degree of uncertainty in in-
terpretation.

Many 2D indirect methods (forward modeling) are available to compute
the gravity anomalies of geological sources with uniform density (e.g., Won
and Bevis 1987, Singh 2002). However, these forward modeling techniques
find limited application in analyzing gravity anomalies of sedimentary basins
because the parameters describing the structure are not known in advance.
Bott (1960) and Murthy and Rao (1989) proposed direct methods of interpre-
tation to solve the structures of sedimentary basins from the observed gravity
anomalies, where the cross-section of a sedimentary basin was viewed as a
collage of vertical prisms, all having equal widths and uniform density.
However, the assumption of uniform density for sedimentary rocks is seldom
valid in reality (Abdoh et al. 1990, Abbott and Louie 2000, Chakravarthi
2003, Gomez-Ortiz et al. 2005, Mantlik and Matias 2010, Kadima et al.
2011). Cowie and Karner (1990) demonstrated that the density-depth curves
constructed for different stratigraphic units in sedimentary basins from
measured well density logs exhibit a range of densities but the mean sedi-
ment density clearly increases with depth with the highest rate of increase in
the top few kilometers. Such a variation of density with depth can be effec-
tively simulated by an exponential density function if differential compac-
tion is assumed to be the most important diagenetic process in the evolution
of sedimentary basins (Cordell 1973, Garcia-Abdeslem 1992). Hence, the
use of exponential density-depth function in the analysis of gravity anoma-
lies of sedimentary basins often paves the way for more reliable interpreta-
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tions. However, it becomes a strenuous task to accommodate exponential
density variation in the existing forward modeling schemes, including some
of the available commercial software such as GM-SYS (Northwest Geophys-
ical Associates 2004), because large numbers of constant density bodies are
required to adequately explain the same density structure (Zhou 2013).

Direct modeling methods are being developed to analyze the gravity
anomalies of sedimentary basins using the exponential density-depth func-
tion. Because of the fact that no closed form analytical equations can be de-
rivable in the space domain for the gravity anomalies with an exponential
density function, many algorithms perform forward modeling in the frequen-
cy domain and then transform the anomalies back to the space domain for
further analysis. For instance, Cordell (1973) developed a recursive method
made use of both the gravity field and its vertical derivative (determined by
convolution in discrete Fourier series) to solve the structure of a sedimentary
basin from observed gravity anomalies. Granser (1987) had calculated the
gravity effect of a structure based on series expansion, the numerical evalua-
tion of which was performed by fast Fourier transform. Chai and Hinze
(1988) proposed methods to analyze both profile and two-dimensional gravi-
ty data, where the forward modeling was realized in the wave number do-
main followed by its conversion to the space domain by a shift-sampling
technique. Rao ef al. (1993) derived Fourier transforms of gravity anomalies
of some simple geometric models with exponential density contrast and used
them in the analysis of the gravity anomalies of sedimentary basins; howev-
er, these strategies likely to yield unreliable interpretations when the sedi-
ment-basement interface has major undulations as in the case of the San
Jacinto graben, California. The method developed by Rao and Rao (1999)
also involved the calculation of the gravity effect in the frequency domain
and its subsequent transformation to the space domain by Filon’s method
(Filon 1928). In recent past, Chappell and Kusznir (2008) extended the
method of Granser (1987) to calculate the gravity anomaly as a function of
the Fourier transforms of the bounding surfaces of a basin with irregular top
and bottom surfaces. Nonetheless, the enlisted methods incur truncation er-
rors when the modeled anomalies transform from the frequency domain to
the space domain (Chakravarthi and Sundararajan 2007).

On the other hand, a few space domain based algorithms are available to
model the gravity anomalies, where the exponential density variation was
accommodated in the interpretation by alternative means. For instance,
Murthy and Rao (1979) proposed the subdivision of each side of a 2D poly-
gon into a number of segments, along which the density contrast was as-
sumed to vary linearly with depth, whereas Guspi (1990) described the
exponential density-depth function by a series approximation to compute the
gravity response. The method of Murthy and Rao (1979) consumes signifi-
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cant amount of time even for forward modeling (Rao et al. 1994), whereas
the method of Guspi (1990) requires the knowledge of the degree of the pol-
ynomial, which is generally not known a priori.

In this paper, we develop a space domain based inversion technique to
analyze the gravity anomalies of sedimentary basins, among which the den-
sity contrast varies exponentially with depth. The present technique uses
ridge regression algorithm to analyze the gravity anomalies. The applicabil-
ity of the method is exemplified with both synthetic and real field examples.

2. FORWARD MODELING — THEORETICAL CONSIDERATIONS
Figure 1 shows the cross-section of a sedimentary basin. Let the profile,
AA’, run along the x-axis transverse to the strike of the basin. The structure
of the basin is approximated by a series of outcropping vertical prisms put in
juxtaposition and having equal widths. In a Cartesian coordinate system, let
2T be the width of one such prism along the x-axis and zp represent the
thickness of the corresponding prism along the z-axis, positive vertically
downwards (Fig. 1). Let the density contrast along the prism vary vertically
with depth following the exponential equation of the form (Cordell 1973)

Ap(z)=Ap,e ", )]

where Ap(z) is the density contrast at any depth z, Ap, is the density con-
trast observed at the ground surface, 1 is a constant expressed in inverse
length units. The gravity anomaly of one such prism, Ag,m (x;, z;), at any ob-
servation, P (x;,z;), on the profile, AA’, outside the source region can be ex-
pressed as

Topography
— 3 A
N
o
\ZT

Fig. 1. Cross-section of a sedimentary basin (curved line) and its approximation by
an ensemble of vertical prisms (step line).
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Here, G is universal gravitational constant and (x,z) are source coordi-
nates. Substituting Eq. 1 for Ap(z) in Eq. 2 and upon integration within the
limits of x, Eq. 2 takes the form

ALy (x,.,zj)=2GA,00 Z]‘e%z tan™' (x_x—j+T)—tan_] (x_xj _T) dz . 3)
‘ 0 z—2z, z—2z,

J J

Equation 3 has to be solved numerically because no closed form solution
exists for it in the space domain. Further, it is to be realized that Eq. 3 is
strictly valid for the profile, AB, which runs transverse to the strike of the
prism. In case the profile runs at an angle, a, with the x-axis then x; in Eq. 3
needs to be replaced by x; cos a (Chakravarthi and Ramamma 2013).

The total gravity anomaly produced by a basin at any observation can be
obtained as

A (x,/”zj) = le Ay (%571 )

where N stands for the number of prisms/observations on the profile.

3. INVERSION OF GRAVITY ANOMALIES

The objective of gravity inversion is to fit the modeled gravity anomalies to
the observed ones by adjusting the thickness parameters of the basin in a
least square sense such that the modeled gravity response of the optimum
depth structure mimics the observed anomaly. The present algorithm con-
sists of two modules, one for initialization of the model space and the other
for refinement. The algorithm performs both modules automatically in the
sense that it initiates the depth structure of a sedimentary basin from ob-
served gravity anomalies and improves the structure iteratively, based on the
differences between the observed and modeled gravity anomalies within the
specified convergence criteria.

For initialization, it is presumed that the observed gravity anomaly at
each station on the profile is being generated by an infinite horizontal sub-
surface slab in which the density contrast decreases exponentially with depth
following Eq. 1. Accordingly, initial or approximate depths to basement in-
terface are estimated using the Bouguer slab formula of Cordell (1973)

A’ Ag’obs (xi’zi )
ZBuu - 710g [1 - 27'5 GA,OO ] (5)

where Agops (x5, z;) is the observed residual gravity anomaly at any station.
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The modeled gravity response of the basin, Aguasin (x),2;), calculated at
each observation on the profile using Eq. 4 obviously deviates from the ob-
served anomaly, Agos (X}, 2), because the initial depths obtained from Eq. 5
are only approximate. The difference between these two anomalies at any
observation at the end of the k-th iteration can be expressed as the cumula-
tive of the products of vertical gradients of the anomaly and corresponding
depth improvements of the prisms as

OA .z,
Agubs( X;» ,) Ag i (xj’z‘j)zi{W} dz; . (6)

i=1

Linear equation similar to Eq. 6 is constructed for each observation and
N normal equations are framed and solved for the improvements in N depth
parameters of the prisms by minimizing the objective function J, defined as
the sum of the squares of the differences between the observed and modeled
gravity anomalies,
2

N
J= Z[Agobs (xj ,Z, ) —Ag,in (xj .2 )] . %)
J=1
The system of normal equations can be expressed in a matrix form as
(A4+061)X=8B, ®)

where 4 is a nxn matrix whose elements 4,; are given by

W aAg-rm( m’ m) aAg rm(xm’zm) .
2 - £ aa s> J :1:2:---7N; (9)

n=1 m=1 j' n

X =da, , (10)

n

A .z, ;
B= Z[Agobg X,.2,) Agbm(xm,zm)]%, ' =12,.,N, (11)

J

Here, a,, n=1,2,...,N are depth parameters of prisms and da, represents
corresponding depth improvements. ¢ is the damping factor, and 7/ is a di-
agonal matrix containing the diagonal elements of the matrix A. The partial
derivatives required in Egs. 9-10 are evaluated numerically, which involves
the calculation of the rate of change of the gravity anomaly with respect to
the thickness of each prism. Initially the value of ¢ is set to an arbitrary value
of 0.5 and Eq. 8 is solved for the increments/decrements da, and subse-
quently added to/subtracted from existing parameters of a, to obtain the im-
proved parameters, a, . If the current value of the objective function, Jied,

obtained with the improved parameters, a , is less than its previous value, J,

then Jyoa is assigned to J and a to a,, and the damping factor, J, is de-
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creased by a factor of 1/2 . In case Jnoq 1S greater than J, then the value of 0
is doubled and Eq. 8 is solved for da, and are added to/subtracted from a,
and this process repeats until J;,,,q becomes less than or equal to J. The algo-
rithm terminates in case:

O the specified number of iterations are completed or,

O the current value of the objective function J falls below user speci-
fied predefined allowable error or,

Q the current value of ¢ attains a large value.

4. APPLICATIONS

The applicability of the proposed inversion technique is demonstrated on
two examples: one synthetic and a real. In case of real field example, the ob-
served gravity anomalies across the San Jacinto graben, California, are ana-
lyzed and compared with those previously reported. In both cases the density
contrast varies exponentially with depth and observer locations are at the top
of the topography at z; = 0.

4.1 Synthetic example

Figure 2a shows 40 equispaced noisy gravity anomalies (solid circles) in the
interval x € [0 km, 40 km] produced by a synthetic model, whose structure
resembles a typical block faulted intracratonic rift basin filled with thick sec-
tioned sediments (Fig. 2b). In this case, the pseudorandom noise was Gaus-
sian with zero mean and a standard deviation of 0.12 mGal. We assume that
the density contrast of sediments within the basin varies according to Eq. 1
with Apy=-0.45 gm/cm’, and 1 =0.39 km '. The anomaly shows asymmet-
ric nature across the strike of the structure with large gradient observed over
the western margin of the basin (Fig. 2a). The gravity profile along which
the interpretation is intended covers the lateral dimensions of the basin and
extends farther away to stations resting on the basement. We interpret the
gravity anomalies using the proposed inversion technique described in the
text to recover the basin structure. For such an inversion, the algorithm had
performed 13 iterations before it got terminated as the misfit fell below a
predefined allowable error of 10~ mGal. The initial structure of the basin es-
timated by the algorithm is shown in Fig. 2b and the corresponding anomaly
produced by it in Fig. 2a, respectively. The objective function .J, reduced
drastically from its initial value of 86.8 to 0.0007 at the end of the 3rd itera-
tion and then gradually reaches to almost 0.0 at the end of the 13th iteration
(Fig. 2c). The variation of the damping factor, J, with iteration during the
process of inversion is shown in Fig. 2d. The fit between the observed and
modeled gravity anomalies (shown in Fig. 2a as a solid line) at the end of the
13th iteration is satisfactory. A maximum error of 0.006 mGal between these
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Fig. 2: (a) Observed and modeled gravity anomalies for initial and estimated depth
structures of a synthetic model of a sedimentary basin using exponential density
function; (b) assumed, initial and estimated depth structures; (c) variation of objec-
tive function with iteration; (d) changes in the damping factor against the iteration
number; and (e) error between the observed and modeled gravity anomalies after in-
version.

two anomalies is observed at the 25th km on the profile (Fig. 2e). The esti-
mated structure subsequent to inversion is shown in Fig. 2b along with the
assumed structure. No significant changes in the estimated depth are noticed
beyond the concluding iteration.
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By and large, the algorithm successfully recovered the structure with a
few deviations in and around the depocentre (Fig. 2b). A maximum error of
3.9% between the assumed and estimated depths is observed at the 20th km
on the profile (Fig. 2b). Such an error is insignificant considering the pres-
ence of noise in the residual signal of the structure.

4.2 Field example — San Jacinto graben, California

The San Jacinto graben is bounded by two parallel branches of the San Ja-
cinto fault, and has a northwesterly trend (Cordell 1973). The observed nega-
tive gravity anomalies over the graben (Fig. 3a) are attributed to the low
density basin fill consisting of Pliocene and Pleistocene detrital sedimentary
rocks and Pleistocene and Holocene alluvium. On the basis of seismic re-
fraction data, Fett (1968) had determined the depth to the basement in the
center of the graben as 2.4 km. Cordell (1973) had used two exponential
density depth models based on Eq. 1, one with Ap,=—0.55 gm/cm’ and A =
0.5km™ (shown as solid line in Fig.3c) and the other with Ap,=
—0.55 gm/cm’® and A=1.0km"' (shown as dashed line in Fig. 3c) to de-
scribe the density contrast-depth data of the graben derived from seismic re-
fraction surveys (shown as step line in Fig. 3¢). He demonstrated that the use
of former density model in the gravity analysis of the graben had yielded
structural solution (shown as dashed line in Fig. 3b) that was consistent with
the seismically derived information by Fett (1968).

For the present case, we have interpreted the same gravity data using our
inversion technique to decipher its basement configuration. The exponential
density model defined with Apy =—0.55 gm/cm’ and A=0.5 km ' (Cordell
1973) has been used in the present inversion. We have digitized the anomaly
at an interval of 0.322 km (Fig. 3a) covering a profile length of about
10.0 km across the graben and subjected the anomalies for inversion. In this
case, the algorithm performed 114 iterations (Fig. 3d) before it got terminat-
ed. The approximate structure of the graben shown in Fig. 3b was based on
the initial depths calculated using Eq. 5. The corresponding gravity response
of the initial structure is shown in Fig. 3a. The objective function corre-
sponding to the initial structure was 252.8 (Fig. 3d). The changes in the
damping factor, J, (dashed line) and objective function (solid line) against
the iteration number were shown in Fig. 3d. The modeled gravity anomalies
at the end of the 114th iteration are shown in Fig. 3a and the inferred struc-
ture of the graben in Fig. 3b, respectively. No significant changes are found
in estimated depths of the graben subsequent to the concluding iteration. The
modeled gravity anomalies and the inferred structure of the graben interpret-
ed by Cordell (1973) are also shown in Fig. 3a and b for comparison. The
maximum depth to the basement estimated from present inversion is 2.59 km,



GRAVITY INVERSION 1075

‘ ® ® ® Cbserved anomaly [
7 ____ Modeled anomaly by
-5 present method
i — — Modeled anomaly (Cordell, 1973)
K * x> Anomaly due to initial structure
g -10
= &
£
E .15
c
<< -
-20 -
T sw NE
.251—1-+_p+++-|++ T T
4 2 + 10
+
1
i’ | Modeled structure
= by present method
8 2 o |+ + + Initial structure
= = = Interpreted structure 05
7 (Cordell, 1973) ’
3 0.4
03
2=
0.2
Density contrast (gm/em?) 0.1
0 : i
-D -06 -08 -1 0
il 0 40 80 120
1 - Iteration number
(d)
g Derived density-depth log 15 = . hod
29 ___ Exponential density model g J - Eermsentmaeg) A
3 Y (Ap,=—0.55gm/cm?, 3.=1.0 km) 05 H= == Error (Cordell, 1973)
o Exponential density model 0 = f
3 - (Ap=—0.55gm/cm?, 2=0.5 km") 05 - ¥ Sy %
= al ~ - ’
— -1 =} N » N\
4 - (c) AS T T T T T T T 71 11
0 2 4 6 8 10
(e)

Fig. 3: (a) Observed and modeled gravity anomalies for initial and estimated depth
structures using exponential density model, San Jacinto graben, California; modeled
anomalies by Cordell (1973) are also shown; (b) initial and estimated depth structure
by the present method; inferred depth model by Cordell (1973) is also shown;
(c) predicted density contrast-depth data by Fett (1968) (solid step line) and fitted
exponential density models by Cordell (1973); solid line corresponds to Ap, =
—0.55gm/ecm® and A=05km"' and dashed line corresponds to  Apy=
—0.55 gm/cm® and 1=1.0km"; (d) variation of objective function and damping
factor with iteration number; and (e) error between the observed and modeled gravi-
ty anomalies after inversion.
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whereas Cordell (1973) concluded that the maximum thickness of sediments
within the graben was at least 2.44 km. The error between the observed and
modeled gravity anomalies in each case is shown in Fig. 3e.

By and large, the structural models inferred from the present technique
and the one by Cordell (1973) show more or less similar morphological fea-
tures over the shoulders of the graben. For instance, both models divulge that
the graben is bounded by steeply dipping fault system towards southwest and
by gently dipping fault system towards northeast. However, the structural
model deciphered from our technique reveals a progressive deepening of the
basement towards southwest, which however was not repeated in Cordell’s
(1973) model (Fig. 3b). The basement configuration derived from our analy-
sis appears be more reliable than the one inferred by Cordell (1973) because
the modeled gravity anomalies of the structure from the present inversion
more closely fit the observed gravity anomalies (Fig. 3a) than the ones real-
ized by Cordell (1973). Further, the error between the observed and modeled
gravity anomaly in our case hardly exceeds 0.25 mGal in the central part of
the basin, whereas it was more than —1.1 mGal in Cordell’s (1973) interpre-
tation.

5. CONCLUSIONS

We develop a space domain based inversion technique using the ridge re-
gression algorithm to analyze the gravity anomalies of sedimentary basins
among which the density contrast obeys exponential decrease with depth.
We realize forward gravity modeling of sedimentary basins in the space do-
main using a combination of analytical and numerical approaches. The pre-
sent technique initiates the structure of a sedimentary basin with an assump-
tion that the observed gravity anomaly at each observation is being generated
by an infinite subsurface horizontal slab in which the density contrast de-
creases exponentially with depth. The proposed inversion generates the ini-
tial structure of a sedimentary basin from the observed gravity anomalies and
improves the structure in an iterative approach based on the differences be-
tween the observed and modeled gravity anomalies until the modeled
anomalies closely mimic the observed ones.

The applicability and validity of this inversion technique is demonstrated
on both synthetic and real field gravity anomalies. In case of synthetic ex-
ample pseudorandom noise is added to the residual gravity signal produced
by a sedimentary basin prior to inversion. The algorithm almost recovered
the basin structure even in the presence of random noise; however insignifi-
cant error in the estimated depth is found in around the depocentre of the as-
sumed structure. Further, the observed gravity anomalies over the San
Jacinto graben, California have been analyzed using our technique and the
estimated structure is compared with the structural model derived originally
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by Cordell (1973). The estimated maximum thickness of the graben from the
proposed inversion more or less coincides with the maximum thickness in-
ferred by Fett (1968) and Cordell (1973). However, our deciphered model of
the graben modestly deviates from the one by Cordell (1973) in the sense
that our model shows progressive deepening of the basement towards the
southwest, which was not repeated in later case. The fact that the present in-
version technique yielded information that is consistent with the assumed pa-
rameters in case of synthetic structure and with available information in case
of field example testifies the applicability of the technique.
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