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1. Introduction
Adjuvants have been used to augment the im-

mune response to antigens for more than 70 years.
Ramon first demonstrated that it was possible to
increase levels of diphtheria or tetanus antitoxin
by the addition of bread crumbs, agar, tapioca,
starch oil, lecithin, or saponin to the vaccines (1).
In this review, I will provide an overview of how
modern vaccine adjuvants are developed and
used. First, a general discussion of adjuvants will
include definitions of commonly used terms,
mechanisms of action, safety, characteristics of an
ideal adjuvant, impediments to development, and
preclinical and clinical regulatory issues. Finally,
I will provide examples of experimental adjuvants
that have entered clinical trial to enhance a vari-
ety of licensed and experimental vaccines in
humans. For additional expositions on this com-
plex subject and for a historical perspective, the
reader is referred to recent textbooks on vaccine
adjuvants (2–4) and a selection of useful review
articles published over the past 21 years (5–14).

Interest in vaccine adjuvants is growing rapidly
for several reasons. First, dozens of new vaccine
candidates have emerged over the past decade to
prevent or treat infectious diseases, cancer, fertil-
ity, allergic, and autoimmune diseases. Many of
these candidates require adjuvants. Second, vac-
cines have become commercially more profitable
in the past few years. Third, the Children’s Vac-
cine Initiative (CVI) initiated in 1990 (15), and
the Global Alliance for Vaccines initiated in 1999
(16), have helped to energize political and public
health interest in vaccine adjuvants by establish-
ing ambitious goals for enhancing present vac-
cines and for developing new ones. Fourth,
refinements in the fields of analytical biochemis-
try, macromolecular purification, recombinant
technology, and improved understanding of
immunological mechanisms and disease patho-
genesis have helped to improve the technical
basis for adjuvant development and application.
Finally, the development of experimental adju-
vants has been driven by the failure of aluminum
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compounds to enhance many vaccines in humans,
to enhance many subunit vaccine antigens in ani-
mals, or to stimulate cytotoxic T-cell responses.

2. Definitions
The discussion of vaccine adjuvants will be

facilitated by a definition of terms.

2.1. Adjuvant
The term “adjuvant” (from the latin, adjuvare =

help) was first coined by Ramon in 1926 for a sub-
stance used in combination with a specific antigen
that produces more immunity than the antigen used
alone (17). The enormous diversity of compounds
that increase specific immune responses to an anti-
gen and thus function as vaccine adjuvants makes
any classification system somewhat arbitrary.
Adjuvants in Table 1 are grouped according to ori-
gin rather than according to mechanism of action,
because the mechanism for most adjuvants are
incompletely understood. By contrast, Cox and
Coulter (11) have classified adjuvants into two
broad groups, particulate or non-particulate. A third
classification scheme, modified from Audibert and
Lise (18), identifies at least four main sources of
adjuvants, as follows: (1) botanical, e.g, saponin or
glucan extract; (2) bacterial, e.g., muramyl dipep-
tides, monophosphoryl lipid A, cholera toxin, and
CpG oligodeoxynucleotides; (3) chemical, e.g., alu-
minum salts, pluronic block polymers, lactide and
glycolide, and polyphosphazenes; (4) cytokines and
hormones, e.g., interleukin-2, granulocyte-mac-
rophage colony stimulating factor, and dehydro-
epiandrosterone.

2.2. Carriers, Vehicles, and Adjuvant
Formulations

Several terms used in Table 1 need to be
defined. A “carrier” has several meanings. It is an
immunogenic protein bound to a hapten or a
weakly immunogenic antigen (19). Carriers
increase the immune response by providing T cell
help to the hapten or antigen (20,21). Alterna-
tively, a carrier may also be a living organism (or
vector) bearing genes for expression of the for-
eign hapten or antigen (22–27). A DNA vaccine

is a carrier in the sense that, like some living vec-
tors, it carries a plasmid-based DNA vector
encoding the production of the protein antigen
upon inoculation into the host (28,29).

A “vehicle” provides a substrate for the adju-
vant, the antigen, or the antigen–carrier complex.
Unlike carriers, vehicles are not immunogenic.
Some vehicles provide a fairly consistent adjuvant
effect (30,31), while others do not (32). The
immunostimulatory effects of vehicles are often
augmented by the addition of conventional adju-
vants to constitute “adjuvant formulations,” as
discussed below.

Examples of adjuvant formulations tested in
humans with a variety of antigens (and with vari-
able success) include: monophosphoryl lipid
A and cell wall skeleton of Mycobacterium phlei
adjuvants in a squalane-in-water emulsion vehicle
(33), monophosphoryl lipid A adjuvant in a lipo-
some vehicle (34), threonyl-muramyl dipeptide
adjuvant and Pluronic L-121 block polymer adju-
vant in a vehicle emulsion of squalane and Tween
80 (35), muramyl tripeptide-dipalmitoyl phos-
phatidylethanolamine adjuvant in a squalene-in-
water emulsion vehicle (36), and monophosphoryl
lipid A and QS-21 adjuvants in a proprietary oil-
in-water emulsion (37).

3. Examples of Modern Vaccine Adjuvants
Used in Animals and Humans

3.1. Adjuvants for Parenteral Vaccines

Agents listed in Table 1 are examples of the
many varieties of immunopotentiators used dur-
ing the past 30 years. The majority have been
injected intramuscularly or parenterally. The
majority are being developed and tested by indus-
try. The list of adjuvants is incomplete, because I
have not conducted an exhaustive literature
search, because the results have appeared in
abstracts in non-indexed publications, and
because many studies are proprietary. The adju-
vants marked by an asterisk in Table 1 have com-
pleted trial in humans, or they are now undergoing
clinical trial. Promising adjuvants not yet tested
in humans are also listed. In some instances, adju-
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vants have been combined in an adjuvant formu-
lation hoping to gain a synergistic or additive
effect.

3.2. Vaccine Adjuvants versus Non-specific
Enhancers of Immunity

Agents listed in Table 1 enhance specific anti-
gens and are administered concurrently with the
antigen. Adjuvants not administered in a single
dose at or near the time of antigen inoculation and
into the same injection site as the antigen, are not
listed. Thus, adjuvants administered repeatedly as
non-specific enhancers of immune response are
largely excluded. Immunopotentiating agents
administered to humans separately in time or
location from the vaccine may be impractical for
vaccinating large numbers of persons, and are
potentially unsafe because of their physiological
effects on the entire body. They may have a role,
however, in immunizing a small number of high
risk, immuno-incompetent individuals, such as
renal dialysis patients at risk for hepatitis B or the
very elderly at risk of influenza. Examples of such
“whole body” adjuvants used in humans to aug-
ment vaccines include Na diethyldithiocarbamate
(38), thymosin alpha one (39), loxoribine (40),
granulocyte-macrophage stimulating factor (41),
cimetidine (42), and dehydroepiandrosterone sul-
fate (43). The results of such trials to date have
been disappointing.

3.3. Adjuvants for Mucosal Vaccines
Recent advances in vaccinology have created

an array of vaccines that can be delivered to
mucosal surfaces of the respiratory, gastrointesti-
nal, and genitourinary tracts using intranasal, oral,
and vaginal routes (44). The development of
mucosal vaccines has come at a time when the use
of the syringe and needle for parenteral vaccina-
tion is losing favor. There are several reasons for
this. First, the contamination of reused needles
and syringes with HIV, hepatitis B, and hepatitis
C viruses is a growing hazard, particularly in
developing countries of Africa and Asia. Second,
the number of marketed, parenteral pediatric vac-
cines are increasing worldwide. Currently, 20

separate vaccine injections are administered to
U.S. infants over the first 18 months of life. Par-
ents and physicians are demanding fewer injec-
tions. Third, vaccines administered mucosally,
compared to vaccines administered parenterally,
may provide better protection against the numer-
ous respiratory, gastrointestinal, and genital
pathogens that infect and proliferate at mucosal
surfaces. Well-tolerated adjuvants that enhance
such vaccines will play an important role in
mucosal immunization. Some of the more prom-
ising adjuvants completed or near clinical trial
include microspheres composed of copolymers of
lactic and glycolic acids (45,46); proteosomes
(47,48), liposomes (49), CpG DNA (50),
cochleates(51), and virus-like particles (52).

Cholera toxin (CT) and the closely related,
heat-labile enterotoxin of enterotoxigenic
Escherichia coli (LT) are powerful adjuvants that
augment the local and systemic serum antibody
response to coadministered antigens, particularly
when delivered by the mucosal route (53–60).
Mutant CT and LT molecules have been engi-
neered to reduce toxicity but to retain sufficient
adjuvanticity to enhance local IgA, systemic IgG,
and cellular immune responses to co-administered
vaccine antigens (61–64). Clinical trials using
mutant LT toxins as adjuvants of nonliving vac-
cine antigens are in progress (13). Recent safety
concerns, engendered by passage of CT and LT
into the olfactory bulb of Balb/C mice after intra-
nasal instillation, must be resolved before clinical
evaluation of these powerful adjuvants as intrana-
sal adjuvants can proceed (65).

Attenuated recombinant bacteria (26,66,67)
and viruses (22), administered orally as live vec-
tors of cloned genes encoding protective antigens
of other pathogens, have undergone phase I trials
to stimulate immune effector responses. Most of
these early attempts to stimulate mucosal immune
responses in volunteers using live vectors have
only been marginally successful. The first
attempts to immunize volunteers against LT and
Norwalk virus antigen encoded in a transgenic
potato and administered as edible vaccines were
more successful (68,69). It remains to be seen if



MOLECULAR BIOTECHNOLOGY Volume 21, 2002

Overview of Adjuvant Use 133

other protein antigens (e.g., HBsAg) when given
via transgenic plants will be immunogenic or will
instead induce tolerance to the antigen.

3.4. Adjuvants for Transcutaneous Vaccines
Another needle-free method of immunization is

via the transcutaneous route (70–72). The skin is a
robust immunological organ heavily populated with
Langerhans’ antigen-presenting cells (73). Trans-
cutaneous vaccination involves topical application
of antigens and a variety of adjuvants to intact skin
using a simple occlusive patch (72). The ability of
skin to process foreign antigens has been exploited
by other vaccine strategies, e.g., immunization with
the “gene gun,” which injects plasmid DNA
through the stratum corneum (74), smallpox vac-
cine via scarification, and BCG vaccine via intrad-
ermal injection (27) . By utilizing the proper
adjuvant in mice, it is possible to induce both sys-
temic and mucosal immunity via the skin (75,76).
In humans, CT applied to the skin with tetanus tox-
oid induced systemic immunity to the toxin (70),
and a systemic immune response was engendered
when LT was co-administered with a pilus protein
ofE. coli as a prototype traveler’s diarrhea vaccine
(77). Mucosal responses were not measured. This
novel approach to vaccine delivery, if found to be
safe and non-reactogenic in continuing studies, will
be aggressively developed for a variety of preven-
tive and therapeutic vaccines.

4. Mechanisms of Adjuvant Action

To date, most subunit vaccines are poor antigens,
be they natural products, recombinant products, or
synthetic peptides. Subunit antigens fail for a vari-
ety of reasons, such as incorrect processing by the
immune system, rapid clearance, stimulation of
inappropriate immune response, and lack of critical
B-cell or T-cell epitopes. Potentially, some of these
failures can be overcome by administering subunit
antigens with adjuvants. It should be remembered,
however, that the best adjuvant will never correct
the choice of the wrong (non-protective) epitope.

Traditional live vaccines or whole-cell inacti-
vated microbial vaccines are generally better
immunogens than subunit vaccines. Live and

inactivated whole organisms are structurally more
complex than subunit vaccines, and so contain
many redundant epitopes, which offer more
opportunity to bypass genetic restriction of the
vaccinee. Such vaccines also provide a larger
antigen mass than subunit vaccines, particularly if
they replicate in vivo. Their antigens are larger
molecules, portions of which may serve as carrier
proteins and thus function as intrinsic adjuvants
to enhance immunogenicity by providing T cell
help. Finally, bacterial DNA may directly stimu-
late the host’s immune system due to it large con-
tent of unmethylated CpG dinucleotides (78), and
whole bacterial vaccines may contain CpG DNA.

4.1. Specific Immune Mechanisms
Some mechanisms of adjuvant action are dis-

cussed below and are summarized in Table 2.
Vaccine adjuvants can (1) increase the potency of
small, antigenically weak synthetic or recombi-
nant peptides. (2) They can enhance the speed,
vigor, and persistence of the immune response to
stronger antigens. For example, aluminum adju-
vants used with licensed pediatric vaccines (e.g.,
DTP) elicit early and higher antibody response
after primary immunization than do unadjuvanted
preparations. (3) Adjuvants can increase the
immune response to vaccines in immunologically
immature, immunosuppressed, or senescent indi-
viduals. (4) Adjuvants can select for or modulate
humeral or cell-mediated immunity, and they can
do this in several ways. First, antigen processing
can be modulated, leading to vaccines which can
elicit both helper T cells and cytotoxic lympho-
cytes (CTL) (reviewed in 8,79). Second, depend-
ing upon the adjuvant, the immune response can
be modulated in favor of MHC class I or MHC
class II response (8,79). For example, the QS-21
adjuvant can elicit MHC class I CTL responses
when mixed with protein antigens, peptides, or
inactivated viruses (80,81). Aluminum adjuvants,
among others, elicit principally MHC class
II antibody responses when combined with pro-
tein antigens or inactivated organisms (79,82).
Third, adjuvants can modulate the immune
response by preferentially stimulating Th1 or Th2
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CD4+ T-helper cells (83). The Th1 response is
accompanied by secretion of interleukin-2 (IL-2),
interferon-gamma (IFN-γ), and TNF-beta leading
to a CMI response, including activation of mac-
rophages and CTL and high levels of IgG2a anti-
bodies in mice. The Th2 response is modulated by
secretion of IL-4, IL-5, IL-6, and IL-10, which
provide better help for B cell responses, including
those of IgG1, IgE and IgA isotypes in mice.
Aluminum salts principally stimulate the Th2
response (84), while the Th1 response is stimu-
lated by manyadjuvants, such as muramyl dipep-
tide, monophosphoryl lipid A, and QS-21
(8,35,85,86). (5) Vaccine adjuvants can modulate
antibody avidity, specificity, quantity, isotype,
and subclass against epitopes on complex immu-
nogens (9,87,88). For example, only certain adju-
vants, vehicles, and adjuvant formulations can
induce the development of the protective IgG2a
antibody isotype against Plasmodium yoelii (9).
(6) Vaccine adjuvants can decrease the amount of
antigens in combination vaccines, thus reducing
the likelihood of antigen competition and carrier-
specific epitope suppression. In addition, by
reducing the quantity of antigen needed to protect,

adjuvants can decrease the cost and increase the
availability of vaccines. On the other hand, the
high cost of some modern adjuvants may offset
the savings realized by the reduced antigen
 requirement, thereby paradoxically driving up
vaccine cost overall.

One must remember that in vivo, most adjuvants
have complex and multifactorial immunological
mechanisms, often poorly understood. The
immunological mechanisms utilized by many
adjuvants are under investigation. Such investiga-
tions will provide answers to some of the following
questions. Does the adjuvant induce cell mediated
(Th1) immunity, humoral (Th2) immunity, or a bal-
ance of Th1 and Th2? Which IG isotypes dominate?
Which cytokines are induced? Are CD4+ T-helper
cells or CD8+ cytotoxic T-lymphocytes induced?
The list of such questions is extensive, and grows
in proportion to our understanding of immunologi-
cal mechanisms in general.

5. Advantages of Adjuvants
Vaccine adjuvants influence the immune

response to our benefit in one or more ways
(Table 3). The ability of adjuvants to influence so

Table 3
Beneficial Effects of Vaccine Adjuvants

• Increase the potency of antigenically weak peptides
• Enhance the speed, vigor, and persistence of the immune response to stronger antigens
• Modulate antibody avidity, specificity, quantity, isotype, and subclass
• Select for or enhance the cytotoxic T cell response
• Increase the immune response to vaccines in immunologically immature,  suppressed, or senescent individuals
• Decrease the amount of antigen required, thus reducing the cost and the likelihood of antigen competition in com-

bination vaccines

Table 2
Some Mechanisms of Adjuvant Action

•  Stabilizes epitope conformation
•  Generates a depot at the site of inoculation with slow release of antigen
•  Targets the antigen to antigen-presenting cells (APCs) by formation of multimolecular aggregates, or by binding

antigen to a cell-surface receptor on APCs.
•   Directs antigen presentation by major histocompatibility complex (MHC) class I or MHC class II pathways, by

means of fusion or disruption of cell membranes, or by direct peptide exchange on surface MHC molecules.
•  Preferentially stimulates Th1 or Th2 CD4+ T-helper cells or CD8+ cytotoxic T-lymphocytes, by modulation of the

cytokine network in the local microenvironment.
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many parameters of the immune response greatly
complicates the process of finding an effective
adjuvant. This is because our knowledge of how
any one adjuvant operates on a cellular level is
insufficient to support a completely rational ap-
proach for matching the vaccine antigen with the
proper adjuvant. Consequently, many investiga-
tors advocate an empirical approach for antigen
selection based on the balance among toxicity,
adjuvanticity in animals, and whether one wishes
to stimulate a Th1 response, a Th2 response, or a
balance of the two responses. Finally and impor-
tantly, one must remember that the advantages of
adjuvants are modulated strongly by the immuni-
zation schedule and route, by the antigen and
adjuvant formulation, and by the host (Table 4).

6. Safety
The most important attribute of any adjuvanted

vaccine is that it is more efficacious than the aque-
ous vaccine, and that this benefit outweighs its
risk. During the past 70 years many adjuvants
have been developed, but they were never
accepted for routine vaccination because of their
immediate toxicity and fear of delayed side
effects. The current attitude regarding risk-ben-
efits of vaccination in our Western society favors
safety over efficacy when a vaccine is given to a
healthy population of children and adults. In high
risk groups, including patients with cancer and
AIDS, and for therapeutic vaccines, an additional
level of toxicity may be acceptable if the benefit
of the vaccine was substantial.

Unfortunately, the absolute safety of adjuvanted
vaccines, or any vaccine, cannot be guaranteed,

so we must minimize the risks. The concern about
adjuvant safety has encouraged continued use of
aluminum adjuvants because of their long record
of relative safety in children. Safety concerns have
helped justify the development of unique syn-
thetic antigen constructs and DNA vaccines not
dependent on adjuvants. For example, large poly-
merized monomers of haptens and peptides have
been linked together in a multimeric form
designed to increase intrinsic adjuvanticity (mul-
tiple antigen peptide systems [MAPs]) (89,90).
The first phase 1 trials of DNA-based vaccines
showed them to be safe (28,29,74). It remains to
be seen if MAPs, DNA vaccines, and other unique
antigen constructs will retain enough inherent
adjuvanticity to avoid the risk of administering
them with extraneous chemical or biological
adjuvants to humans. The fact remains that, in
general, the inflammatory reaction induced by
most adjuvants seems to enhance adjuvanticity, so
the more robust the adjuvanticity, the more
robust the reactogenicity to that adjuvant.
The clinical goal is to arrive at an acceptable bal-
ance between adjuvanticiy and reactogenicity.

The real or theoretical risks of administering
vaccine adjuvants have been discussed in detail
(5,6,91,92) and are summarized in Table 5.

Table 4
Modulators of Vaccine Adjuvant Effects

• Route
• Timing
• Dose
• Adjuvant formulation
• Antigen construct
• Host dpecies
• Intra-species genetic variation
• Immune status of the host

Table 5
Real and Theoretical Risks of Vaccine Adjuvants

1. Local acute or chronic inflammation with forma-
tion of painful abscess, persistent  nodules, ulcers,
or draining lymphadenopathy

2. Influenza-like illness with fever.
3. IgE-type immediate hypersensitivity to vaccine

antigen, including anaphylaxis.
4. Chemical toxicity to tissues or organs.
5. Induction of hypersensitivity to host tissue, pro-

ducing autoimmune arthritis, amyloidosis, anterior
uveitis.

6. Cross-reactions with human tissue antigens, caus-
ing  glomerulonephritis or meningoencephalitis.

7. Immune suppression or oral tolerance
8. Carcinogenesis
9. Teratogenesis or abortogenesis

10. Spread of a live vectored vaccine to the
 environment
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Undesirable reactions can be grouped as either
local or systemic.

6.1. Local Reactions
The most frequent adverse side effect associated

with adjuvanted vaccines is the formation of local
inflammation with signs of swelling and erythema,
and symptoms of tenderness to touch and pain on
movement. Such reactions occur more frequently
in preimmune individuals, or after repeated immu-
nization(33,93,94). The inflammation is thought
to be the result of formation of inflammatory
immune complexes at the inoculation site by com-
bination of the vaccine antigen with preexisting
antibodies and complement, resulting in an Arthus-
type reaction. Such reactions tend to occur more
frequently after adjuvanted vaccines than after
aqueous vaccines because of the high antibody
titers induced by adjuvants. In addition, inflamma-
tory cytokines released by many adjuvants contrib-
ute to both the local inflammation and systemic
flu-like symptoms.

Painful abscesses and nodules at the inoculum
site are seen, but far less frequently (reviewed in 5).
Possible mechanisms for such local reactions
include: (1) contamination of the vaccine at the time
of formulation with reactogenic chemicals and
microbial products; (2) instability of the vaccine on
storage with breakdown into reactogenic side prod-
ucts; and (3) poor biodegradability of the
adjuvanted vaccine resulting in prolonged persis-
tence in the tissues and reactive granuloma forma-
tion. Such local reactions are of special concern for
depot-type adjuvants, such as aluminum salts, lipo-
somes, biodegradable polymer microspheres, and,
especially, oil emulsions. Severe local reactions in
humans have followed injections of vaccines
adjuvanted with IFA (incomplete Freund’s
adjuvant) (reviewed in 5), DETOX™ (monophos-
phoryl lipid A + cell wall skeleton of M. phlei +
squalane oil vehicle + Tween 20 emulsifier)
(33,95), muramyl tripeptide covalently linked to
dipalmitoyl phosphatidylethanolamine (MTP-PE)
in a squalene-in-water emulsion (96), and the
squalene oil adjuvant, Montanide ISA 720 (97).

We have noted development of local ulceration
for as long as 70 d after intradermal inoculation of

volunteers with a recombinant BCG-OspA Lyme
disease vaccine; the open sores drained viable
rBCG-OspA before they spontaneously healed
(27). Development of similar draining sores occur
commonly in adults after intradermal inoculation
with standard BCG vaccine (98,99). We and oth-
ers have observed a “recall reaction,” character-
ized by immediate swelling, hives, and intense
pruritus at the skin site of a previous antigen
injection within 5–20 min after reexposure to that
antigen at a remote site (100–102). The reaction
seem to be associated with circulating IgE anti-
body or high-titered serum antibody of yet
unknown isotype.

Severe local pain has occurred immediately
after intramuscular injection of 15 of 108 volun-
teers administered a recombinant HIV protein for-
mulated with QS-21 (103). Although the pain
lasted from several minutes to several hours and
was associated with several vasovagal reactions
in several volunteers, no long-lasting side effects
were reported. Addition of excipients, such as
Triton X-100, to QS-21 formulations has elimi-
nated severe painful injections without affecting
adjuvanticity (C.R. Kensil, personal communi-
cation).

Finally, 14 of 19 volunteers immunized trans-
dermally with LT and an E. coli pilus antigen
developed a localized, pruritic, contact-dematitis-
like rash at the vaccination site. The rash began 1
to 2 d after the second or third application and
lasted 5–7 d. A skin biopsy was compatible with
cutaneous delayed type sensitivity (77). Such lo-
cal reactions may impede the development of tran-
scutaneous immunization.

6.2. Systemic Reactions
Anterior chamber uveitis has been reported

with MDP and several MDP analogs in rabbits
(104) and monkeys (105). Anterior uveitis has
been systematically sought in at least one adju-
vant vaccine study involving 110 volunteers, but
it was not found (106). A slit lamp examination of
volunteers to detect subclinical uveitis is not com-
monly performed. Adjuvant-associated arthritis
(107–109) has not been reported in humans, even
after long-term followup (110–113). More theo-
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retical risks include the induction of autoimmunity
or cancer. Fortunately, in 10 and 18 year followup
studies, the incidence of cancer, autoimmune, and
collagen disorders in 18,000 persons who received
oil-emulsion influenza vaccine in the early 1950s
was not different from that in persons given aque-
ous vaccines (30,112). A 35 yr follow up of these
vaccinees again failed to demonstrate higher
mortality associated with a variety of chronic dis-
eases (113). It requires decades of expensive and
time-consuming follow up to identify low-inci-
dence reactions, and at present a mechanism for
the systematic, active follow-up of vaccinees given
experimental adjuvants is not available (114).

To date, the largest and most systematic pub-
lished investigation of the safety of vaccine adju-
vants in humans involves HIV-negative, healthy
volunteers followed on average for 2.4 yr as part of
the NIAID-sponsored AIDS Vaccine Evaluation
Group trials (115) . This informative report
includes safety data from 1398 volunteers immu-
nized with seven recombinant, two synthetic pep-
tide, and two live poxvirus-vectored HIV-1
vaccines in 25 randomized, double-blind studies
conducted between 1988 and 1997. The adjuvants
tested by themselves or in combination included
several aluminum preparations, deoxycholate, MF-
59, QS-21, monophosphoryl lipid A, liposomes,
muramyl tripeptide-PE, muramyl dipeptide, SAF/
2, and recombinant vaccinia and canarypox. Safety
data were compiled for 1711 person-years of fol-
low-up among vaccine recipients, and 308 person-
years among placebo recipients. The mean duration

of protocols was 1.5 yr, and the mean number of
immunizations was 3.5. The candidate vaccines
without adjuvant were generally well tolerated. The
only adverse effects clearly related to vaccination
were associated with moderate to severe local pain
or inflammation, self-limited in nature, that were
associated with the adjuvants, particularly alum
plus deoxycholate, MTP-PE, and QS-21. MTP-PE
was also associated with severe, self-limited febrile
reactions similar to that reported for MTP-PE and
influenza virus vaccine (96). No serious adverse
laboratory toxicities and no evidence of significant
immunosuppressive events occurred after immuni-
zation. A few volunteers experienced rash,
hemolytic anemia, or arthralgia that might relate to
an underlying immunopathologic mechanism, but
such reactions were mild and quite infrequent.
Eleven volunteers were diagnosed with malignan-
cies, which was within the 95% confidence interval
of the number of cases predicted by the National
Cancer Institute for the general population (115).

7. Characteristics of an Ideal Adjuvant

It is likely that the “ideal” adjuvant does not
and will not exist, because each adjuvant and its
targeted antigen will have their unique require-
ments. Nevertheless, the generic characteristics
summarized in Table 6 would be desirable. To
date, no adjuvant meets all of these goals.

8. Impediments to Rational Development
As already discussed, safety of new adjuvants

is a major concern, particularly of those rare reac-

Table 6
Characteristics of the Ideal Adjuvant

1. It must be safe, including freedom from immediate and long-term side effects.
2. It should be biodegradable or easily removed from the body after its adjuvant effect is exhausted to decrease the

risk of late adverse effects.
3. It should elicit a more robust protective or therapeutic immune response combined with the antigen than when the

antigen is administered alone.
4. It must be defined chemically and biologically, so that there is no lot-to-lot variation in the manufactured product,

thereby ensuring consistent responses in vaccinees between studies and over time.
5. Efficacy should be achieved using fewer doses and/or lower concentrations of  the antigen.
6. It should be stable on the shelf to be commercially and clinically useful.
7. The adjuvant should be affordable.
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tions that occur once in several thousand doses
and that may not be detected until late in the
development program (114). But other impedi-
ments exist that retard orderly development of
adjuvants; those impediments proposed by Gupta
and Siber are discussed below (7).

8.1. Limited Adjuvanticity
Most adjuvants are effective with some antigens

but not others. For example, aluminum compounds
failed to augment vaccines against whooping
cough (116), typhoid fever (117), trachoma (118),
adenovirus hexon antigens (119), influenza hemag-
glutinin(120), and H. influenzae type b capsular
polysaccharide conjugated to tetanus toxoid (121).
It is not always possible to predict compatible and
incompatible adjuvant–vaccine combinations early
in development, before the late stages of preclini-
cal or early clinical development. This situation is
especially common when there are no reliable ani-
mal models. Although ovalbumin is often used as a
“model antigen” for preliminary screening, doses
used are often too high to discriminate between
small differences among adjuvant formulations
(122), and no functional antibody assays are avail-
able for this non-pathogenic antigen. If possible,
initial preclinical studies should be done with the
antigen destined for clinical studies at minimal
threshold concentrations for preliminary evalua-
tion of adjuvants (7,91).

8.2. Suboptimal Use of Aluminum
Adjuvants

Aluminum salts have become the reference
preparations for evaluation of new adjuvants for
human vaccines. Therefore, it is important that
aluminum adjuvants be used optimally to allow
correct evaluation of the experimental adjuvant
(5,7,123). Aluminum adjuvants are difficult to
manufacture in a physicochemically reproducible
way, and this failure affects immunogenicity.
Thus, during the adsorption of antigens on alumi-
num adjuvants, attention must be paid to the
chemicof aluminum adjuvant, conditions of ad-
sorption, and concentration of adjuvant (7,123–
125). Although these adjuvants are commonly
called “alum” in the literature, referring to all alu-

minum adjuvants as “alum” is misleading. Alum
is Al(SO4)2·12H2O, and not all aluminum salts la-
beled “alum” are equally effective. For instance,
aluminum hydroxide is more potent than alumi-
num phosphate (123). To minimize the variations
and to avoid nonreproducible results due to use of
different preparations of aluminum compounds, it
has been recommended that a specific preparation
of aluminum hydroxide such as Alhydrogel from
a single manufacturer be chosen as a scientific
standard for evaluation of new adjuvant formula-
tions (126).

8.3. Animal Models
Different animal species, and different strains

within a species, may behave differently to the
same adjuvant. Intraspecies variation in immune
response to adjuvants and vaccines is particularly
true among mouse strains (7,127). For this reason,
preclinical studies in one strain of a single animal
species should be interpreted with caution. Again
and again, we have discovered that biological dif-
ferences between animal models and humans have
led to the failure of formulations in clinical trials
after showing great promise in preclinical studies.

Guinea pigs have been used widely for vaccine
quality control, and guinea pigs may be the animal
of choice for evaluating adjuvant formulations
(126), although the absence of reagents to analyze
guinea pig cytokines and IgG subclasses may im-
pede full utilization. A useful rabbit model has
been described by FDA and NIH investigators to
evaluate the toxicity and adjuvanticity of adjuvant
formulations (91). The rabbit model provides a
new and much needed standard protocol linking
preclinical assessment of adjuvant formulations
with phase I trials. The wide availability of murine
cytokine and Ig subclass reagents, low husbandry
costs, and ease of handling will still ensure the con-
tinued use of mice despite their inconsistent re-
sponses to adjuvants. It is recommended that at
least two strains of mice with different haplotypes
be utilized, in addition to rabbits or guinea pigs.
Vaccine alone, adjuvant alone, and vaccine–adju-
vant combinations should be studied for toxicity
and immunogenicity, and their concentrations
should mimic and exceed human doses (7,91).
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8.4. Immunoassays
In addition to measuring antibodies by ELISA

or other antigen–antibody binding assays, one
should measure antibody function by neutraliza-
tion, opsonophagocytic, or bacteriocidal assays if
available. However, the most decisive test is pro-
tection against experimental challenge. For
example, many adjuvant formulations induced
high-titer antibody against malarial (9) and SIV
antigens (128), but antibody titers were not suffi-
cient to predict protection even when the antigen
contained protective epitopes and protection was
mediated by antibody. The induction of protective
immunity depended upon the quality rather the
quantity of antibody, that is, induction of antibody
of the appropriate isotype and fine-epitope speci-
ficity. This induction was dependent upon unique,
poorly understood interactions between the adju-
vant, the antigen, and the host. The conclusions
from such experience suggests that the search for
an effective vaccine must involve both antigens
and adjuvants from the start of preclinical devel-
opment, and that no adjuvant can be considered a
gold standard (9).

9. Selection of Vaccine/Adjuvant
Candidates for Clinical Trial

The decision to begin human trials of vaccines
and adjuvanted vaccines is complex and depends
on a number of criteria (129):

1. The vaccine/adjuvant candidate must address a
public health need, and it must be a logical
means to prevent or treat the disease of interest.

2. The vaccine/adjuvant must have been designed
with a sound scientific rationale.

3. There must be an expectation of safety, as dis-
cussed in the section above on safety.

4. There must be animal studies demonstrating the
immunogenicity of the product when given in
the appropriate dose and route. If an appropri-
ate animal model exists, it should be used to
demonstrate protective or therapeutic efficacy
against challenge with the virulent organism.

5. The vaccine/adjuvant should be prepared in a
practical formulation for phase 1 studies, if pos-
sible. Response to a pilot vaccine adjuvant for-
mulation can change after manufacturing scale

up or after a more practical formulation is
introduced.

6. Unless subsidized by government, clinical
development of a new vaccine/adjuvant formu-
lation must attract industrial funding. A com-
pany is unlikely to enter into expensive
commercial development unless the vaccine/
adjuvant formulation is protected by worldwide
patent or commercial license.

10. Preclinical and Phase I Clinical Trial
Design Issues

10.1. U.S. Food and Drug Administration
Regulations

No detailed or specific guidelines exist in the
United States for assessing the safety of adjuvant
preparations for use in humans. Only two guide-
lines refer to adjuvants. The first guideline for-
mally issued by the FDA, which includes
adjuvanted vaccines (130), refers to tests of t
he final container lot of all biological products.
These FDA standards are paraphrased in Table 7
for ease of understanding. It is unclear if adju-
vants, such as QS-21 that are added to the vaccine
immediately before inoculation, are subject to the
final container assay.

The second FDA regulation simply states that,
“An adjuvant shall not be introduced into a prod-
uct unless there is satisfactory evidence that it
does not affect adversely the safety or potency of
the product” (Code of Federal Regulations, 21
CFR, Part 610.15). Because the definition of “sat-
isfactory evidence” is rather vague, investigators
should interact with the professional staff of the
Center for Biologics Evaluation and Research,
FDA, in order to reach a consensus definition.
Incidentally, aluminum compounds alone are not
licensed. Aluminum compounds are not consid-
ered to be “investigational adjuvants” because
they are components in already licensed vaccines.
Thus, antigen–adjuvant formulations are licensed
for clinical use, but adjuvants alone are not (91).

10.2. Center for Biologics Evaluation
and Research (CBER), FDA

The CBER, FDA, Rockville, MD is responsible
for regulating vaccines and other biologics in the
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United States. In addition to meeting the general
standards before public release (Table 7), each
vaccine and adjuvant is tested for safety on a case
by case basis, preferably with the help and guid-
ance of the CBER as noted before. Such guidance,
informal in nature but quite helpful, was published
in 1993 in response to the needs of HIV-1 vaccine
development (91). The principles laid down by
that publication can be adapted to the needs of
other vaccines. I recommend that as a general
principle, all novel (non-aluminum) vaccine/
adjuvant formulations be discussed earlier rather
than later in preclinical development with the staff
of the CBER. The principles are summarized in
the next few paragraphs. These and other preclini-
cal and clinical trial study design issues have been
discussed in some detail (91,92).

1. Extensive experience with aluminum com-
pounds have shown them to be safe. Therefore,
for vaccines with aluminum adjuvants, post-
injection observation of the animal and injec-
tion site is generally adequate for preclinical
safety without the need for formal toxicology
study of the combined product, unless there
is some special concern about the antigen.

2. For other adjuvants, additional tests are neces-
sary. These include reactogenicity and toxicol-
ogy tests of the adjuvant alone and the
antigen-adjuvant combination in a manner that
is relevant to the intended clinical use, includ-
ing route of administration, injection volume
and clinical formulation. A standard safety
assessment protocol in rabbits should be uti-
lized, but only if the rabbit is thought to be sen-
sitive to the biological effects of the vaccine.

This standard safety assessment protocol pro-
vides a bridging study that links preclinical and
clinical development.

3. Early in clinical development the FDA recom-
mends inclusion of a control group of volunteers
given antigen alone and/or antigen adsorbed to
aluminum as comparison groups. Results of the
immunological assessments obtained from such
early phase 1 studies should be combined with
the safety profile to help define the risk/benefit
of proceeding to further clinical studies.

10.3. Clinical Framework Required
for Trials of Vaccines and Vaccine/
Adjuvant Formulations

The successful clinical development of a vaccine
depends upon an number of clinical components or
principles(129,131). Most of these principles are
shared by vaccine–adjuvant formulations. They in-
clude (1) phase 1, 2, 3, and 4 studies; (2) inpatient
and outpatient facilities for testing vaccines in vol-
unteers; (3) good clinical practice (GCP, the name
given by pharmaceutical companies to the set of
federal regulations and guidelines for conducting
clinical trials designed to support an application for
licensure of a biological or drug); (4) investiga-
tional new drug application (IND); (5) institutional
review board (IRB); (6) product license application
(PLA) and establishment license application
(ELA). Laboratory-based investigators concerned
with preclinical development should be familiar
with these components of clinical development. The
steps along the clinical development route leading
to the use of a licensed vaccine by the public have
been nicely summarized by Davenport (131).

Table 7
Standards Used to Test Clinical Lots of Biological Products (21 CFR 610.11)

1. Safety: Contains no extraneous toxic contaminants causing unexpected, unacceptable biological activity (no
weight loss over seven days in two mice and two guinea pigs).

2. Sterility: Contains no contaminating bacteria or yeast (sterile aerobic and anaerobic cultures).
3. Purity: Contains no extraneous matter, such as pyrogens or chemicals (negative pyrogenicity assay in eight

rabbits).
4. Potency: The biological can do what is claimed for it (measure by laboratory or clinical tests).
5. Identity: The biological is what you say it is  (characterize by physical or chemical tests, microscopy, culture, or

by immune assay).
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11. Comparative Vaccine Adjuvant Trials
11.1. Animal Studies

Modern studies have compared up to 24 investi-
gational adjuvants individually mixed with one
antigen in a single protocol [reviewed by Edelman
(132)]. The single protocol controls for confound-
ing test variables, such as antigen, dose, schedule,
animal species, and immunological assays. These
variables make comparison between two or more
separately conducted studies difficult, if not impos-
sible. Concurrent study of several adjuvants for-
mulated with the same antigen and administered
by the same dose and schedule in the same animal
are more informative. For example, comparative
adjuvant studies in mice designed to test concur-
rently two human cancer antigens (133) or one
Neisseria meningitides serogroup B multiple anti-
gen peptide (134) have helped to identify several
experimental adjuvants for inclusion in future
human Phase I trials. When adjuvants provide
equally good immunogenicity in such comparison
trials, adjuvant choice may depend upon other fac-
tors. These include cost, commercial availability,
reactogenicity, mode of action, and induction of the
desired arm of the immune response.

Nevertheless, results of comparative trials may
fail to identify the best adjuvant or adjuvants. For
example, two comparative trials of simian immu-
nodeficiency virus (SIV) vaccines combined with
different adjuvants were conducted in macaques
(128,135). The results were disappointing in that
the mechanism of immunity could not be clearly
delineated, and the large number of primates (80
and 98 animals) was still insufficient to allow
meaningful statistical comparison of protection
between all adjuvant groups.

11.2. Studies in Humans
To date, the largest number of comparative

adjuvant trials in volunteers have focused on HIV
vaccine candidates. Several Phase I and Phase II
clinical trials have compared in the same study
two or more adjuvants combined with HIV
vaccines in healthy young adult volunteers
(46,103,106,115,136–138). These trials illustrate
the useful results that can be obtained from com-

parative adjuvanted vaccine trials using identical
clinical protocols by two or more investigators.
For example, in a Phase 1, double-blind, random-
ized, placebo-controlled trial in healthy adults, 50
µg of HIV gp120 was combined with one of seven
adjuvants(106). The systemic side effects caused
by these vaccine formulations and additional HIV
vaccines using similar protocols (115) were dis-
cussed in Subheading 6.2. Each adjuvanted vac-
cine was injected into 15 persons at 0, 2, 6, and 18
mo. The adjuvants included aluminum hydroxide,
MPL™, liposome-encapsulated MPL™ with alu-
minum, MF59, MF59/MTP-PE, SAF, and SAF/
threonyl-MDP. The group that received SAF/
threonyl-MDP was significantly more likely to
experience moderate or severe local and systemic
reactions compared to all other groups combined,
but this group and the SAF/threonyl-MDP group
developed the highest geometric mean HIV-1 neu-
tralizing antibody titers. All adjuvant groups
except MPL™ induced neutralizing antibody in
80% or more of volunteers after the third dose.
The aluminum group had the lowest geometric
mean antibody titers. CD8+ CTL responses were
not measured (115). The results illustrate the com-
mon association of high reactogenicity and high
adjuvanticity observed in many adjuvant trials.

All malaria vaccine candidates have been
adjuvanted before Phase II trials. Adjuvanted pep-
tides of the circumsporozoite protein (CSP) and
several blood stage antigens of Plasmodium
falciparum were employed in attempts to protect
vaccinees against experimental or natural malaria
challenge. Adjuvants used included aluminum
(139–142), aluminum plus Pseudomonas aeru-
ginosa detoxified toxin A carrier (143,144), alu-
minum plus fusion protein of HBsAg and MPL
(37,145,146), fusion protein of HBsAg in a pro-
prietary oil-in-water emulsion (37), aluminum
plus liposomes and MPL (147), Detox™ (MPL,
cell wall skeleton of mycobacteria, and squalane)
(33), Montanide ISA 720 (sqalene, squalane, and
a mannide mono-oleate emulsifier) (148), and
recombinant vaccinia virus (23). Attempts to pro-
tect the majority of vaccinees were unsuccessful
until Stout et al, using three adjuvant formulations
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developed over a decade of trial and error,
protected 6 (86%) of 7 volunteers with one of
them (37). The successful formulation was com-
posed of CSP fused to a HBsAg peptide and
adjuvanted with an oil-in-water proprietary emul-
sion (SmithKline Beecham Biologicals) plus
monophosphoryl lipid A (MPLA) and QS-21.
The vaccine formulation was administered
repeatedly at 0, 4, and 24–28 wk. The two less
protective formulations were composed of CSP-
HBsAg in the oil-in-water emulsion, and CSP-
HBsAg in a formulation containing alum and
MPLA. Of note, the protection was short-lived
(145), and expanded trials using two or three
spaced vaccinations of three different vaccine
doses protected only 15 (48%) of 31 vaccinees
(149). The results of these malaria trials demon-
strated that strong, complex adjuvant formulations
were required, that a protective adjuvant formula-
tion cannot be deduced from animal studies, that
the more robust adjuvants produced more severe
local and systemic reactions, that antibody alone
was insufficient to confer protection, and that suit-
able numbers of volunteers are necessary to
achieve realistic estimates of protective efficacy.
The most protective first-generation adjuvanted
malaria vaccine was developed because U.S.
Army investigators and SmithKline Beecham
were committed in partnership to expend
therequired time, money, and effort (149). With-
out such long-term committement, future vaccine
development efforts against malaria or any other
disease will not likely succeed.
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