Skip to main content
Log in

Effects of bilateral efferent duct ligation on sperm motility and secretion of FSH, LH, inhibin, and testosterone in adult male rats

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Effects of bilateral efferent duct ligation (EDL) on sperm motility and testicular endocrinology were investigated in adult male rats. Bilateral EDL was created surgically in adult male rats (EDL group) and shamoperated rats were used as control (control group). Five rats from each group were killed on d 3, 5, 7, 14, and 35 after the surgery. The sperm motility parameters were determined by a computer-assisted sperm analysis system using sperm collected from the cauda epididymis. Concentrations of spermatozoa in epididymis and testis were counted. The motility of sperm decreased remarkably in EDL rats compared with controls on 5 d after the operation. Four sperm motility parameters—straight velocity (VSL), deviation of the sperm head from the mean trajectory (ALH, mean), the maximum amplitude of lateral head displacement (ALH, max) and curvilinear velocity (VCL)—increased on 3 d after the operation, and followed by a subsequent decline 5 and 7 dlater. Concentrations of sperm significantly decreased in both testes and epididymis from 3 and 5 d after the operation. Plasma concentrations of FSH and LH increased significantly in EDL rats from 5 and 7 d after the operation, whereas plasma concentrations of immunoreactive (ir)-inhibin, inhibin B, and testosterone decreased. Testicular content of irinhibin showed an initial increase on 3 d after the operation, followed by a subsequent decline to levels significantly below controls by d 7 postoperation. On the other hand, testicular contents of testosterone were significantly higher in the EDL group than the control group on d7–35 after the operation, whereas circulating levels of testosterone remained low. In the EDL testes, marked degenerative changes in the Sertoli cells and spermatogonia were observed, whereas Leydig cells showed clear hyperplasia. These results demonstrated that bilateral EDL induced a rapid reduction of sperm motility parameters during a short time. Present results also suggest that EDL first induces impairment of Sertoli cells function and this leads to reduction of sperm activity and secretion of inhibins. On the other hand, circulating levels of testosterone reduced after EDL and this leads to hypersecretion of LH. A large amount of LH resulted in a stimulation of Leydig cells hyperplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waites, G. M. and Setchell, B. P. (1969). Some physiological aspects of the function of the testis. In: The gonads, McKerns, K. (ed.). Appleton-Century-Crofts. New York, pp. 649–714.

    Google Scholar 

  2. Setchell, B. P. and Waites, G. M. (1970). J. Endorcinol. 47, 81–86.

    CAS  Google Scholar 

  3. Anton, E. (1979). Fertil. Steril. 31, 187–194.

    PubMed  CAS  Google Scholar 

  4. Smith, G. (1962). J. Endocrinol. 23, 285–299.

    PubMed  CAS  Google Scholar 

  5. McEntee, K. (1990). Efferent ductules, epididymis, and deferent duct. In: Reproductive pathology of domestic mammals McEntee, K. (ed.). Academic Press. San Diego, CA, pp. 307–332.

    Google Scholar 

  6. Koskimies, A. I. and Kormano, M. (1975). J. Reprod. Fertil. 43, 345–348.

    Article  PubMed  CAS  Google Scholar 

  7. Brooks, D. E. (1981). Biol. Reprod. 25, 1099–1117.

    Article  PubMed  CAS  Google Scholar 

  8. Syntin, P., Dacheux, F., Druart, X., Gatti, J. L., Okamura, N., and Dacheux, J. L. (1996). Biol. Reprod. 55, 956–974.

    Article  PubMed  CAS  Google Scholar 

  9. Vreeburg, J. T., Holland, M. K., Cornwall, G. A. and Orgebin-Crist, M. C. (1990). Biol. Reprod. 43, 113–120.

    Article  PubMed  CAS  Google Scholar 

  10. Kirchhoff, C., Osterhoff, C., Pera, I., and Schroter, S. (1998). Andrologia 30, 225–232.

    Article  PubMed  CAS  Google Scholar 

  11. Boue, F., Lassalle, B., Duquenne C., et al. (1992). Mol. Reprod. Dev. 33, 470–480.

    Article  PubMed  CAS  Google Scholar 

  12. Zini, A., and Schlegel, P. N. (1997). J., Urol. 158, 659–663.

    Article  CAS  Google Scholar 

  13. Lan, Z. J., Labus, J. C., and Hinton, B. T. (1998). Biol. Reprod. 58, 197–206.

    Article  PubMed  CAS  Google Scholar 

  14. Hermo, L., Xiaohong, S., and Morales, C. R. (2000). J. Androl. 21, 122–144.

    PubMed  CAS  Google Scholar 

  15. Shabanowitz, R. B. and Killian, G. J. (1987). Biol. Reprod. 36, 753–768.

    Article  PubMed  CAS  Google Scholar 

  16. Holland, M. K., Vreeburg, J. T., and Orgebin-Crist, M. C. (1992). J. Androl. 13, 266–273.

    PubMed  CAS  Google Scholar 

  17. Wong, P. Y. and Lee, W. M. (1983). Biol. Reprod. 28, 206–212.

    Article  PubMed  CAS  Google Scholar 

  18. Wishart, G. J. and Ashizawa, K. (1987). J. Reprod. Fertil. 80, 607–611.

    Article  PubMed  CAS  Google Scholar 

  19. Fan, X. and Robaire, B. (1998). Endocrinology 139, 2128–2136.

    Article  PubMed  CAS  Google Scholar 

  20. Jensen, T. K., Andersson, A. M., Hjollund, N. H., et al. (1997). J. Clin. Endocrinol. Metab. 82, 4059–4063.

    Article  PubMed  CAS  Google Scholar 

  21. Pierik, F. H., Van Ginneken, A. M., Dohle, G. R., Vreeburg, J. T., and Weber, R. F. (2000). Int. J. Androl. 23, 340–346.

    Article  PubMed  CAS  Google Scholar 

  22. Buzzard, J. J., Loveland, K. L., O'Bryan, M. K., et al. (2004). Endocrinology 145, 3532–3541.

    Article  PubMed  CAS  Google Scholar 

  23. Ozkan, K. U., Kucukaydin, M., Muhtaroglu, S., Kontas, O., and Karaca, F. (2003). Urol. Int. 71, 73–76.

    Article  PubMed  Google Scholar 

  24. Jin, W., Herath, C. B., Yoshida, M., et al. (2002). J. Androl. 23, 845–853.

    PubMed  CAS  Google Scholar 

  25. Kondo, M., Udono, T., Jin, W., et al. (2000). Endocr. J. 47, 707–714.

    Article  PubMed  CAS  Google Scholar 

  26. Anthony, C. T., Danzo, B. J., and Orgebin-Crist, M. C. (1984). Endocrinology 114, 1413–1418.

    PubMed  CAS  Google Scholar 

  27. Anthony, C. T., Danzo, B. J., and Orgebin-Crist, M. C. (1984) Endocrinology 114, 1419–1425.

    PubMed  CAS  Google Scholar 

  28. Risbridger, G. P., Kerr, J. B., Peake, R. A., and de Kretser, D. M. (1981). Endocrinology 109, 1234–1241.

    Article  PubMed  CAS  Google Scholar 

  29. de Kretser, D. M. (1982). Int. J. Androl. 5, 11–17.

    Google Scholar 

  30. Strader, L. F., Linder, R. E., and Perreault, S. D. (1996). Reprod. Toxicol. 10, 529–533.

    Article  PubMed  CAS  Google Scholar 

  31. Meistrich, M. L. (1989). J. Am. Coll. Toxicol. 8, 551–567.

    CAS  Google Scholar 

  32. Hamada, T., Watanabe, G., Kokuho, T., et al. (1989). J. Endocrinol. 122, 697–704.

    Article  PubMed  CAS  Google Scholar 

  33. Taya, K., Watanabe, G., and Sasamoto, S. (1985). Jpn. J. Anim. Reprod. 31, 186–197.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Taya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Medan, M.S., Li, C. et al. Effects of bilateral efferent duct ligation on sperm motility and secretion of FSH, LH, inhibin, and testosterone in adult male rats. Endocr 30, 151–160 (2006). https://doi.org/10.1385/ENDO:30:2:151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:30:2:151

Key words

Navigation