Skip to main content
Log in

Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Dietary restriction (DR) increases the lifespan of rodents and increases their resistance to several different age-related diseases including cancer and diabetes. Beneficial effects of DR on brain plasticity and neuronal vulnerability to injury have recently been reported, but the underlying mechanisms are unknown. We report that levels of brain-derived neurotrophic factor (BDNF) are significantly increased in the hippocampus, cerebral cortex, and striatum of rats maintained on a DR regimen compared to animals fed ad libitum (AL). Seizure-induced damage to hippocampal neurons was significantly reduced in rats maintained on DR, and this beneficial effect was attenuated by intraventricular administration of a BDNF-blocking antibody. These findings provide the first evidence that diet can effect expression of a neurotrophic factor, demonstrate that BDNF signaling plays a central role in the neuroprotective effect of DR, and proffer DR as an approach for reducing neuronal damage in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ballarin M., Ernfors P., Lindefors N., and Persson H. (1991) Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain. Exp. Neurol. 114, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Bemelmans A. P., Horellou P., Pradier L., Brunet I., Colin P., and Mallet, J. (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum. Gene Ther. 10, 2987–2997.

    Article  PubMed  CAS  Google Scholar 

  • Bramham C. R., Southard T., Sarvey J. M., Herkenham M., and Brady L. S. (1992) Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication J. Comp. Neurol. 368, 371–382.

    Article  Google Scholar 

  • Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Castren E., Zafra F., Thoenen H., and Lindholm D. (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci. USA 89, 9444–9448.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 640, 56–67.

    Article  PubMed  CAS  Google Scholar 

  • Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., and Greenberg M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Duan W. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Dubey A., Forster M. J., Lal H., and Sohal R. S. (1996) Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of mouse. Arch. Biochem. Biophys. 333, 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfried J. A., Evers B. M., Chu K. U., Townsend C. M., and Thompson J. C. (1996) Caloric restriction increases the expression of heat shock protein in the gut. Ann. Surg. 223, 592–597.

    Article  PubMed  CAS  Google Scholar 

  • Endres M., Fan G., Hirt L., Fujii M., Matsushita K., Liu X., Jaenisch R., and Moskowitz M. A. (2000) Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J. Cereb. Blood Flow Metab. 20, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A., Carnahan J., and Greenberg M. E. (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618–1623.

    Article  PubMed  CAS  Google Scholar 

  • Goodrick C. L., Ingram D. K., Reynolds M. A., Freeman J. R., and Cider N. L. (1983) Differential effects of intermittent feeding and voluntary exercise on body weight and lifespan in adult rats. J. Gerontol. 38, 36–45.

    PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., et al. (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a presenilin-1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    Article  PubMed  CAS  Google Scholar 

  • Hetman M., Kanning K., Cavanaugh J. E., and Xia Z. (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 22,569–22,580.

    Article  CAS  Google Scholar 

  • Heydari A. R., You S., Takahashi R., Gutsmann A., Sarge K. D., and Richardson A. (1996) Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Dev. Genet. 18, 114–124.

    Article  PubMed  CAS  Google Scholar 

  • Hicks R. R., Numan S., Dhillon H. S., Prasad M. R., and Seroogy K. B. (1997) Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Mol. Brain Res. 48, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Idrobo F., Nandy K., Mostofsky D. I., Blatt L., and Nandy L. (1987) Dietary restriction: effects on radial maze learning and lipofuscin pigment deposition in the hippocampus and frontal cortex. Arch. Gerontol. Geriatr. 6, 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Ingram D. K., Weindruch R., Spangler E. L., Freeman J. R., and Walford R. L. (1987) Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81.

    PubMed  CAS  Google Scholar 

  • Johnston A. N., Clements M. P., and Rose S. P. (1999) Role of brain-derived neurotrophic factor and presynaptic proteins in passive avoidance learning in day-old domestic chicks. Neuroscience 88, 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Korte M., Kang H., Bonhoeffer T., and Schuman E. (1998) A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37, 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Kritchevsky D. and Klurfeld D. M. (1986) Influence of caloric intake on experimental carcinogenesis: a review. Adv. Exp. Med. Biol. 206, 55–68.

    PubMed  CAS  Google Scholar 

  • Larsson E., Nanobashvili A., Kokaia Z., and Lindvall O. (1999) Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 19, 1220–1228.

    Article  PubMed  CAS  Google Scholar 

  • Lee S., Williamson J., Lothman E. W., Szele F. G., Chesselet M. F., Von Hagen S., et al. (1997) Early induction of mRNA for calbindin-D28k and BDNF but not NT-3 in rat hippocampus after kainic acid treatment. Mol. Brain Res. 47, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Lee J., Bruce-Keller A. J., Kruman I., Chan S., and Mattson M. P. (1999) 2-deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: involvement of stress proteins. J. Neurosci. Res. 57, 48–61.

    Article  PubMed  CAS  Google Scholar 

  • Levine E. S., Dreyfus C. F., Black I. B., and Plummer M. R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA 92, 8074–8077.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O., Ernfors P., Bengzon J., Kokaia Z., Smith M. L., Siesjo B. K., and Persson H. (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc. Natl. Acad. Sci. USA 89, 648–652.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Furukawa K. (1996) Programmed cell life: anti-apoptotic signaling and therapeutic strategies for neurodegenerative disorders. Restorative Neurol. Neurosci. 9, 191–205.

    CAS  Google Scholar 

  • Mattson M. P., Lovell M. A., Furukawa K., and Markesbery W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.

    Article  PubMed  CAS  Google Scholar 

  • Morgan T. E., Rozovsky I., Goldsmith S. K., Stone D. J., Yoshida T., and Finch C. E. (1997) Increased transcription of the astrocyte gene GFAP during middle age is attenuated by food restriction: implications for the role of oxidative stress. Free Rad. Biol. Med. 23, 524–528.

    Article  PubMed  CAS  Google Scholar 

  • Mu J. S., Li W. F., Yao Z. H., and Zhou X. F. (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 835, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. (1995) Exercise and brain neurotrophins. Nature 373, 109.

    Article  PubMed  CAS  Google Scholar 

  • Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. W (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Patterson S. L., Grover L. M., Schwartzkroin P. A., and Bothwell M. (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Ren J. M. and Finklestein S.P. (1997) Time window of infarct reduction by intravenous basic fibroblast growth factor in focal cerebral ischemia. Eur. J Pharmacol. 327, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Rudge J. S., Mather P. E., Pasnikowski E. M., Cai N., Corcoran T., Acheson A., et al. (1998) Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp. Neurol. 149, 398–410.

    Article  PubMed  CAS  Google Scholar 

  • Sanna M. G., Duckett C. S., Richter B. W., Thompson C. B., and Ulevitch R. J. (1998) Selective activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc. Natl. Acad. Sci. USA 95, 6015–6020.

    Article  PubMed  CAS  Google Scholar 

  • Seroogy K. B. and Herman J. P. (1997) In situ hybridization approaches to the study of the nervous system, in Neurochemistry: a Practical Approach, 2nd ed. (Turner A. J., Bachelard H. S., eds.), Oxford University Press., Oxford, UK, pp. 121–150.

    Google Scholar 

  • Skaper S. D., Floreani M., Negro A., Facci L., and Giusti P. (1998) Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J. Neurochem. 70, 1859–1868.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Swintosky V. L., et al. (1996) Bacterial alkaloids mitigate seizure-induced hippocampal damage and spatial memory deficits. Exp. Neurol. 141, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Sohal R. S. and Weindruch R. (1996) Oxidative stress, caloric restriction, and aging. Science 273, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Sohal R. S., Ku H. H., Aagarwal S., Forster M. J., and Lal H. (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Aging Dev. 74, 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Stewart J., Mitchell J., and Kalant N. (1989) The effects of life-long food restriction on spatial memory in young and aged Fischer 344 rats measured in the eight-arm radial and the Morris water mazes. Neurobiol. Aging 10, 669–675.

    Article  PubMed  CAS  Google Scholar 

  • Talan M. I. and Ingram D. K. (1985) Effect of intermittent feeding on thermoregulatory abilities of young and aged C57BL/6J mice. Arch. Gerontol. Geriatr. 4, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Tran J., Rak J., Sheehan C., Saibil S. D., LaCasse E., Korneluk R. G., and Kerbel R. S. (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem. Biophys. Res. Commun. 264, 781–788.

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara T., Takeda M., Shimohama S., Ohara O., and Hashimoto N. (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery 37, 733–739.

    Article  PubMed  CAS  Google Scholar 

  • Wachsman J. T. (1996) The beneficial effects of dietary restriction: reduced oxidative damage and enhanced apoptosis. Mutat. Res. 350, 25–34.

    PubMed  Google Scholar 

  • Wang X., Martindale J. L., Liu Y., and Holbrook N. J. (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem. J. 333, 291–300.

    PubMed  CAS  Google Scholar 

  • Young D., Lawlor P. A., Leone P., Dragunow M., and During M. J. (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med. 5, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Yu Z. F. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H., Guo Q., and Mattson M. P. (1999) Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842, 224–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, W., Lee, J., Guo, Z. et al. Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury. J Mol Neurosci 16, 1–12 (2001). https://doi.org/10.1385/JMN:16:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:1:1

Index Entries

Navigation