Skip to main content
Log in

Antifreeze glycoproteins

Structure, conformation, and biological applications

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Antifreeze glycoproteins (AFGPs) are a novel class of biologically significant compounds that possess the ability to inhibit the growth of ice both in vitro and in vivo. Any organic compound that possesses the ability to inhibit the growth of ice has many potential medical, industrial, and commercial applications. In an effort to elucidate the molecular mechanism of action, various spectroscopic and physical techniques have been used to investigate the solution conformations of these glycoproteins. This review examines the characterization of AFGPs and potential biological applications relating to stabilization of lipid membranes and vitrification adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, X., Griffith, M., Pasternak, J. J., and Glick, B. R. (1995) Low temperature growth, freezing survival and production of antifreeze protein by the plant growth promoting Rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41, 776–784.

    Article  PubMed  CAS  Google Scholar 

  2. Yeh, Y. and Feeney, R. E. (1996) Antifreeze proteins: structures and mechanisms of action. Chem. Rev. 96, 601–617.

    Article  PubMed  CAS  Google Scholar 

  3. Davies, P. L. and Sykes, B. D. (1997) Antifreeze proteins. Curr. Opin. Struc. Biol. 7, 828–834.

    Article  CAS  Google Scholar 

  4. Feeney, R. E. and Yeh, Y. (1993) Antifreeze proteins: properties, mechanism of action and possible applications. Food Technol. 47, 82–88.

    CAS  Google Scholar 

  5. Cheng, C. C. and DeVries, A. L. (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold water fish in freezing avoidance of cold water fish. In Life Under Extreme Conditions (di Prisco, G., ed.), Springer-Verlag, Berlin, pp. 1–14.

    Google Scholar 

  6. Fletcher, G. L., Hew, C. L., and Davies, P. L. (2001) Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359–390.

    Article  PubMed  CAS  Google Scholar 

  7. Morris, H. R., Thompson, M. R., Osuga, D. T., Ahmed, A. I., Chan, S. M., Vandenheede, J. R., and Feeney, R. E. (1978) Antifreeze glycoproteins from the blood of an Antarctic fish-the structure of the proline-containing glycopeptides. J. Biol. Chem. 253, 5155–5162.

    PubMed  CAS  Google Scholar 

  8. Brown, R. A. and Feeney, R. E. (1985) Direct evidence for antifreeze glycoprotein adsorption onto an ice surface. Biopolymers 24, 1265–1270.

    Article  PubMed  CAS  Google Scholar 

  9. Ananthanaryanan, V. S. (1989) Antifreeze proteins: structural diversity and mechanism of action. Life Chem. Rep. 7, 1–32.

    Google Scholar 

  10. Wilson, P. (1993) Explaining thermal hysteresis by the Kelvin effect. Cryo-Letters 14, 31–36.

    Google Scholar 

  11. Knight, C. A., Cheng, C. C., and Devries, A. L. (1991) Adsorption of alpha helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59, 409–408.

    PubMed  CAS  Google Scholar 

  12. Wilson, P. W., Beaglehole, D., and DeVries, A. L. (1993) Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry. Biophys. J. 64, 1878.

    CAS  PubMed  Google Scholar 

  13. Hall, D. G. and Lips, A. (1999) Phenomenology and mechanism of antifreeze peptide activity. Langmuir 15, 1905–1912.

    Article  CAS  Google Scholar 

  14. Knight, C. A., Driggers, E., and Devries, A. L., (1993) Adsorption to ice of fish antifreeze glycopeptide-7 and glycopeptide-8. Biophys. J. 64, 252–259.

    PubMed  CAS  Google Scholar 

  15. Wierzbicki, A., Taylor, M. S., Knight, C. A., Madura, J. D., Harrington, J. P., and Sikes, C. S. (1996) Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2–10) faces of ice. Biophys. J. 71, 8–18.

    PubMed  CAS  Google Scholar 

  16. Chao, H. M., Houston, M. E. Jr., Hodges, R. S., Kay, C. M., Sykes, B. D., Loewen, M. C., et al. (1997) A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 36, 14652–14660.

    Article  PubMed  CAS  Google Scholar 

  17. DeLuca, C. I., Comley, R., and Davies, P. L. (1998) Antifreeze proteins bind independently to ice. Biophys. J. 74, 1502–1508.

    PubMed  CAS  Google Scholar 

  18. Gronwald, W., Chao, H., Reddy, D. V., Davies, P. L., Sykes, B. D., and Sonnichsen, F. D. (1996) NMR characterization of side-chain flexibility and backbone structure in the type I antifreeze protein near freezing temperatures. Biochemistry 35, 16698–16704.

    Article  PubMed  CAS  Google Scholar 

  19. Karim, O. A. and Haymet, A. D. J. (1988) The ice-water interface: a molecular dynamics simulation study. J. Chem. Phys. 89, 6889–6896.

    Article  CAS  Google Scholar 

  20. Martin, Y. C. (1978) Quantitative Drug Design: A Critical Introduction, Marcel Decker, New York.

    Google Scholar 

  21. Franks, F. and Morris, E. R. (1978) Blood glyco-protein from Antarctic fish. Possible conformational origins of antifreeze activity. Biochem. Biophys. Acta. 540, 346–356.

    PubMed  CAS  Google Scholar 

  22. Bush, C. A., Feeney, R. E., Osuga, D. S. T., Talapati, S., and Yeh, Y. (1981) Antifreeze glycoprotein conformation model based upon vacuum ultraviolet circular dichroism data. J. Peptide Protein Res. 17, 125–129.

    Article  CAS  Google Scholar 

  23. Bush, C. A. and Feeney, R. E. (1986) Conformation of the glycotropeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned NMR spectrum. Int. J. Peptide Protein Res. 28, 386–397.

    Article  CAS  Google Scholar 

  24. Rao, B. N. and Bush, C. A. (1987) Comparison by proton NMR spectroscopy of the conformation of the 2600 dalton antifreeze glycopeptide of polar cod with that of the high molecular weight antifreeze glycoprotein. Biopolymers 26, 1227–1244.

    Article  PubMed  CAS  Google Scholar 

  25. Lane, A. N., Hays, L. M., Feeney, R. E., Crowe, L. M., and Crowe, J. H. (1998) Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod. Protein Sci. 7, 1555–1563.

    PubMed  CAS  Google Scholar 

  26. Tsvetkova, N. M., Phillips, B. L., Krishnan, V. V., Feeney, R. E., Fink, W. H., Crowe, J. H., Risbud, S. H., Talbin, F., and Yeh, Y. (2002) Dynamics of antifreeze glycoproteins in the presence of ice. Biophys. J. 82, 464–473.

    PubMed  CAS  Google Scholar 

  27. Lavalle, P., DeVries, A. L., Cheng, C. C. C., Scheuring, S., and Ramsden, J. J. (2000) Direct observation of postadsorption aggregation of antifreeze glycoproteins on silicates. Langmuir 16, 5785–5789.

    Article  CAS  Google Scholar 

  28. Hansen, T. N., Devries, A. L., and Baust, J. G. (1991) Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus-Mawsoni. Biochim. et Biophys. Acta 1079, 169–173.

    CAS  Google Scholar 

  29. Block, W. (1994) Differencial scanning calorimetry in ecophysiological research. Acta Ecol. 15, 13–22.

    Google Scholar 

  30. Baust, J. M. (2002) Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preservation Technol. 1, 17–31.

    Article  CAS  Google Scholar 

  31. Glander, A. J. and Schaller J. (1999) Binding of annexin V to plasma membranes of human spermatozoa: A rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 5, 109–115.

    Article  PubMed  CAS  Google Scholar 

  32. Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell. Dev. Biol. Animal 36, 262–270.

    Article  CAS  Google Scholar 

  33. Fowke, K. R., Behnke, J., Hanson, C., Shea, K., and Cosentino, M. (2000) Apoptosis: A method for evaluating the cryopreservation of whole blood mononuclear cells. J. Immunol. Mech. 244, 139–144.

    Article  CAS  Google Scholar 

  34. Hilbert, S. L., Luna, R. E., Zhang, J., Wang, Y., Hopkins, R. A., Yu, Z. X., and Ferran, V. T. (1999) Allograft heart valves: the role of apoptosis-mediated cell loss. J. Thorac. Cardiovasc. Surg. 117, 454–462.

    Article  PubMed  CAS  Google Scholar 

  35. Villalba, R., Pena, J., Luque, E., and Gomez-Villagran, J. L. (2001) Characterization of ultrastructural damage of valves cryopreserved under standard conditions. Crybiology 43, 81–84.

    Article  CAS  Google Scholar 

  36. Mazur, P. (1963) Kinetic of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47, 347–369.

    Article  PubMed  CAS  Google Scholar 

  37. Rubinsky, B., Arav, A., and Devries, A. L. (1992) The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology 29, 69–79.

    Article  PubMed  CAS  Google Scholar 

  38. Storey, K. B., Bischof, J., and Rubinsky, B. (1992) Cryomicroscopic analysis of freezing in liver of the freeze tolerant wood frog. Am. J. Physiol. 263, R185-R194.

    PubMed  CAS  Google Scholar 

  39. Hincha, D. K., Devries, A. L., and Schmitt, J. M. (1993) Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes —comparison with cryotoxic sugar acids. Biochim. Biophys. Acta 1146, 258–264.

    Article  PubMed  CAS  Google Scholar 

  40. Cheng, C. and Devries, A. L. (1992) Do antifreeze proteins have a role in maintenance of ion gradients across cell membranes in polar fishes and invertebrates? Cryobiology 29, 783.

    Google Scholar 

  41. Payne, S. R., Oliver, J. E., and Upreti, G. C. (1994) Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology 31, 180–184.

    Article  PubMed  CAS  Google Scholar 

  42. Hays, L., Feeney, R. E., Crowe, L. M., Crowe, J. H., and Oliver, A. E. (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc. Natl. Acad. Sci. USA 93, 6835–6840.

    Article  PubMed  CAS  Google Scholar 

  43. Quinn, P. J. (1995) A liquid-phase separation model of low temperature damage to biological membranes. Crybiology 22, 128–146.

    Article  Google Scholar 

  44. Clerc, S. G. and Thompson, T. G. (1995) Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer-membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 68, 2333–2341.

    Article  PubMed  CAS  Google Scholar 

  45. Wu, Y. and Fletcher, G. L. (2000) Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim. Biophys. Acta 1524, 11–16.

    CAS  Google Scholar 

  46. Arav, A., Yavin, S., Zeron, Y., Natan, D., Dekel, I., and Gacitua, H. (2002) New trends in gamete's cryopreservation. Mol. Cell. Endocrinol. 187, 77–81.

    Article  PubMed  CAS  Google Scholar 

  47. Marsland, T. P., Evans, S., and Pegg, D. E. (1981) Dielectric measurements for design of an electromagnetic rewarming system. Cryobiology 24, 311–323.

    Article  Google Scholar 

  48. Robinson, M. P. and Pegg, D. E. (1999) Rapid electromagnetic warming of cells and tissues. IEEE Trans. Biomed. Eng. 46, 1413–1425.

    Article  PubMed  CAS  Google Scholar 

  49. Pegg, D. E. (2002) The history and principles of cryopreservation. Semin. Reprod. Med. 20, 5–13.

    Article  PubMed  CAS  Google Scholar 

  50. Rubinsky, B., Arav, A., and Devries, A. L. (1991) Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo-Letters 12, 93–106.

    Google Scholar 

  51. Eto, T. K. and Rubinsky, B. (1993) Antifreeze glycoproteins increase solution viscosity. Biochem. Biophys. Res. Commun. 197, 927–931.

    Article  PubMed  CAS  Google Scholar 

  52. Wu, Y., Banoub, J., Goddard, S. V., Kao, M. H., and Fletcher G. L. (2001) Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp. Biochem. Physiol. Part B 128, 265–273.

    Article  CAS  Google Scholar 

  53. Pickering, S. J., Braude, P. R., Johnson, M. H., Can, A., and Currie, J. (1990) Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54, 102–108.

    PubMed  CAS  Google Scholar 

  54. Pickering, S. J. and Johnson, M. H. (1987) The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod. 2, 207–216.

    PubMed  CAS  Google Scholar 

  55. O'Neil, L., Paynter, S. J., Fuller, B. J., Shaw, R. W., and DeVries, A. L. (1998) Vitrification of mature mouse oocytes in a 6M Me2SO solution supplemented with antifreeze glycoproteins: The effect of temperature. Cryobiology 37, 59–66.

    Article  PubMed  Google Scholar 

  56. Vincent, C. and Johnson, M. H. (1992) Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxford Rev. Reprod. Biol. 14, 73–100.

    CAS  Google Scholar 

  57. Filira, F., Biondi, L., Scolaro, B., Foffani, M. T., Mammi, S., Peggion, E., and Rocchi, R. (1990) Solid phase synthesis and conformation of sequential glycosylated polypeptide sequences related to antifreeze glycoproteins. Int. J. Biol. Macromol. 12, 41–49.

    Article  PubMed  CAS  Google Scholar 

  58. Tsuda, T. and Nishimura, S. I. (1996) Synthesis of an antifreeze glycoprotein analogue: Efficient preparation of sequential glycopolymers. Chem. Commun. 24, 2779–2780.

    Article  Google Scholar 

  59. Meldal, M. and Jensen, K. J. (1990) Pentafluorophenyl esters for the temporary protection of the α-carboxy group in solid phase synthesis. J. Chem. Soc. Chem. Commun. 483–485.

  60. Anisuzzaman, A. K. M., Anderson, L., and Navia, J. L. (1988) Synthesis of a close analogue of the repeating unit of the antifreeze glycoproteins of polar fish. Carbohydr. Res. 174, 265–278.

    Article  PubMed  CAS  Google Scholar 

  61. Tseng, P. H., Jiiang, W. T., Chang, M. Y., and Chen, S. T. (2001) Facile solid phase synthesis of an antifreeze glycoprotein. Chem. Eur. J. 7, 585–590.

    Article  CAS  Google Scholar 

  62. Enaide, A. and Ben, R. N., (2001) Fully convergent solid phase synthesis of antifreeze glycoprotein analogues. Biomacromolecules 2, 557–561.

    Article  CAS  Google Scholar 

  63. Ben, R. N., Enaide, A., and Hauer, L. (1999) Synthesis of a C-linked antifreeze glycoprotein (AFGP) mimic: Probes for investigating the mechanism of action. Org. Lett. 1, 1759–1762.

    Article  CAS  Google Scholar 

  64. Eniade, A., Murphy, A. V., Landreau, G., and Ben, R. N. (2001) A general synthesis of structurally diverse building blocks for preparing analogues of C-linked antifreeze glycoproteins. Bioconjugate Chem. 12, 817–823.

    Article  CAS  Google Scholar 

  65. Arnott, J. On the Treatment of Cancer by Regulated Application of an Anesthetic Temperature, Churchill, London, 1851.

    Google Scholar 

  66. Koushafar, H. and Rubinsky, B. (1997) Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. Urology 49, 421–425.

    Article  PubMed  CAS  Google Scholar 

  67. Pham, L., Dahiya, R., and Rubinsky, B. (1999) An in vivo study of antifreeze protein adjuvant cryosurgery. Cryosurgery 38, 169–175.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert N. Ben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvet, V., Ben, R.N. Antifreeze glycoproteins. Cell Biochem Biophys 39, 133–144 (2003). https://doi.org/10.1385/CBB:39:2:133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:2:133

Index Entries

Navigation