Skip to main content

Detection and Quantification of Calcified Coronary Plaque With Multidetector-Row CT

  • Chapter
Book cover CT of the Heart

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1234 Accesses

Abstract

Multidetector-row computed tomography (MDCT) has rapidly developed into a powerful tool for noninvasive measurement of calcified plaque in the coronary arteries over the past decade. Identification and quantification of coronary artery calcifications (CAC) with X-ray devices is well established in the literature with chest radiographs, fluoroscopy, computed tomography (CT without electrocardiogram [ECG] gating) and cardiac CT (electron beam CT [EBCT], helical CT, and MDCT with cardiac gating) (16). Calcified plaque is an established component of coronary atherosclerosis, and radiographic techniques are highly sensitive to calcified atherosclerotic plaque (1,7). The presence of calcified plaque documents the presence of subclinical atherosclerosis in the coronary artery. Calcified plaque is an active and regulated process occurring in the vessel wall, with pathways similar to those of bone metabolism (8,9). As of 2003, two consensus documents (1,10) concerning cardiac CT and the recommendations of the Prevention V Conference (11) are available to guide clinical application. The results of several large epidemiological studies, as well as pharmaceutical trials, will become available during the next five years and will provide new information to guide the medical community and society at large as to the appropriate utilization of CAC screening in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996;94:1175–1192.

    PubMed  CAS  Google Scholar 

  2. Shemesh J, Apter S, Rozenman J, et al. Calcification of coronary arteries: detection and quantification with double-helix CT. Radiology 1995;197:779–783.

    PubMed  CAS  Google Scholar 

  3. Becker CR, Jakobs TF, Aydemir S, et al. Helical and single-slice conventional CT versus electron beam CT for quantification of coronary artery calcification. AJR Am J Roentgenol 2000;174:543–547.

    PubMed  CAS  Google Scholar 

  4. Carr JJ, Crouse JR, 3rd, Goff DC, Jr., D’ Agostino RB, Jr., Peterson NP, Burke GL. Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. AJR Am J Roentgenol 2000;174:915–921.

    PubMed  CAS  Google Scholar 

  5. Becker CR, Schoepf UJ, Reiser MF. Methods for quantification of coronary artery calcifications with electron beam and conventional CT and pushing the spiral CT envelope: new cardiac applications. Int J Cardiovasc Imaging 2001;17:203–211.

    Article  PubMed  CAS  Google Scholar 

  6. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. JACC 1990;15:827–832.

    PubMed  CAS  Google Scholar 

  7. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–2162.

    PubMed  CAS  Google Scholar 

  8. Doherty TM, Detrano RC. Coronary arterial calcification as an active process: a new perspective on an old idea. Calcif Tissue Int 1994;54:224–230.

    Article  PubMed  CAS  Google Scholar 

  9. Wallin R, Wajih N, Greenwood GT, Sane DC. Arterial calcification: a review of mechanisms, animal modes, and the prospects for therapy. Med Res Rev 2001;21:274–301.

    Article  PubMed  CAS  Google Scholar 

  10. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus Document on Electron-Beam Computed Tomography for the Diagnosis and Prognosis of Coronary Artery Disease. JACC 2000:236–240.

    Google Scholar 

  11. Smith SC, Jr., Amsterdam E, Balady GJ, et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: tests for silent and inducible ischemia: Writing Group II. Circulation 2000;101:E12–6.

    PubMed  Google Scholar 

  12. Sasaki F, Koga S, Takeuchi A. [Computed tomographic detection of calcification within the heart and the thoracic aorta (author’s transl)]. Nippon Igaku Hoshasen Gakkai Zasshi—Nippon Acta Radiologica 1982;42:123–129.

    CAS  Google Scholar 

  13. Reinmuller R, Lipton MJ. Detection of coronary artery calcifications by computed tomography. Cardiovascular Imaging 1987;1:139–145.

    Google Scholar 

  14. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990;176:181–183.

    PubMed  CAS  Google Scholar 

  15. Callaway MP, Richards P, Goddard P, Rees M. The incidence of coronary artery calcification on standard thoracic CT scans. Brit J Radiol 1997;70:572–574.

    PubMed  CAS  Google Scholar 

  16. Broderick LS, Shemesh J, Wilensky RL, et al. Measurement of coronary artery calcium with dual-slice helical CT compared with coronary angiography: evaluation of CT scoring methods, inter-observer variations, and reproducibility. Am J Roentgenol 1996;167:439–444.

    CAS  Google Scholar 

  17. Woodhouse CE, Janowitz WR, Viamonte M, Jr. Coronary arteries: retrospective cardiac gating technique to reduce cardiac motion artifact at spiral CT. Radiology 1997;204:566–569.

    PubMed  CAS  Google Scholar 

  18. Becker CR, Knez A, Jakobs TF, et al. Detection and quantification of coronary artery calcification with electron-beam and conventional CT. Eur Radiol 1999;9:620–624.

    Article  PubMed  CAS  Google Scholar 

  19. Knez A, Becker C, Becker A, et al. New generation computed tomography scanners are equally effective in determining coronary calcium compared to electron beam CT in patients with suspected CAD. Circulation 1998;Suppl I:I–655.

    Google Scholar 

  20. Carr JJ, Burke GL, Goff DC, Crouse JR, D’ Agostino RA. Coronary artery calcium scores correlate strongly between fast gated helical and electron beam computed tomography. Circulation 1999;99:1106.

    Google Scholar 

  21. Goldin JG, Yoon HC, Greaser LE, 3rd, et al. Spiral versus electron-beam CT for coronary artery calcium scoring. Radiology 2001;221:213–221.

    Article  PubMed  CAS  Google Scholar 

  22. Carr JJ. Coronary calcium: the case for helical computed tomography. J Thorac Imaging 2001;16:16–24.

    Article  PubMed  CAS  Google Scholar 

  23. Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 2000;19:949–963.

    Article  PubMed  CAS  Google Scholar 

  24. Bland MJ, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–310.

    PubMed  CAS  Google Scholar 

  25. Carr JJ, Reed JC, Choplin RH, Case LD. Pneumothorax detection: a problem in experimental design. Radiology 1993;186:23–25;discussion 25–26.

    PubMed  CAS  Google Scholar 

  26. Zerhouni EA, Spivey JF, Morgan RH, Leo FP, Stitik FP, Siegelman SS. Factors influencing quantitative CT measurements of solitary pulmonary nodules. J Comput Assist Tomo 1982;6:1075–1087.

    Article  CAS  Google Scholar 

  27. McCollough CH, Kaufmann RB, Cameron BM, Katz DJ, Sheedy PF, 2nd, Peyser PA. Electron-beam CT: use of a calibration phantom to reduce variability in calcium quantitation. Radiology 1995;196:159–165.

    PubMed  CAS  Google Scholar 

  28. Mao S, Budoff M, Bakhsheshi H, Liu SCK. Improved reproducibility of coronary artery calcium scoring by electron beam tomography with a new electrocardiographic trigger method. Invest Radiol 2001;36:363–367.

    Article  PubMed  CAS  Google Scholar 

  29. Achenbach S, Ropers D, Mohlenkamp S, et al. Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 2001;87:210–213, A8.

    Article  PubMed  CAS  Google Scholar 

  30. Becker CR, Jakobs TF, Aydemir S, et al. Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. Am J Roentgenol 2000;174:543–547.

    CAS  Google Scholar 

  31. Yoon HC, Goldin JG, Greaser LE, 3rd, Sayre J, Fonarow GC. Interscan variation in coronary artery calcium quantification in a large asymptomatic patient population. Am J Roentgenol 2000;174:803–809.

    CAS  Google Scholar 

  32. Greaser LE, 3rd, Yoon HC, Mather RT, McNitt-Gray M, Goldin JG. Electron-beam CT: the effect of using a correction function on coronary artery calcium quantitation. Acad Radiol 1999;6:40–48.

    Article  PubMed  Google Scholar 

  33. Bielak LF, Sheedy PF, 2nd, Peyser PA. Coronary artery calcification measured at electron-beam CT: agreement in dual scan runs and change over time. Radiology 2001;218:224–229.

    PubMed  CAS  Google Scholar 

  34. Bielak LF, Kaufmann RB, Moll PP, McCollough CH, Schwartz RS, Sheedy PF, 2nd. Small lesions in the heart identified at electron beam CT: calcification or noise?. Radiology 1994;192:631–636.

    PubMed  CAS  Google Scholar 

  35. Sevrukov A, Pratap A, Doss C, Jelnin V, Hoff JA, Kondos GT. Electron beam tomography imaging of coronary calcium: the effect of body mass index on radiologic noise. J Comput Assist Tomogr 2002;26:592–597.

    Article  PubMed  Google Scholar 

  36. Sevrukov A, Jelnin V, Hoff JA, Kondos G. Electron-beam tomography coronary artery calcium scanning: effect of image noise on calibration phantom computed tomography values. Am J Cardiol 2001; 88:85E.

    Article  Google Scholar 

  37. Van Hoe LR, De Meerleer KG, Leyman PP, Vanhoenacker PK. Coronary artery calcium scoring using ECG-gated multidetector CT: effect of individually optimized image-reconstruction windows on image quality and measurement reproducibility. Am J Roentgenol 2003;181:1093–1100.

    Google Scholar 

  38. Mahnken AH, Wildberger JE, Simon J, et al. Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. Am J Roentgenol 2003; 181:533–538.

    CAS  Google Scholar 

  39. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002;156:871–881.

    Article  PubMed  Google Scholar 

  40. Detrano R, Anderson M, Nelson J, et al. Effect of scanner type and calcium measure on the re-scan variability of calcium quantity by computed tomography. Circulation 2002.

    Google Scholar 

  41. Hong C, Bae KT, Pilgram TK. Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row ct—assessment of effects of different thresholds and quantification methods. Radiology 2003;227:795–801.

    Article  PubMed  Google Scholar 

  42. Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000;217:564–571.

    PubMed  CAS  Google Scholar 

  43. Flohr T, Prokop M, Becker C, et al. A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage. Eur Radiol 2002;12:1497–1503.

    Article  PubMed  CAS  Google Scholar 

  44. Kachelriess M, Sennst DA, Maxlmoser W, Kalender WA. Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 2002;29:1489–1503.

    Article  PubMed  Google Scholar 

  45. Kopp AF, Ohnesorge B, Becker C, et al. Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 2002; 225:113–119.

    Article  PubMed  CAS  Google Scholar 

  46. Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Bruening R, Reiser MF. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 2002;223:474–480.

    Article  PubMed  Google Scholar 

  47. Ohnesorge B, Becker C, Flohr T, et al. Coronary calcium scoring with electrocardiographically pulsed multislice spiral computed tomography and reduced radiation exposure. Am J Cardiol 2001;88:82E.

    Article  Google Scholar 

  48. Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081–1086.

    Article  PubMed  Google Scholar 

  49. Jakobs TF, Wintersperger BJ, Herzog P, et al. Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 2003;13:1923–1930.

    Article  PubMed  Google Scholar 

  50. Strong JP. Natural history and risk factors for early human atherogenesis. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Clin Chem 1995;41:134–138.

    PubMed  CAS  Google Scholar 

  51. Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 1998;208:807–814.

    PubMed  CAS  Google Scholar 

  52. Ferencik M, Ferullo A, Achenbach S, et al. Coronary calcium quantification using various calibration phantoms and scoring thresholds. Invest Radiol 2003;38:559–566.

    Article  PubMed  Google Scholar 

  53. Arad Y, Roth M, Newstein D, Guerci AD. Heart Scan May Be Better Than Standard Risk Factors at Estimating Heart Disease Risk, American College of Cardiology 52nd Annual Scientific Session, Chicago, Ill, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press, Inc., Totowa, NJ

About this chapter

Cite this chapter

Carr, J.J. (2005). Detection and Quantification of Calcified Coronary Plaque With Multidetector-Row CT. In: Schoepf, U.J. (eds) CT of the Heart. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-818-8:101

Download citation

  • DOI: https://doi.org/10.1385/1-59259-818-8:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-303-9

  • Online ISBN: 978-1-59259-818-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics