Skip to main content

Antimicrobials for Biological Warfare Agents

  • Chapter
Book cover Biological Weapons Defense

Part of the book series: Infectious Disease ((ID))

Abstract

Biological warfare (BW) agents also cause natural human or animal diseases. The natural forms of these agents can often be treated successfully by using specific antimicrobial agents (for example, see Table 1 and Table 2). In many cases, the antimicrobial susceptibilities and perhaps the most efficacious therapy of the resultant infections are well-documented in the scientific literature. For some agents, however, natural susceptibilities and treatments are poorly documented, as is the case for human glanders. And although the development of antimicrobial resistance is a major concern, even for naturally acquired disease, it is far more of a concern for infectious agents developed as biological warfare agents, as recent advances in genetic engineering make intentional production of multiple antibiotic-resistant strains achievable at the microbiology graduate student level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandell, G., Bennett, J., and Dolin, R., (eds.) (2000) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 5th ed. Churchill Livingstone, New York, pp. 236–253.

    Google Scholar 

  2. Alvarez-Elcoro, S. and Enzler, M. (1999) The macrolides: erythromycin, clarithromycin, and azithromycin. Mayo. Clin. Proc. 74, 613–634.

    Article  PubMed  CAS  Google Scholar 

  3. Patel, R. (1998) Antifungal agents. Part I. Amphotericin B preparations and flucytosine. Mayo. Clin. Proc. 73, 1205–25.

    Article  PubMed  CAS  Google Scholar 

  4. Kasten, M. (1999) Clindamycin, metronidazole, and chloramphenicol. Mayo. Clin. Proc. 74, 825–833.

    Article  PubMed  CAS  Google Scholar 

  5. Edson, R. and Terrell, C. (1999) The aminoglycosides. Mayo. Clin. Proc. 74, 519–528.

    Article  PubMed  CAS  Google Scholar 

  6. Estes, L. (1998) Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo. Clin. Proc. 73, 1114–1122.

    Article  PubMed  CAS  Google Scholar 

  7. Virk, A. and Steckelberg, J. (2000) Clinical aspects of antimicrobial resistance. Mayo. Clin. Proc. 75, 200–214.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson, R. and Wright, A. (1998) General principles of antimicrobial therapy. Mayo. Clin. Proc. 73, 995–1006.

    Article  PubMed  CAS  Google Scholar 

  9. Cockerill, F. (1998) Conventional and genetic laboratory tests used to guide antimicrobial therapy. Mayo. Clin. Proc. 73, 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  10. Smilack, J. (1999) The tetracyclines. Mayo. Clin. Proc. 74, 727–729.

    Article  PubMed  CAS  Google Scholar 

  11. Hellinger, W. and Brewer, N. (1999) Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo. Clin. Proc. 74, 420–434.

    Article  PubMed  CAS  Google Scholar 

  12. Wright, A. (1999) The penicillins. Mayo. Clin. Proc. 74, 290–307.

    Article  PubMed  CAS  Google Scholar 

  13. Keating, M. (1999) Antiviral agents for non-human immunodeficiency virus infections. Mayo. Clin. Proc. 74, 1266–1283.

    Article  PubMed  CAS  Google Scholar 

  14. Louie, M. and Cockerill, F. (2001) Susceptibility Testing: Phenotypic and Genotypic Tests for Bacteria and Mycobacteria. Infect. Dis. Clin. N. Am. 15.

    Google Scholar 

  15. Doganay, M. and Aydin, N. (1991) Antimicrobial susceptibility of Bacillus anthracis. Scand. J. Infect. Dis. 23, 333–335.

    Article  PubMed  CAS  Google Scholar 

  16. Odendaal, M., Pieterson, P., de, V. V., and Botha, A. (1991) The antibiotic sensitivity patterns of Bacillus anthracis isolated from the Kruger National Park. Onderstepoort. J. Vet. Res. 58, 17–19.

    PubMed  CAS  Google Scholar 

  17. Lightfoot, N. F., Scott, R. J., and Turnbull, P. C. (1990) Antimicrobial susceptibility of Bacillus anthracis: proceedings of the international workshop on anthrax. Salisbury Med. Bull. 68, 95–98.

    Google Scholar 

  18. Heine, H., Dicks, R., and Andrews, G. (2001) In vitro activity of oratavancin (LY33328), levofloxacin, meropenem, GAR936 and linezolid against strains of Bacillus anthracis. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL. 173.

    Google Scholar 

  19. Heine, H., Dicks, R., and Byrne, W. (2000) In vitro activity of daptomycin, sparfloxacin, quinupristin-dalfopristin and other antibiotics against Bacillus anthracis. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto. 167.

    Google Scholar 

  20. Lalitha, M. and Thomas, M. (1997) Penicillin resistance in Bacillus anthracis. Lancet 349, 1522.

    Article  PubMed  CAS  Google Scholar 

  21. Patra, G., Vaissaire, J., Weber-Levy, M., Le, D. C., and Mock, M. (1998) Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. J. Clin. Microbiol. 36, 3412–3414.

    PubMed  CAS  Google Scholar 

  22. Bradaric, N. and Punda-Polic, V. (1992) Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by an insect bite. Lancet 340, 306, 307.

    Article  PubMed  CAS  Google Scholar 

  23. Inglesby, T., O’Toole, T., Henderson, D., et al. (2002) Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 287, 2236–2252.

    Article  PubMed  Google Scholar 

  24. Chen, Y., Succi, J., and Koehler, T. M. (2001) Silent β-lactamase Genes in Bacillus anthracis. 4th International Conference on Anthrax. Annapolis, MD.

    Google Scholar 

  25. Penn, C. C. and Klotz, S. A. (1998) Bacillus anthracis and other aerobic spore formers, in Infectious Diseases. 2nd ed. (Blacklow, N. R., ed.), Saunders, Philadelphia, PA, pp. 1747–1750.

    Google Scholar 

  26. Centers for Disease Control and Prevention. (2001) Update: investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. [erratum appears in MMWR Morb. Mortal. Wkly. Rep. (2001) 50(43), 962]. MMWR Morb. Mortal. Wkly Rep. 50, 909–919.

    Google Scholar 

  27. Kim, H., Choi, E., and Kim, B. (1993) A macrolide-lincosamide-streptogramin B resistance determinant from Bacillus anthracis 590: cloning and expression of ermJ. J. Gen. Microbiol. 139, 601–607.

    PubMed  CAS  Google Scholar 

  28. Pomerantsev, A., Sukovatova, L., and Marinin, L. (1993) [Characterization of a Rif-R population of Bacillus anthracis]. Antibiot. Khimioter. 38, 34–38.

    PubMed  CAS  Google Scholar 

  29. Pomerantsev, A., Shishkova, N., and Marinin, L. (1992) [Comparison of therapeutic effects of antibiotics of the tetracycline group in the treatment of anthrax caused by a strain inheriting tet-gene of plasmid pBC16]. Antibiot. Khimioter. 37, 31–34.

    PubMed  CAS  Google Scholar 

  30. Stepanov, A. V., Marinin, L. I., Pomerantsev, A. P., and Staritsin, N. A. (1996) Development of novel vaccines against anthrax in man. J. Biotechnol. 44, 155–160.

    Article  PubMed  CAS  Google Scholar 

  31. Brook, I., Elliott, T., Pryor, H., et al. (2001) In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int. J. Antimicrob. Agents 18, 559–562.

    Article  PubMed  CAS  Google Scholar 

  32. Choe, C., Bouhaouala, S., Brook, I., Elliot, T., and Knudson, G. (2000) In vitro development of resistance to ofloxacin and doxycycline in Bacillus anthracis Sterne. Antimicrob. Agents Chemother. 44, 1766.

    Article  PubMed  CAS  Google Scholar 

  33. Stevens, D., Gibbons, A., Bergstrom, R., and Winn, V. (1988) The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J. Infect. Dis. 158, 23–28.

    PubMed  CAS  Google Scholar 

  34. Russell, N. and Pachorek, R. (2000) Clindamycin in the treatment of streptococcal and staphylococcal toxic shock syndromes. Ann. Pharmacother. 34, 936–939.

    Article  PubMed  CAS  Google Scholar 

  35. Stevens, D., Bryant, A., and Hackett, S. (1995) Antibiotic effects on bacterial viability, toxin production, and host response. Clin. Infect. Dis. 20(Suppl. 2), S154–157.

    PubMed  CAS  Google Scholar 

  36. Abramova, F. A., Grinberg, L. M., Yampolskaya, O. V., and Walker, D. H. (1993) Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc. Natl. Acad. Sci. USA 90, 2291–2294.

    Article  PubMed  CAS  Google Scholar 

  37. Hurewitz, A., Wu, C., Mancuso, P., and Zucker, S. (1993) Tetracycline and doxycycline inhibit pleural fluid metalloproteinases. A possible mechanism for chemical pleurodesis. Chest 103, 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  38. Loebstein, R., Addis, A., Ho, E., et al. Pregnancy outcome following gestational exposure to fluoroquinolones: a multicenter prospective controlled study. Antimicrob. Agents Chemother. 42, 1336–1339.

    Google Scholar 

  39. AAP (2003) Redbook: Report of the Committee on Infectious Diseases. 26th ed. Am. Acad. Peds., pp. 693–694.

    Google Scholar 

  40. Burkhardt, J., Walterspiel, J., and Schaad, U. (1997) Quinolone arthropathy in animals versus children. Clin. Infect. Dis. 25, 1196–1204.

    Article  PubMed  CAS  Google Scholar 

  41. Friedlander, A., Welkos, S., Pitt, M., et al. (1993) Postexposure prophylaxis against experimental inhalation anthrax. J. Infect. Dis. 167, 1239–1243.

    PubMed  CAS  Google Scholar 

  42. Henderson, D. W., Peacock, S., and Belton, F. C. (1956) Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J. Hyg. 54, 28–36.

    Article  CAS  Google Scholar 

  43. Kortepeter, M., Christopher, G., Cieslak, T., et al. (eds.) (2001) Medical Management of Biological Casualties Handbook. 4th ed. United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, p. 34.

    Google Scholar 

  44. King, A. (2001) Recommendations for susceptibility tests on fastidious organisms and those requiring special handling. J. Antimicrob. Chemother. 48(Suppl. 1), 77–80.

    PubMed  CAS  Google Scholar 

  45. Hall, W. H. (1990) Modern chemotherapy for brucellosis in humans. [see comments]. Rev. Infect. Dis. 12, 1060–1099.

    PubMed  CAS  Google Scholar 

  46. Mortensen, J. E., Moore, D. G., Clarridge, J. E., and Young, E. J. (1986) Antimicrobial susceptibility of clinical isolates of Brucella. Diag. Microbiol. Infect. Dis. 5, 163–169.

    Article  CAS  Google Scholar 

  47. Mateu-de-Antonio, E. and Martin, M. (1995) In vitro efficacy of several antimicrobial combinations against Brucella canis and Brucella melitensis strains isolated from dogs. Vet. Microbiol. 45, 1–10.

    Article  PubMed  CAS  Google Scholar 

  48. Bosch, J., Linares, J., Lopez de Goicoechea, M. J., Ariza, J., Cisnal, M. C., and Martin, R. (1986) In-vitro activity of ciprofloxacin, ceftriaxone and five other antimicrobial agents against 95 strains of Brucella melitensis. J. Antimicrob. Chemother. 17, 459–461.

    Article  PubMed  CAS  Google Scholar 

  49. Memish, Z., Mah, M. W., Al Mahmoud, S., Al Shaalan, M., and Khan, M. Y. (2000) Brucella bacteraemia: clinical and laboratory observations in 160 patients. J. Infect. 40, 59–63.

    Article  PubMed  CAS  Google Scholar 

  50. Trujillano-Martin, I., Garcia-Sanchez, E., Fresnadillo, M., Garcia-Sanchez, J., Garcia-Rodriguez, J., and Montes, M. I. (1999) In vitro activities of five new antimicrobial agents against Brucella melitensis. Int. J. Antimicrob. Agents 12, 185, 186.

    Article  PubMed  CAS  Google Scholar 

  51. Kinsara, A., Al-Mowallad, A., and Osoba, A. (1999) Increasing resistance of Brucellae to co-trimoxazole. Antimicrob. Agents Chemother. 43, 1531.

    PubMed  CAS  Google Scholar 

  52. Lubani, M. M., Dudin, K. I., Sharda, D. C., et al. (1989) A multicenter therapeutic study of 1100 children with brucellosis. Ped. Infect. Dis. J. 8, 75–78.

    Article  CAS  Google Scholar 

  53. Ariza, J., Bosch, J., Gudiol, F., Linares, J., Viladrich, P. F., and Martin, R. (1986) Relevance of in vitro antimicrobial susceptibility of Brucella melitensis to relapse rate in human brucellosis. Antimicrob. Agents Chemother. 30, 958–960.

    PubMed  CAS  Google Scholar 

  54. Landinez, R., Linares, J., Loza, E., Martinez-Beltran, J., Martin, R., and Baquero, F. (1992) In vitro activity of azithromycin and tetracycline against 358 clinical isolates of Brucella melitensis. Eur. J. Clin. Microbiol. Infect. Dis. 11, 265–267.

    Article  PubMed  CAS  Google Scholar 

  55. Rolain, J., Maurin, M., and Raoult, D. Bactericidal effect of antibiotics on Bartonella and Brucella spp.: clinical implications. J. Antimicrob. Chemother. 46, 811–814.

    Google Scholar 

  56. Trujillano-Martin, I., Garcia-Sanchez, E., Martinez, I., Fresnadillo, M., Garcia-Sanchez, J., and Garcia-Rodriguez, J. (1999) In vitro activities of six new fluoroquinolones against Brucella melitensis. Antimicrob. Agents Chemother. 43, 194, 195.

    PubMed  CAS  Google Scholar 

  57. Garcia-Rodriguez, J., Garcia, S. J., and Trujillano, I. (1991) Lack of effective bactericidal activity of new quinolones against Brucella spp. Antimicrob. Agents Chemother. 35, 756–759.

    PubMed  CAS  Google Scholar 

  58. Akova, M., Gur, D., Livermore, D., Kocagoz, T., and Akalin, H. (1999) In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. Antimicrob. Agents Chemother. 43, 1298–1300.

    PubMed  CAS  Google Scholar 

  59. Colmenero, J. D., Fernandez-Gallardo, L. C., Agundez, J. A., Sedeno, J., Benitez, J., and Valverde, E. (1994) Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob. Agents Chemother. 38, 2798–2802.

    PubMed  CAS  Google Scholar 

  60. Montejo, J. M., Alberola, I., Glez-Zarate, P., et al. (1993) Open, randomized therapeutic trial of six antimicrobial regimens in the treatment of human brucellosis. Clin. Infect. Dis. 16, 671–676.

    PubMed  CAS  Google Scholar 

  61. al-Sibai, M., Halim, M., el-Shaker, M., Khan, B., and Qadri, S. (1992) Efficacy of ciprofloxacin for treatment of Brucella melitensis infections. Antimicrob. Agents Chemother. 36, 150–152.

    PubMed  CAS  Google Scholar 

  62. Qadri, S. M., Akhtar, M., Ueno, Y., and al-Sibai, M. B. (1989) Susceptibility of Brucella melitensis to fluoroquinolones. Drugs Under Exp. Clin. Res. 15, 483–485.

    CAS  Google Scholar 

  63. (1986) Joint FAO/WHO expert committee on brucellosis. World Health Org. Tech. Rep. Ser. 740, 1–132.

    Google Scholar 

  64. Figueroa, D. R., Rojas, R. L., and Marcano, T. E. (1995) [Brucellosis in pregnancy: course and perinatal results]. Ginecol. Obstet. Mex. 63, 190–195.

    Google Scholar 

  65. Jacobs, F., Abramowicz, D., Vereerstraeten,.P, Le, C. J., Zech, F., and Thys, J. (1990) Brucella endocarditis: the role of combined medical and surgical treatment. Rev. Infect. Dis. 12, 740–744.

    PubMed  CAS  Google Scholar 

  66. Gorelov, V., Gubina, E., Grekova, N., and Skavronskaia, A. (1991) [The possibility of creating a vaccinal strain of Brucella abortus 19-BA with multiple antibiotic resistance]. Zh. Mikrobiol. Epidemiol. Immunobiol. 9, 2–4.

    PubMed  Google Scholar 

  67. Vasi’lev, N., Oborin, V., Vasi’lev, P., Glushkova, O., Kravets, I., and Levchuk, B. (1989) [Sensitivity spectrum of Francisella tularensis to antibiotics and synthetic antibacterial drugs]. Antibiot. Khimioter. 34, 662–665.

    CAS  Google Scholar 

  68. Kudelina, R. and Olsufiev, N. (1980) Sensitivity to macrolide antibiotics and lincomycin in Francisella tularensis holarctica. J. Hyg. Epidemiol. Microbiol. Immunol. 24, 84–91.

    PubMed  CAS  Google Scholar 

  69. Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R., and Koskela, M. (2000) In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 46, 287–290.

    Article  PubMed  CAS  Google Scholar 

  70. Scheel, O., Hoel, T., Sandvik, T., and Berdal, B. P. (1993) Susceptibility pattern of Scandinavian Francisella tularensis isolates with regard to oral and parenteral antimicrobial agents. APMIS 101, 33–36.

    Article  PubMed  CAS  Google Scholar 

  71. Maurin, M., Mersali, N., and Raoult, D. (2000) Bactericidal activities of antibiotics against intracellular Francisella tularensis. Antimicrob. Agents Chemother. 44, 3428–2431.

    Article  PubMed  CAS  Google Scholar 

  72. Baker, C., Hollis, D., and Thornsberry, C. (1985) Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller-Hinton broth. J. Clin. Microbiol. 22, 212–215.

    PubMed  CAS  Google Scholar 

  73. Tynkevich, N., Pavlovich, N., and Ryzhko, I. (1990) [Comparative study of the effectiveness of amikacin and streptomycin in experimental tularemia]. Antibiot. Khimioter. 35, 35–37.

    PubMed  CAS  Google Scholar 

  74. Enderlin, G., Morales, L., Jacobs, R. F., and Cross, J. T. (1994) Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin. Infect. Dis. 19, 42–47.

    PubMed  CAS  Google Scholar 

  75. Cross, J. T. and Jacobs, R. F. (1993) Tularemia: treatment failures with outpatient use of ceftriaxone. Clin. Infect. Dis. 17, 976–980.

    PubMed  CAS  Google Scholar 

  76. Syrjala, H., Schildt, R., and Raisainen, S. (1991) In vitro susceptibility of Francisella tularensis to fluoroquinolones and treatment of tularemia with norfloxacin and ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 10, 68–70.

    Article  PubMed  CAS  Google Scholar 

  77. Johansson, A., Berglund, L., Gothefors, L., Sjostedt, A., and Tarnvik, A. (2000) Ciprofloxacin for treatment of tularemia in children. Ped. Infect. Dis. J. 19, 449–453.

    Article  CAS  Google Scholar 

  78. Sawyer, W. D., Dangerfield, H. G., Hogge, A. L., and Crozier, D. (1966) Antibiotic prophylaxis and therapy of airborne tularemia. Bacteriol. Rev. 30, 542–550.

    PubMed  CAS  Google Scholar 

  79. Russell, P., Eley, S. M., Fulop, M. J., Bell, D. L., and Titball, R. W. (1998) The efficacy of ciprofloxacin and doxycycline against experimental tularaemia. J. Antimicrob. Chemother. 41, 461–465.

    Article  PubMed  CAS  Google Scholar 

  80. Dennis, D. T., Inglesby, T. V., Henderson, D. A., et al. (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285, 2763–2773.

    Article  PubMed  CAS  Google Scholar 

  81. Alibek, K. (1999) Biohazard. Random House, New York, pp. 157, 160.

    Google Scholar 

  82. Pavlov, V., Mokrievich, A., and Volkovoy, K. (1996) Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmid vectors for Francisella tularensis. FEMS Immunol. Med. Microbiol. 13, 253–256.

    Article  PubMed  CAS  Google Scholar 

  83. Kuoppa, K., Forsberg, A., and Norqvist, A. (2001) Construction of a reporter plasmid for screening in vivo promoter activity in Francisella tularensis. FEMS Microbiol. Lett. 205, 77–81.

    Article  PubMed  CAS  Google Scholar 

  84. Kenny, D. J., Russell, P., Rogers, D., Eley, S. M., and Titball, R. W. (1999) In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob. Agents Chemother. 43, 2773–2775.

    PubMed  CAS  Google Scholar 

  85. Heine, H. S., England, M. J., Waag, D. M., and Byrne, W. R. (2001) In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test. Antimicrob. Agents Chemother. 45, 2119–2121.

    Article  PubMed  CAS  Google Scholar 

  86. Al-Izzi, S. A. and Al-Bassam, L. S. (1989) In vitro susceptibility of Pseudomonas mallei to antimicrobial agents. Comp. Immunol. Microbiol. Infect. Dis. 12, 5–8.

    Article  PubMed  CAS  Google Scholar 

  87. Srinivasan, A., Kraus, C., De, S. D., et al. (2001) Glanders in a military research microbiologist. N. Engl. J. Med. 345, 256–258.

    Article  PubMed  CAS  Google Scholar 

  88. Russell, P., Eley, S., Ellis, J., et al. (2000) Comparison of efficacy of ciprofloxacin and doxycycline against experimental melioidosis and glanders. J. Antimicrob. Chemother. 45, 813–818.

    Article  PubMed  CAS  Google Scholar 

  89. Batmanov, V., Iliukhin, V., Lozovaia, N., and Iakovlev, A. (1996) [Recovery rate in chemotherapy of glanders]. Antibiot. Khimioter. 41, 30–34.

    PubMed  CAS  Google Scholar 

  90. Manzeniuk, I., Dorokhin, V., and Svetoch, E. (1994) [The efficacy of antibacterial preparations against Pseudomonas mallei in in-vitro and in-vivo experiments]. Antibiot. Khimioter. 39, 26–30.

    PubMed  CAS  Google Scholar 

  91. Eickhoff, T. C., Bennett, J. V., Hayes, P. S., and Feeley, J. (1970) Pseudomonas pseudomallei: susceptibility to chemotherapeutic agents. J. Infect. Dis. 121, 95–102.

    PubMed  CAS  Google Scholar 

  92. Kenny, D., Russell, P., Rogers, D., Eley, S., and Titball, R. (1999) In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob. Agents Chemother. 43, 2773–2775.

    PubMed  CAS  Google Scholar 

  93. Sookpranee, T., Sookpranee, M., Mellencamp, M. A., and Preheim, L. C. (1991) Pseudomonas pseudomallei, a common pathogen in Thailand that is resistant to the bactericidal effects of many antibiotics. Antimicrob. Agents Chemother. 35, 484–489.

    PubMed  CAS  Google Scholar 

  94. Dance, D. A., Wuthiekanun, V., Chaowagul, W., and White, N. J. (1989) The antimicrobial susceptibility of Pseudomonas pseudomallei. Emergence of resistance in vitro and during treatment. J. Antimicrob. Chemother. 24, 295–309.

    Article  PubMed  CAS  Google Scholar 

  95. Cheong, Y. M., Joseph, P. G., and Koay, A. S. (1987) In-vitro susceptibility of Pseudomonas pseudomallei isolated in Malaysia to some new cephalosporins and a quinolone. SE Asian J. Trop. Med. Public Health 18, 94–96.

    CAS  Google Scholar 

  96. McEniry, D. W., Gillespie, S. H., and Felmingham, D. (1988) Susceptibility of Pseudomonas pseudomallei to new β-lactam and aminoglycoside antibiotics. J. Antimicrob. Chemother. 21, 171–175.

    Article  PubMed  CAS  Google Scholar 

  97. Jenney, A. W., Lum, G., Fisher, D. A., and Currie, B. J. (2001) Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int. J. Antimicrob. Agents 17, 109–113.

    Article  PubMed  CAS  Google Scholar 

  98. Koay, A. S., Rohani, M. Y., and Cheong, Y. M. (1997) In-vitro susceptibility of Burkholderia pseudomallei to cefoperazone-sulbactam combination. Med. J. Malaysia 52, 158–160.

    PubMed  CAS  Google Scholar 

  99. Moore, R. A., DeShazer, D., Reckseidler, S., Weissman, A., and Woods, D. E. (1999) Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. [see comments]. Antimicrob. Agents Chemother. 43, 465–470.

    PubMed  CAS  Google Scholar 

  100. Godfrey, A. J., Wong, S., Dance, D. A., Chaowagul, W., and Bryan, L. E. (1991) Pseudomonas pseudomallei resistance to β-lactam antibiotics due to alterations in the chromosomally encoded β-lactamase. Antimicrob. Agents Chemother. 35, 1635–1640.

    PubMed  CAS  Google Scholar 

  101. Lumbiganon, P., Tattawasatra, U., Chetchotisakd, P., Wongratanacheewin, S., and Thinkhamrop, B. (2000) Comparison between the antimicrobial susceptibility of Burkholderia pseudomallei to trimethoprim-sulfamethoxazole by standard disk diffusion method and by minimal inhibitory concentration determination. J. Med. Assoc. Thailand 83, 856–860.

    CAS  Google Scholar 

  102. White, N. J., Dance, D. A., Chaowagul, W., Wattanagoon, Y., Wuthiekanun, V., and Pitakwatchara, N. (1989) Halving of mortality of severe melioidosis by ceftazidime. [see comments]. Lancet 2, 697–701.

    Article  PubMed  CAS  Google Scholar 

  103. Suputtamongkol, Y., Rajchanuwong, A., Chaowagul, W., et al. (1994) Ceftazidime vs. amoxicillin/clavulanate in the treatment of severe melioidosis. Clin. Infect. Dis. 19, 846–853.

    PubMed  CAS  Google Scholar 

  104. Chetchotisakd, P., Porramatikul, S., Mootsikapun, P., Anunnatsiri, S., and Thinkhamrop, B. (2001) Randomized, double-blind, controlled study of cefoperazone-sulbactam plus cotrimoxazole versus ceftazidime plus cotrimoxazole for the treatment of severe melioidosis. Clin. Infect. Dis. 33, 29–34.

    Article  PubMed  CAS  Google Scholar 

  105. Currie, B., Fisher, D., Howard, D., et al. (2000) Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin. Infect. Dis. 31, 981–986.

    Article  PubMed  CAS  Google Scholar 

  106. Stephens, D., Fisher, D., and Currie, B. (2002) An audit of the use of granulocyte colony-stimulating factor in septic shock [in process citation]. Intern. Med. J. 32, 143–148

    Article  PubMed  CAS  Google Scholar 

  107. Rajchanuvong, A., Chaowagul, W., Suputtamongkol, Y., Smith, M. D., Dance, D. A., and White, N. J. (1995) A prospective comparison of co-amoxiclav and the combination of chloramphenicol, doxycycline, and co-trimoxazole for the oral maintenance treatment of melioidosis. Trans. Royal Soc. Trop. Med. Hyg. 89, 546–549.

    Article  CAS  Google Scholar 

  108. Chetchotisakd, P., Chaowagul, W., Mootsikapun, P., Budhsarawong, D., and Thinkamrop, B. (2001) Maintenance therapy of melioidosis with ciprofloxacin plus azithromycin compared with cotrimoxazole plus doxycycline. Am. J. Trop. Med. Hyg. 64, 24–27.

    PubMed  CAS  Google Scholar 

  109. Samuel, M. and Ti, T. (2001) Interventions for treating melioidosis. Cochrane Database Sys. Rev. CD001263.

    Google Scholar 

  110. Apisarnthanarak, A. and Little, J. (2002) The role of cefoperazone-sulbactam for treatment of severe melioidosis. Clin. Infect. Dis. 34, 721–723.

    Article  PubMed  Google Scholar 

  111. Simpson, A., Suputtamongkol, Y., Smith, M., et al. (1999) Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin. Infect. Dis. 29, 381–387.

    Article  PubMed  CAS  Google Scholar 

  112. Currie, B. J., Fisher, D. A., Anstey, N. M., and Jacups, S. P. (2000) Melioidosis: acute and chronic disease, relapse and re-activation. Trans. Royal Soc. Trop. Med. Hyg. 94, 301–304.

    Article  CAS  Google Scholar 

  113. Chanteau, S., Ratsitorahina, M., Rahalison, L., et al. (2000) Current epidemiology of human plague in Madagascar. Microb. Infect. 2, 25–31.

    Article  CAS  Google Scholar 

  114. Frean, J. A., Arntzen, L., Capper, T., Bryskier, A., and Klugman, K. P. (1996) In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus. Antimicrob. Agents Chemother. 40, 2646, 2647.

    PubMed  CAS  Google Scholar 

  115. Lyamuya, E. F., Nyanda, P., Mohammedali, H., and Mhalu, F. S. (1992) Laboratory studies on Yersinia pestis during the 1991 outbreak of plague in Lushoto, Tanzania. J. Trop. Med. Hyg. 95, 335–338.

    PubMed  CAS  Google Scholar 

  116. Smith, M. D., Vinh, D. X., Nguyen, T. T., Wain, J., Thung, D., and White, N. J. (1995) In vitro antimicrobial susceptibilities of strains of Yersinia pestis. Antimicrob. Agents Chemother. 39, 2153, 2154.

    PubMed  CAS  Google Scholar 

  117. Rasoamanana, B., Coulanges, P., Michel, P., and Rasolofonirina, N. (1989) Sensibilite de Yersinia pestis aux antibiotiques: 277 souches isolees a Madagascar entre 1926 et 1989. Archives de l Institut Pasteur de Madagascar 56, 37–53.

    PubMed  CAS  Google Scholar 

  118. Galenko, G., Akiev, A., and Tarasova, V. (1992) [Antibiotic sensitivity of plague microbe strains from foreign countries]. Antibiot. Khimioter. 37, 23, 24.

    PubMed  CAS  Google Scholar 

  119. Heine, H. (2002) In Unpublished data, Y. pestis MIC Data. (J. B. W., ed.), Fort Detrick, MD.

    Google Scholar 

  120. Galimand, M., Guiyoule, A., Gerbaud, G., et al. (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N. Engl. J. Med. 337, 677–680.

    Article  PubMed  CAS  Google Scholar 

  121. Guiyoule, A., Gerbaud, G., Buchrieser, C., et al. (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg. Infect. Dis. 7, 43–48.

    Article  PubMed  CAS  Google Scholar 

  122. (1994) Human plague—United States, 1993–1994. MMWR Morb. Mortal. Wkly. Rep. 43, 242–246.

    Google Scholar 

  123. Welty, T., Grabman, J., Kompare, E., et al. (1985) Nineteen cases of plague in Arizona. A spectrum including ecthyma gangrenosum due to plague and plague in pregnancy. W. J. Med. 142, 641–646.

    CAS  Google Scholar 

  124. Byrne, W. R., Welkos, S. L., Pitt, M. L., et al. (1998) Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob. Agents Chemother. 42, 675–681.

    Article  PubMed  CAS  Google Scholar 

  125. Inglesby, T., Dennis, D., Henderson, D., et al. (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 283, 2281–2290.

    Article  PubMed  CAS  Google Scholar 

  126. Crook, L. D. and Tempest, B. (1992) Plague. A clinical review of 27 cases. Arch. Int. Med. 152, 1253–1256.

    Article  CAS  Google Scholar 

  127. Russell, P., Eley, S. M., Green, M., et al. (1998) Efficacy of doxycycline and ciprofloxacin against experimental Yersinia pestis infection. [see comments]. J. Antimicrob. Chemother. 41, 301–305.

    Article  PubMed  CAS  Google Scholar 

  128. Bonacorsi, S. P., Scavizzi, M. R., Guiyoule, A., Amouroux, J. H., and Carniel, E. (1994) Assessment of a fluoroquinolone, three beta-lactams, two aminoglycosides, and a cycline in treatment of murine Yersinia pestis infection. [erratum appears in Antimicrob. Agents Chemother. (1994) 38(7), 1694]. Antimicrob. Agents Chemother. 38, 481–486.

    PubMed  CAS  Google Scholar 

  129. Ryzhko, I., Shcherbaniuk, A., Tsuraeva, R., et al. (1997) [A comparative study of fluoroquinolones and 3rd-generation cephalosporins in the prevention and treatment of experimental plague caused by Yersinia pestis strains typical and serologically atypical with respect to F1]. Antibiot. Khimioter. 42, 12–16.

    PubMed  CAS  Google Scholar 

  130. Ryzhko, I., Samokhodkina, E., Tsuraeva, R., Shcherbaniuk, A., and Pasiukov, V. [Experimental evaluation of prospects for the use of β-lactams in plague infection caused by pathogens with plasmid resistance to penicillins]. Antibiot. Khimioter. 43, 11–15.

    Google Scholar 

  131. Becker, T. M., Poland, J. D., Quan, T. J., White, M. E., Mann, J. M., and Barnes, A. M. (1987) Plague meningitis—a retrospective analysis of cases reported in the United States, 1970–1979. W. J. Med. 147, 554–557.

    CAS  Google Scholar 

  132. Ryzhko, I., Shcherbaniuk, A., Samokhodkina, E., et al. (1994) [Virulence of rifampicin and quinolone resistant mutants of strains of plague microbe with Fra+ and Fra− phenotypes]. Antibiot. Khimioter. 39, 32–36.

    PubMed  CAS  Google Scholar 

  133. Yeaman, M. R. and Baca, O. G. (1991) Mechanisms that may account for differential antibiotic susceptibilities among Coxiella burnetii isolates. Antimicrob. Agents Chemother. 35, 948–954.

    PubMed  CAS  Google Scholar 

  134. Raoult, D., Torres, H., and Drancourt, M. (1991) Shell-vial assay: evaluation of a new technique for determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii. Antimicrob. Agents Chemother. 35, 2070–2077.

    PubMed  CAS  Google Scholar 

  135. Yeaman, M. R and Baca, O. G. (1990) Unexpected antibiotic susceptibility of a chronic isolate of Coxiella burnetii. Ann. NY Acad. Sci. 590, 297–305.

    Article  PubMed  CAS  Google Scholar 

  136. Yeaman, M. R,. Mitscher, L. A., and Baca, O. G. (1987) In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob. Agents Chemother. 31, 1079–1084.

    PubMed  CAS  Google Scholar 

  137. Gikas, A., Spyridaki, I., Psaroulaki, A., Kofterithis, D., and Tselentis, Y. (1998) In vitro susceptibility of Coxiella burnetii to trovafloxacin in comparison with susceptibilities to pefloxacin, ciprofloxacin, ofloxacin, doxycycline, and clarithromycin. Antimicrob. Agents Chemother. 42, 2747, 2748.

    PubMed  CAS  Google Scholar 

  138. Rolain, J., Maurin, M., and Raoult, D. (2001) Bacteriostatic and bactericidal activities of moxifloxacin against Coxiella burnetii. Antimicrob. Agents Chemother. 45, 301, 302.

    Article  PubMed  CAS  Google Scholar 

  139. Maurin, M. and Raoult, D. (1997) Bacteriostatic and bactericidal activity of levofloxacin against Rickettsia rickettsii, Rickettsia conorii, ‘Israeli spotted fever group rickettsia’ and Coxiella burnetii. J. Antimicrob. Chemother. 39, 725–730.

    Article  PubMed  CAS  Google Scholar 

  140. Keysary, A., Itzhaki, A., Rubinstein, E., Oron, C., and Keren, G. (1996) The in-vitro anti-rickettsial activity of macrolides. J. Antimicrob. Chemother. 38, 727–731.

    Article  PubMed  CAS  Google Scholar 

  141. Maurin, M. and Raoult, D. (1993) In vitro susceptibilities of spotted fever group rickettsiae and Coxiella burnetti to clarithromycin. Antimicrob. Agents Chemother. 37, 2633–2637.

    PubMed  CAS  Google Scholar 

  142. Yeaman, M. R., Roman, M. J., and Baca, O. G. (1989) Antibiotic susceptibilities of two Coxiella burnetii isolates implicated in distinct clinical syndromes. Antimicrob. Agents Chemother. 33, 1052–1057.

    PubMed  CAS  Google Scholar 

  143. Maurin, M., Benoliel, A. M., Bongrand, P., and Raoult, D. (1992) Phagolysosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm. J. Infect. Dis. 166, 1097–1102.

    PubMed  CAS  Google Scholar 

  144. Gikas, A., Kofteridis, D., Manios, A., Pediaditis, J., and Tselentis, Y. (2001) Newer macrolides as empiric treatment for acute Q fever infection. Antimicrob. Agents Chemother. 45, 3644–3646.

    Article  PubMed  CAS  Google Scholar 

  145. Perez-del-Molino, A., Aguado, J. M., Riancho, J. A., Sampedro, I., Matorras, P., and Gonzalez-Macias, J. (1991) Erythromycin and the treatment of Coxiella burnetii pneumonia. J. Antimicrob. Chemother. 28, 455–459.

    Article  PubMed  CAS  Google Scholar 

  146. Bertrand, A., Janbon, F., Jonquet, O., and Reynes, J. (1988) [Rickettsiaceae infections and fluoroquinolones]. Pathol. Biol. (Paris) 36, 493–495.

    CAS  Google Scholar 

  147. Maurin, M. and Raoult, D. (1999) Q fever. Clin. Microbiol. Rev. 12, 518–553.

    PubMed  CAS  Google Scholar 

  148. Drancourt, M., Raoult, D., Xeridat, B., Milandre, L., Nesri, M., and Dano, P. (1991) Q fever meningoencephalitis in five patients. Eur. J. Epidemiol. 7, 134–138.

    Article  PubMed  CAS  Google Scholar 

  149. Fenollar, F., Fournier, P., Carrieri, M., Habib, G., Messana, T., and Raoult, D. Risks factors and prevention of Q fever endocarditis. Clin. Infect. Dis. 33, 312–316.

    Google Scholar 

  150. Raoult, D., Fenollar, F., and Stein, A. (2002) Q fever during pregnancy: diagnosis, treatment, and follow-up. Arch. Intern. Med. 162, 701–704.

    Article  PubMed  Google Scholar 

  151. Raoult, D. and Stein, A. (1994) Q fever during pregnancy—a risk for women, fetuses, and obstetricians. N. Engl. J. Med. 330, 371.

    Article  Google Scholar 

  152. Levy, P. Y., Drancourt, M., Etienne, J., et al. (1991) Comparison of different antibiotic regimens for therapy of 32 cases of Q fever endocarditis. Antimicrob. Agents Chemother. 35, 533–537.

    PubMed  CAS  Google Scholar 

  153. Raoult, D., Houpikian, P., Tissot Dupont, H., Riss, J. M., Arditi-Djiane, J., and Brouqui, P. (1999) Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch. Int. Med. 159, 167–173.

    Article  CAS  Google Scholar 

  154. Raoult, D. (1993) Treatment of Q fever. Antimicrob. Agents Chemother. 37, 1733–1736.

    PubMed  CAS  Google Scholar 

  155. Tigertt, W. D. and Benenson, A. S. (1956) Studies on Q fever in man. Trans. Assoc. Am. Phys. 69, 98–104.

    PubMed  Google Scholar 

  156. Canonico, P. G., Kende, M., Luscri, B. J., and Huggins, J. W. (1984) In-vivo activity of antivirals against exotic RNA viral infections. J. Antimicrob. Chemother. 14(Suppl A), 27–41.

    PubMed  CAS  Google Scholar 

  157. Lukaszewski, R. and Brooks, T. (2000) Pegylated alpha interferon is an effective treatment for virulent venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J. Virol. 74, 5006–5015.

    Article  PubMed  CAS  Google Scholar 

  158. McCormick, J., King, I., Webb, P., et al. (1986) Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26.

    Article  PubMed  CAS  Google Scholar 

  159. Enria, D. A., Briggiler, A. M., Levis, S., Vallejos, D., Maiztegui, J. I., and Canonico, P. G. (1987) Tolerance and antiviral effect of ribavirin in patients with Argentine hemorrhagic fever. Antivir. Res. 7, 353–359.

    Article  PubMed  CAS  Google Scholar 

  160. Enria, D. A. and Maiztegui, J. I. (1994) Antiviral treatment of Argentine hemorrhagic fever. Antivir. Res. 23, 23–31.

    Article  PubMed  CAS  Google Scholar 

  161. Kilgore, P. E., Ksiazek, T. G., Rollin, P. E., et al. (1997) Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin. Infect. Dis. 24, 718–722.

    PubMed  CAS  Google Scholar 

  162. Fisher-Hoch, S., Khan, J., Rehman, S., Mirza, S., Khurshid, M., and McCormick, J. (1995) Crimean Congo-haemorrhagic fever treated with oral ribavirin. Lancet 346, 472–475.

    Article  PubMed  CAS  Google Scholar 

  163. Kende, M., Lupton, H., Rill, W., Levy, H., and Canonico, P. (1987) Enhanced therapeutic efficacy of poly(ICLC) and ribavirin combinations against Rift Valley fever virus infection in mice. Antimicrob. Agents Chemother. 31, 986–990.

    PubMed  CAS  Google Scholar 

  164. Yang, Z. Q., Zhang, T. M., Zhang, M. V., et al. (1991) Interruption study of viremia of patients with hemorrhagic fever with renal syndrome in the febrile phase. Chin. Med. J. 104, 149–153.

    PubMed  CAS  Google Scholar 

  165. Mertz, G. J., Hjelle, B. L., and Bryan, R. T. (1997) Hantavirus infection. Adv. Int. Med. 42, 369–421.

    CAS  Google Scholar 

  166. Huggins, J. (1989) Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev. Infect. Dis. 11(Suppl. 4), S750–761.

    PubMed  CAS  Google Scholar 

  167. Bray, M., Driscoll, J., and Huggins, J. W. (2000) Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor. Antivir. Res. 45, 135–147.

    Article  PubMed  CAS  Google Scholar 

  168. Huggins, J., Zhang, Z. X., and Bray, M. (1999) Antiviral drug therapy of filovirus infections: S-adenosylhomocysteine hydrolase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model. J. Infect. Dis. 179(Suppl. 1), S240–247.

    Article  PubMed  CAS  Google Scholar 

  169. Borio, L., Inglesby, T., Peters, C., et al. (2002) Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287, 2391–2405.

    Article  PubMed  Google Scholar 

  170. De Clercq, E. (2001) Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections. Clin. Microbiol. Rev. 14, 382–397.

    Article  PubMed  Google Scholar 

  171. Bray, M., Martinez, M., Kefauver, D., West, M., and Roy, C. (2002) Treatment of aerosolized cowpox virus infection in mice with aerosolized cidofovir. Antivir. Res. 54, 129–142.

    Article  PubMed  CAS  Google Scholar 

  172. Bauer, D. (1965) Clinical experience with the antiviral drug marboran (1-methylisatin 3-thiosemicarbazone). Ann. NY Acad. Sci. 130, 110–117.

    Article  PubMed  CAS  Google Scholar 

  173. Koplan, J. P., Monsur, K. A., Foster, S. O., et al. (1975) Treatment of Variola major with adenine arabinoside. J. Infect. Dis. 131, 34–39.

    PubMed  CAS  Google Scholar 

  174. Monsur, K., Hossain, M., Huq, F., Rahaman, M., and Haque, M. (1975) Treatment of Variola major with cytosine arabinoside. J. Infect. Dis. 131, 40–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Woods, J.B. (2005). Antimicrobials for Biological Warfare Agents. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:285

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:285

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics