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A K3 surface is a connected compact 2-dimensional com-
plex manifold that is simply connected and whose canon-
ical line bundle is trivial. Given this definition, it looks
like a rather special class of objects. Why should one
be interested in them and even read a whole book about
them?

Since the 19th century, K3 surfaces showed up in
many very different contexts in complex geometry, alge-
braic geometry, arithmetic geometry, and they continue
to show up in sometimes quite surprising and unexpected
places, such as in spacetime compactifications in mathe-
matical physics. As such, K3 surfaces connect very dif-

ferent fields and provide stimulation for conjectures and further research. From a
modern perspective, they form an important part of the so-called Enriques-Kodaira
classification of compact 2-dimensional complex manifolds. They are non-trivial, yet
still accessible, which is why they are also an important test class for conjectures.
Their name goes back to André Weil (1958):

... il s’agit des variétés kählériennes dites K3, ainsi nommées en l’honneur de
Kummer, Kähler, Kodaira et de la belle montagne K2 au Cachemire.

To have an explicit example at hand, we note that the Fermat quartic F4

x4 + y4 + z4 + w4 = 0

in complex projective 3-space P3 is an example of a K3 surface. Due to length re-
strictions, I will only discuss the complex analytic side of K3 surfaces, that is, I
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cannot delve into arithmetic aspects, such as K3 surfaces over number fields or func-
tion fields or K3 surfaces in positive characteristic. More precisely, I will now give a
guided tour through the field of K3 surfaces with an emphasis on Shigeyuki Kondō’s
book [6].

Kummer. We start in the 19th century: let C be a smooth complex projective curve,
or, equivalently, a compact 1-dimensional complex manifold, or, equivalently, a com-
pact Riemann surface. Assume that C is of genus 2. Associated to C, there is its
Jacobian J (C), which is a 2-dimensional complex manifold that parametrises degree
zero line bundles on C. Tensor product of line bundles turns J (C) into an abelian
group. More precisely, J (C) is a compact 2-dimensional complex torus and even al-
gebraisable, that is, an abelian variety. The quotient J (C)/± of J (C) by the sign
involution x �→ −x is a 2-dimensional complex variety: it is not smooth, that is, it
is not a manifold, since the 16 fixed points of the sign involution on J (C) give rise
to 16 singularities (rational double points of type A1) in the quotient J (C)/±. Us-
ing the geometry of C, in particular the hyperelliptic involution, theta divisors, and
clever observations, one can embed this quotient J (C)/± into 3-dimensional projec-
tive space P3 as a quartic surface, the Kummer surface associated to C. The minimal
resolution of the 16 singularities is an example of a K3 surface. In fact, the Fermat
quartic surface F4 is isomorphic to such a surface, but this is not obvious. For details
and explicit equations, see Chap. 4 of [6]. Many examples, techniques, and theorems
in Kondō’s book are illustrated using Kummer surfaces.

Kähler. A compact complex manifold X is said to be Kähler if it admits a real
closed 2-form of type (1,1), that is, a Kähler form. The Fubini-Study metric makes
complex projective space Pd a Kähler manifold. In particular, every compact com-
plex submanifold of Pd becomes a Kähler manifold by restricting the Kähler form
of the ambient space. Also, every K3 surface (even a non-algebraic one) is a Kähler
manifold by a theorem of Yum-Tong Siu (1983). Moreover, by a theorem of Shing-
Tung Yau (1978) (a former conjecture of Eugenio Calabi from 1957), a K3 surface
even admits a Kähler-Einstein metric. For K3 surfaces, Kähler-Einstein metrics have
Ricci curvature zero. For background on Kähler manifolds and a proof of Yau’s the-
orem, I would like to mention [1].

Quite generally, compact complex manifolds that are Kähler-Einstein with zero
Ricci curvature are called Calabi-Yau manifolds. Important examples are compact
complex tori, in particular abelian varieties, and in particular, elliptic curves. In these
cases, it is easy to write down an explicit Kähler-Einstein metric. For K3 surfaces,
such metrics have not yet been constructed explicitly. We note that Calabi-Yau mani-
folds play a central rôle in superstring theory in mathematical and theoretical physics,
where there are 6 real extra dimensions of spacetime, which carry the structure of 3-
dimensional complex Calabi-Yau manifolds. Since K3 surfaces are 2-dimensional
Calabi-Yau manifolds, they are an important test ground for such theories.

Kodaira. Smooth and projective algebraic curves, that is, compact 1-dimensional
complex manifolds, that is, compact Riemann surfaces are classified according to
their genus. A major achievement of the Italian school in algebraic geometry in the
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first half of the 20th century was the classification of complex projective algebraic
surfaces. Later, this classification was extended to compact complex 2-dimensional
manifolds, which now goes under the name Kodaira-Enriques classification. It clas-
sifies surfaces according to their Kodaira dimension κ ∈ {−∞,0,1,2}. More pre-
cisely, let ωX be the canonical line bundle, that is, the determinant of the cotangent
bundle. Let pm(X) := dimH 0(X,ω⊗m

X ) be the dimension of the space of pluricanon-
ical forms. Then, either pm(X) = 0 for all m > 0 (Kodaira dimension κ := −∞) or it
grows like mκ for some κ ∈ {0, . . . ,dim(X)} as m tends to infinity. For background
in dimension 2, I would like to mention the by-now classic textbook [2].

A particular interesting case is Kodaira dimension zero, which means that the line
bundle ω⊗m

X is trivial for some m > 0. In dimension 1, these are precisely curves of
genus 1, that is, elliptic curves. These are characterised by carrying the structure of a
group and projectivity forces the group law to be abelian. In dimension 2, there are
four classes: tori (which are abelian surfaces if algebraisable and the most ‘obvious’
generalisation of elliptic curves to dimension 2), bielliptic surfaces (quotients of the
former by finite group actions), and then, there are two more classes, which is quite
remarkable: K3 surfaces and Enriques surfaces (quotients of the former by the finite
group of order 2). In particular, one might think of the latter as the ‘unexpected’
generalisation of elliptic curves to dimension 2. This is discussed in Chap. 3 of [6].

Some - but by no means all - K3 surfaces are quite directly related to elliptic
curves: a K3 surface is called elliptic if it admits a fibration X to a curve. In this case,
the base curve is necessarily P1 and a general fibre of such a fibration is an elliptic
curve, so that one may think of X as a 1-dimensional family of elliptic curves. The
Fermat quartic surface F4 ⊂ P3 is an example: it contains 48 lines and if � ⊂ P3 is
such a line and if H ⊂ P3 is a plane containing �, then H ∩F4 is the union of � and a
curve of degree 3 in H ∼= P2. Varying H , but keeping �, we obtain a family of degree
3 curves on F4, which can be put into a fibration. The general member of this family
is smooth, that is, an elliptic curve: the pencil of planes through � cuts out an elliptic
fibration on F4. Elliptic K3 surfaces are quite accessible for explicit computations,
see Chap. 3 of [6]. In this context, I would also like to mention the recent book [7] on
elliptic surfaces.

Torelli. Given a K3 surface X, there is the second cohomology group �X :=
H 2(X,Z). Poincaré duality equips it with a symmetric non-degenerate and bilin-
ear pairing. This makes �X an even unimodular lattice of rank 22, which is isometric
to U3 ⊥ E2

8 , where U denotes the hyperbolic plane and E8 denotes the E8-lattice.
Next, there is the Hodge decomposition

�X ⊗Z C ∼= H 2(X,C) ∼= H 2(X,OX) ⊕ H 1(X,�1
X) ⊕ H 0(X,�2

X)

Since the canonical line bundle is trivial, there is a unique (up to scaling) holomor-
phic 2-form ω ∈ H 0(X,�2

X) and under the Hodge decomposition it gives rise to an
element in �X ⊗Z C. We note that ω2 = 0 and ω · ω̄ > 0. Thus, associated to X,
one has the data of a lattice �X and an element in �X ⊗Z C. Roughly speaking, the
Torelli theorems for K3 surfaces state that a K3 surface is uniquely determined by
this (bi-)linear algebra data. These theorems are a central topic of Kondō’s book [6].
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The period domain for K3 surfaces is

� := {ω ∈ P(� ⊗Z C) : ω · ω = 0, ω · ω > 0} ,

where � := U3 ⊥ E2
8 as above. We note that � is a bounded symmetric domain of

type IV. A K3 surface X defines a point φ(X) ∈ � by associating to X the (bi)-linear
algebra data just defined. φ is called the period map and the local Torelli theorem
states that φ identifies the Kuranishi space, that is, the local deformation space of X,
with a small neighbourhood of φ(X) in �. From there, one studies the surjectivity
of φ and establishes a global Torelli theorem. Understanding the situation for K3
surfaces of Kummer type is an important step in the proofs. These results are due
to Ilya Piatetski-Shapiro and Igor Shafarevich (1971) and Dan Burns and Michael
Rapoport (1975). The proof of these results takes up Chaps. 5, 6, and 7 in [6] and the
background in lattice theory and reflection groups is discussed in Chaps. 1 and 2 of
[6]. In particular, the Torelli theorem including a complete proof takes up a large part
of this book.

Mathieu. An important application of the Torelli theorem is that it translates the
study of the automorphism group Aut(X) of a K3 surface X into questions about
isometries of the lattice �X . For example, if X has Picard rank one (which holds
true for a very general algebraic K3 surface), then Aut(X) must be trivial. On the
other extreme, there exist K3 surfaces with infinite Aut(X). In any case, Aut(X) is
discrete. To give a non-trivial example, we note that for the Fermat quartic surface F4,
permutation of the four variables x, y, z,w gives rise to an action of the symmetric
group S4 on this surface and thus, S4 ⊂ Aut(F4), see also Example 8.20 of [6]. For
details, see Chap. 11 of [6].

In Chap. 12 of [6], the automorphism groups of K3 surfaces of Kummer type are
studied in detail: here, the Leech lattice, a certain 24-dimensional unimodular and
even lattice that was discovered by John Leech in 1967, plays a rôle. For explicit
realisations of such automorphisms, one can use Cremona transformations of P3

(certain birational and rational self-maps introduced by Luigi Cremona in the 1860’s)
that induce birational automorphisms on quartic surfaces in P3.

A completely surprising result is the following theorem of Shigeru Mukai (1988):
let M23 be the Mathieu group of degree 23, which is a finite simple sporadic group of
order 10,200,960. One can realise M23 as a permutation group acting on a set � of
order 23. Given a finite group G, there exists a K3 surface X with a faithful G-action
and such that G acts trivially on H 0(X,�X) (such actions are called symplectic) if
and only if G can be embedded into M23, such that its order of orbits on � is greater
than or equal to 5. The question whether this is more of a coincidence, whether there
is a deeper reason, and what precisely the rôle of M23 is in this context (note that
M23 itself does not occur as automorphism group of a K3 surface!), is still subject to
current research. For details, see Chap. 11 of [6].

Enriques. Given a K3 surface X and a fixed point free involution ı on it, the quo-
tient X/ı is a compact complex 2-dimensional manifold that is called an Enriques
surface. Federigo Enriques (1896) constructed the first examples of such surfaces in
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order to obtain counter-examples to a question of Guido Castelnuovo about a coho-
mological characterisation of rational surfaces. (This led Castelnuovo to the ‘correct’
cohomological rationality criterion and such a criterion in dimension at least three is
still unknown.) Using the K3 double cover of an Enriques surface, one can construct
period maps, establish Torelli theorems, and study their automorphism groups, which
leads to a theory that is parallel to that of K3 surfaces. This is discussed in Chap. 9 of
[6]. I would also like to mention the forthcoming books [3, 4] on Enriques surfaces.

Kondō. In Chap. 10 of [6], an application to moduli spaces of curves is given:
let f (x, y,w) be a homogenous quartic, such that f (x, y, z) = 0 defines a smooth
complex curve C of degree 4 in P2. Then, z4 − f (x, y,w) = 0 is a K3 surface in P3.
This gives rise to an interesting interplay between plane curves of degree 4 and certain
K3 surfaces. As an application, Shigeyuki Kondō (2000) showed that the moduli
space of non-hyperelliptic curves of genus 3 is a 6-dimension complex ball quotient.

Summing up, Shigeyuki Kondō’s book treats the complex analytic side of K3 sur-
faces with an emphasis on the Torelli theorem, on automorphism groups, and on
special classes of K3 surfaces. It does not try to cover as many topics as possible,
but rather discusses the chosen topics - especially the Torelli theorems - in detail and
including proofs. For a different perspective on this subject, I would like to mention
the recent book by Daniel Huybrechts [5], which also focuses on K3 surfaces over the
complex numbers, but which treats slightly different topics, such as the Kuga-Satake
correspondence, moduli spaces of sheaves, derived categories, rational curves, and
Brauer groups.
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