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Abstract. Chronic obstructive pulmonary disease (COPD) is a progressive lung disease
with approximately 174 million cases worldwide. Electronic questionnaires are increasingly
used for collecting patient-reported-outcome (PRO) data about disease symptoms. Our aim
was to leverage PRO data, collected to record COPD disease symptoms, in a general
modelling framework to enable interpretation of PRO observations in relation to disease
progression and potential to predict exacerbations. The data were collected daily over a year,
in a prospective, observational study. The e-questionnaire, the EXAcerbations of COPD
Tool (EXACT®) included 14 items (i.e. questions) with 4 or 5 ordered categorical response
options. An item response theory (IRT) model was used to relate the responses from each
item to the underlying latent variable (which we refer to as disease severity), and on each
item level, Markov models (MM) with 4 or 5 categories were applied to describe the
dependence between consecutive observations. Minimal continuous time MMs were used
and parameterised using ordinary differential equations. One hundred twenty-seven COPD
patients were included (median age 67 years, 54% male, 39% current smokers), providing
approximately 40,000 observations per EXACT® item. The final model suggested that, with
time, patients more often reported the same scores as the previous day, i.e. the scores were
more stable. The modelled COPD disease severity change over time varied markedly
between subjects, but was small in the typical individual. This is the first IRT model with
Markovian properties; our analysis proved them necessary for predicting symptom-defined
exacerbations.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is an
inflammatory disease of the lung, characterised by airflow
obstruction that progresses with time. The most important
risk factor associated with COPD is considered smoking, but
risk factors also include other exposures (e.g. air pollution,
occupational dusts and chemicals) and host factors, such as
α1-antitrypsin deficiency (1). COPD is associated with
emphysema and mucus hypersecretion, and its progression
is punctuated with acute periods of a temporary increase in

symptoms, also called exacerbations (2,3).Historically, exac-
erbations are defined by a clinic visit or hospitalisation with
medical treatment (clinically confirmed); however, recently,
questionnaires have been validated as useful for symptom-
defined exacerbations (4–6). Exacerbations contribute to an
accelerated decline of pulmonary function, higher risk of
cardiovascular events (7) and worse quality of life (8) and are
a major cause of COPD-related hospital admissions, morbid-
ity and mortality; therefore, also increasing healthcare costs.
Approximately 174 million people had COPD in 2015 (9),
and around three million die from it every year (10). The
disease burden of COPD is third worldwide (11,12), but may
even increase in the future, due to an ageing society.

For slowly progressing diseases, such as COPD, clinical
trials that investigate symptom-based exacerbations and/or
disease progression are often relatively long (e.g. a year, or
more), making collection of multiple observations possible.
Modelling techniques facilitate using all the information from
the repeated measurements and can therefore provide
additional insight over and above the output from traditional
statistical methods, where typically only end-of-treatment
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information is used. Such longitudinal analysis has the
advantage of quantifying any trend in response and may
therefore be helpful in describing and predicting future
exacerbations, which may be especially useful in early clinical
trials. Most models published so far are either Markov
models, focusing on the cost-effectiveness of the COPD
treatment intervention (13–17), or logistic regression models,
predicting the probability of exacerbation within the next
24 months (18) or COPD-patient hospital admissions (19).
Some linear and non-linear regression models were also
developed, aiming to predict disease progression (20–22). To
our knowledge, none of the models published so far described
the longitudinal COPD progression using daily patient-
reported-outcome (PRO) data, which might be able to reflect
symptoms earlier than, for example, clinicians’ reports (23). A
model that would use daily PRO data in its entirety to predict
changes in patient disease severity would therefore be
valuable in assessing disease progression.

PRO data generally reflect health status reports that
come directly from the patient and are being increasingly
used to inform clinical decisions and assess improvements in a
patient’s health status, and also in drug development (23–25).
The standard method for analysing longitudinal PRO data
from questionnaires (26) is the total instrument score,
calculated from the individual item scores; hence, a single
continuous variable is analysed. An alternative approach is to
use PRO data in its entirety by developing a longitudinal
mixed-effects item response theory (IRT) model (26), where
the contribution of each individual item score is modelled
separately over time, but related to a common underlying
hypothetical latent variable (i.e. in IRT terminology and
hereafter referred to as ‘disease severity’), which varies
between individuals and over time (27). This can help one
understand change in disease severity over time (i.e.
symptom-based disease progression), particularly in early
clinical development. Furthermore, as each individual item
score is modelled separately giving rise to a unique ‘item
characteristic curve’ (ICC), IRT modelling can provide
knowledge on the item that is most informative for a
population with a certain disease severity, which can be
valuable information for cl inicians applying the
questionnaire.

Frequent observations of categorical data make the
presence of the Markovian elements, typically identified as
many consecutive same-item-score observations, likely. With
daily data collection in studies, through the use of electronic
devices, such correlations are likely to be manifested. In
previously published implementations (28–35), IRT models
assume independence under the structural model. This means
that the probability distribution of outcomes are driven by the
latent variable, and the ICCs only and observations, even
when close to each other in time, are independent
realisations. This is found often to not be the case with
subjective scoring, and models to account for the dependence
between consecutive observations in the data would be
valuable.

In the present work, we analysed the PRO data,
collected in the Acute Exacerbation and Respiratory Infec-
tionS in COPD (AERIS) study (36,37), using the EXAcer-
bations of COPD Tool (EXACT®) (38,39), with two aims: (i)
to create a model that can be useful as a basis for assessing

disease progression including predictions of symptom-defined
exacerbations and effect of treatment on these clinical trials,
and (ii) to extend the IRT modelling methodology to
incorporate the situation where underlying data display
Markovian features.

METHODS

Data

The EXACT® PRO data were collected in the AERIS
study (36,37), a prospective 2-year longitudinal observational
study where adult and elderly patients were only receiving
standard-of-care treatment, no investigational drug. The study
was conducted at the Southampton General Hospital, UK
(clinicaltrials.gov number NCT01360398). Details of study
conduct and inclusion and exclusion criteria are reported
elsewhere (36,37,40). Only the first-year data were available
and analysed in the present work. The baseline characteristics of
the patients included in the analysis were the following: age,
gender, educational and professional status, smoking status,
severity of COPD according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) staging, number of years
with COPD, forced vital capacity (FVC), forced expiratory
volume in the first second (FEV1).

The EXACT® questionnaire, completed on an elec-
tronic diary, was used daily to record patients’ answers to the
14 questions (9 with 5 ordered categorical response options
(hereafter referred to as ‘categories’) and 5 with 4 categories,
see Table I), to collect data on symptoms suggestive of an
exacerbation of COPD. A higher item score indicated a more
severe symptom, for example 0 (not at all), 1 (slightly), 2
(moderately), 3 (severely) and 4 (extremely). Due to the
design of the study (specifically the device including the
electronic questionnaire), partial completion of the question-
naire was not possible, but a missing day where a subject gave
no answer to any of the items was possible. No data were
excluded from the analysis.

Table I. Individual items from the EXACT® questionnaire, with
their short description, and item-score scale, ordered by their chronic

obstructive pulmonary disease symptom domain

Item Description Scale Domain

7 Breathless 0–4 Breathlessness
8 How breathless 0–3 Breathlessness
9 Breathless—personal care 0–4 Breathlessness
10 Breathless—indoor activities 0–3 Breathlessness
11 Breathless—outdoor activities 0–3 Breathlessness
1 Congested chest 0–4 Chest symptoms
5 Chest discomfort 0–4 Chest symptoms
6 Chest tightness 0–4 Chest symptoms
2 Cough frequency 0–4 Cough and sputum
3 Mucus quantity 0–3 Cough and sputum
4 Sputum difficulty 0–4 Difficulty with sputum
12 Tired or weak 0–4 Tired or weak
13 Disturbed sleep 0–4 Sleep disturbance
14 Scared or worried 0–3 Psychological state

Full question for each item from the questionnaire is provided
elsewhere (41). A higher score denotes a more severe symptom
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Model Building

An IRT framework was combined with the Markov
component, and the joint model was fitted to all available
data simultaneously. For ease of model explanation, we firstly
focus on the IRT part and then on how it is connected to the
Markov part of the model.

An IRT model was developed to relate the responses
from each individual item (items were ordered categorical
data with 4 or 5 categories (Table I)) to an unobserved latent
variable (42), i.e. the underlying COPD disease severity. All
longitudinal data were used when modelling and also when
establishing the item characteristic curves.

A logistic transformation was used, where the (steady-
state) probability P of a subject i reporting a response at or
above category (or, item-score) k is expressed as follows (Eq.
1). The steady-state probability of an item response being
exactly k was given as described in Eq. 2.

Pss Yij≥k
� � ¼ exp aj∙ Di−bj;k

� �� �

1þ exp aj∙ Di−bj;k
� �� � ; ð1Þ

Pss Yij ¼ k
� � ¼ Pss Yij≥k

� �
−Pss Yij≥kþ 1

� �
; ð2Þ

where Di is the disease severity of subject i, and aj and bj are
parameters specific to item j; more specifically, aj is the slope
(or discrimination parameter), and bj,k is the difficulty
parameter for the item-score k, which was constrained to
be increasing for increasing scores of the same item, namely
bj,k + 1 ≥ bj,k. The parameter describing the COPD severity
(Di) was not bounded and was assumed to follow a normal
distribution N(0,1) at baseline (Di,t = 0).

The longitudinal changes in the COPD progression were
modelled using a linear change in disease severity, as shown
below in Eq. 3.

Di ¼ Di;t¼0 þ slopei � t; ð3Þ

where slopei is a subject-specific parameter with interindivid-
ual variability assumed to follow a normal distribution, and t
is time in days.

To allow for the lack of independence between
neighbouring observations, the Markov models were used
on an individual item level. First-order MM was assumed, i.e.
the next observation depended only on the current observa-
tion. The distribution of probabilities across the 4/5 categories
were described using a set of 4/5 corresponding states.
Changes in probabilities with time were described using a
set of 4/5 ordinary differential equations (ODEs) where first-
order transfer constants governed the changes in probability
between adjacent states. As previously described (43), a
reparameterisation allowed the Markovian component across
all state transitions to be described in a single parameter, the
mean equilibrium time (MET), which is the time when the
dependency between observations does not change anymore.
As the Markovian features are expressed through one
parameter only, and because time is treated dynamically, this
type of model has been referred to as a ‘minimal Continuous

Time Markov Model (mCTMM)’ (43). The probability of the
first observed score of an item was estimated as Pss (Yij = k) at
steady state given by Eqs. 1 and 2 above, i.e. without an
assumption on the previous score. For all subsequent
observations, the probabilities were reset immediately after
each observation to represent the known distribution of
probabilities, i.e. 1 for the currently observed state and 0 for
all other states. The relation between MET and the rate
constants (λ) and the steady-state probabilities (Pss) is given
in Eqs. 4–6 below. Since transition times and rate constants
are in inverse relationship, this means that as MET increases,
the λ decreases, and therefore, the probability of transitions
also decreases. In other words, this means that with an
increase in the MET parameter, the Markovian properties of
the system are becoming more important.

MET ¼ λ k−1;kð Þ þ λ k;k−1ð Þ
� �−1 ¼ λ k;kþ1ð Þ þ λ kþ1;kð Þ

� �−1
; ð4Þ

λ k;kþ1ð Þ ¼ MET � 1þ Pss Yij ¼ k
� �

Pss Yij ¼ kþ 1
� �

 ! !−1

; ð5Þ

λ kþ1;kð Þ ¼ λ k;kþ1ð Þ �
Pss Yij ¼ k
� �

Pss Yij ¼ kþ 1
� � : ð6Þ

The ODEs used to describe the model are provided in
Eqs. 7–11, with simplified notation for probabilities.

dPk¼0

dt
¼ −Pk¼0 � λ k¼0;k¼1ð Þ þ Pk¼1 � λ k¼1;k¼0ð Þ; ð7Þ

dPk¼1

dt
¼ −Pk¼1 � λ k¼1;k¼0ð Þ þ λ k¼1;k¼2ð Þ

� �þ
Pk¼0 � λ k¼0;k¼1ð Þ þ Pk¼2 � λ k¼2;k¼1ð Þ;

ð8Þ

dPk¼2

dt
¼ −Pk¼2 � λ k¼2;k¼1ð Þ þ λ k¼2;k¼3ð Þ

� �þ
Pk¼1 � λ k¼1;k¼2ð Þ þ Pk¼3 � λ k¼3;k¼2ð Þ;

ð9Þ

dPk¼3

dt
¼ −Pk¼3 � λ k¼3;k¼2ð Þ þ λ k¼3;k¼4ð Þ

� �þ
Pk¼2 � λ k¼2;k¼3ð Þ þ Pk¼4 � λ k¼4;k¼3ð Þ;

ð10Þ

dPk¼4

dt
¼ −Pk¼4 � λ k¼4;k¼3ð Þ þ Pk¼3 � λ k¼3;k¼4ð Þ; ð11Þ

where, in the case of items with only 4 possible scores, rate
constants λ(k = 3,k = 4) and λ(k = 4,k = 3) were assumed to be 0.

In the model, it was assumed that there was interindi-
vidual variability in MET expressed through an exponential
distribution. A schematic representation of the IRT and
Markov model(s) is shown in Fig. 1.
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To obtain informative initial estimates for the param-
eters in the 4/5-compartment ODE model, an analytical
solution (AS) for a 3-compartment ODE system was used.
The data from each item were merged into 3 categories in 3
different combinations ((a) 0, 1, 2–4; (b) 0–1, 2, 3–4; and (c)
0–2, 3, 4), then fitted with the 3-compartment AS models,
and the final estimates used as initial values in the 4/5-
compartment ODE model.

To confirm that the Markov elements were needed in the
model, a model without the Markov elements was tested, by
fixing MET to a small value (0.1 days). Furthermore, item-
specific MET, time-dependent MET (in a linear and a power
fashion), and a Box-Cox transformed MET interindividual
variability were tried as extensions to the model.

Software and Estimation Method

NONMEM version 7.3 (ICON Development Solutions,
Ellicott City, MD) (44) was used for modelling and simula-
tion, together with the Laplace approximation to obtain the
likelihood. Parameters of the joint model were estimated in a
simultaneous fit. R (The R Foundation for Statistical Com-
puting) (45), PsN (46) and R packages, such as, dplyr (47),
Xpose4 (48) and ggplot2 (49) were used for data

management, summary statistics and graphical examination
of NONMEM outputs.

Model Discrimination and Evaluation

To discriminate between the models and evaluate the
final model, goodness-of-fit and visual predictive checks
(VPC) were used, and the uncertainty on the model
parameters was inspected. The models were also compared
according to the objective function value (OFV) provided by
NONMEM, where the difference in OFV (ΔOFV) is χ2

distributed, i.e. a ΔOFV > 3.84 corresponds to p < 0.05, for a
one degree of freedom difference between two models. For
each VPC, 1000 datasets were simulated using parameter
estimates from the model, and 95% confidence intervals
around key percentiles were computed. VPCs were produced
on the individual item-score level, stratified and non-stratified
by individual items, and on the total score level (versus time
on study, and versus age), also stratified by covariates, such as
gender. The total score was obtained as specified in the
EXACT® manual (41), i.e. a 0–100 logit transformation was
used. Additionally, a VPC of transitions was made, taking
into account both the current and the previous state in order
to evaluate the Markov part of the model.

Item 3

COPD severity

Item 1

Item 5

Item 8
Item 10

Item 12

Item 14 Item 4

Item 7

Item 9

Item 2

Item 13

Item 11

Item 6

COPD severity

score 1 score 2 score 3score 0

Fig. 1. Schematic representation of the item response theory model (IRT) (upper left), Markov model
(MM) for an item with 4 possible scores (upper right), and the whole model (i.e. IRT with a MM for each
item) (below).
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Model Application

To quantify the correlation between items, item-specific
residuals (RESij) were calculated as specified in the following
Eqs. 12 and 13:

IPREDij ¼ ∑0
kP Yij ¼ k
� �� k; ð12Þ

RESij ¼ DVij−IPREDij; ð13Þ

where DVij is the response of subject i to item j, and IPREDij

is the corresponding weighted prediction (32).
Furthermore, the Fisher information (i.e. the second

derivative of the log-likelihood) (50) for each itemwas obtained,
in order to examine which item provides the most information
for the following: (a) a typical subject from this study, (b) the
‘healthier’ part of the population (i.e. 5th percentile) and (c) the
‘sicker’ part (i.e. 95th percentile) of the population.

Simulations

To further evaluate the model, we simulated clinical
outcomes used in COPD treatment, such as a symptom-defined
exacerbation event. Due to complexity, a simplified version of the
definition of a symptom-defined event from the EXACT®
manual (41) was used. Specifically, a symptom-defined exacerba-
tion event was defined as an increase in total score over baseline

of at least 12 points over 2 days, or of at least 9 points over 3 days;
if baseline was zero, there was no event. Baseline was reset every
4 weeks. The baseline for the first block of 4 weeks was
determined as the mean total score in the first week of the study,
and for subsequent 4-week-block baselines, the mean total score
of the last week of the previous 4-week block was used. If a
subject completed the questionnaire for fewer than 4 days in the
‘last week’, baseline was not reset. The cumulative proportion of
subjects that already had a symptom-defined exacerbation event
was computed for both observed and simulated data, and the
agreement between model-predicted (from n= 100 simulations)
and observed symptom-defined exacerbations was assessed.

RESULTS

Data

Data from 127 COPD patients (median age 67 years, 54%
male, 39% current smokers at study initiation) were available and
included approximately 40,000 observations per item. Baseline
characteristics of the study participants are presented in Table II.
Before the end of the first year, 36 subjects (28%) stopped filling
in their questionnaire, 22 of which discontinued the study due to
reasons not directly related to the disease severity (37). Five
subjects had nomissing days (i.e. days when they did not fill in the
e-questionnaire), and the remaining 122 subjects had a median

Table II. Baseline characteristics of the subjects in the study

Median (range) or count (%)

Total number of subjects (n) 127
Age (years) 67 (42–85)
Time with COPD (years) 7 (0–45)
FVC (L) 3.25 (1.61–4.99)
FEV1 (L) 2.54 (1.27–4.08)
Sex: male (n) 68 (54%)
Profession (n) Retired: 99(78%), full-time employed: 9(7%),

part-time employed: 8(6%), on sick leave: 6(5%),
unemployed: 4(3%), self-employed: 1(1%)

Education (n) GCSE: 32(25%), A-level: 2(2%),
higher education: 26(20%), University: 7(6%), other: 60(47%)

Smoking status: smoker (n) 50 (39%)
COPD GOLD disease status (see reference (51)) (n) Moderate: 57(45%), severe: 51(40%), very severe: 19(15%)

COPD is chronic obstructive pulmonary disease, FVC is forced vital capacity, FEV1 is forced expiratory volume in 1 s, GCSE is General
Certificate of Secondary Education. GOLD is the Global Initiative for Chronic Obstructive Lung Disease
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Fig. 2. Visual predictive check for item scores of all 14 items, showing different proportions of observations (black lines)
with the corresponding 95% confidence interval (grey area) from 1000 simulations.
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(range) 13 (1–221) total missing days. The median (range)
consecutive missing days for all subjects was 3 (0–74) days.

Modelling

An IRTmodel with 14 (4/5-compartment) theMarkov sub-
models (supplementary material) was successfully fitted to the
data (Figs. 2, 3 and4). The model without the Markov elements
performed much worse than the model with the Markov
elements, i.e. it was not able to predict several transitions as
seen on the transition VPC (Fig. S1, supplementary material).

The base model was an IRT model with the Markov
elements, and a single non-changing MET parameter. Among
the extensions to the model, linear time-dependency on MET
improved the visual diagnostics the most and resulted in the
biggest OFV drop (ΔOFV=8727, compared to the base model)
among the tested models. For example, when using the model
with 14 item-specific METs, the visual diagnostics did not
improve, and the OFV drop was lower (ΔOFV= 4678); similarly

for the models with a Box-Cox transformation of the variability
on MET (ΔOFV= 13.7), or a power time-dependency on the
METparameter (ΔOFV= 5902), all compared to the basemodel.
Therefore, themodel with a linear time-dependency onMETwas
chosen as the final model.

Final parameter estimates are presented with uncertainty
in Table S2 (supplementary material). The mean (standard
error) equilibrium time was estimated as 1.2 (0.07) days at the
beginning of the study (i.e. day 0), and 5.1 (0.57) days at the
end of the study (i.e. day 365). The mean (standard error)
slope on disease severity representing disease progression
was 0.007 (0.08) latent variable scale units per year, with
substantial interindividual variability, 122 %CV (Table S2).

Visual predictive checks on the item score level showed
satisfactory fit to the data (Fig. 2; stratified by an individual item,
Figures S3a-d, supplementary material). A VPC of transitions is
shown in Fig. 3, and a VPC of the total scores plotted against time
in Fig. 4 (also stratified by gender, and versus age are shown in
Figures S4, and S5, respectively, in the supplementary material).
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Fig. 3. Visual predictive check for all 14 items, showing different proportions of observed transitions (black lines) with the
corresponding 95% confidence intervals (grey areas) from 1000 simulations. Transitions are described in the panels.
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Model Application

The correlation plot showed quite a strong correlation
among some of the items, specifically, between items 1, 5 and
6, items 7 and 11 (Fig. 5) and also between items 2 and 3,
corresponding to different domains in the EXACT® ques-
tionnaire (Table I). Additionally, a relatively high correlation
was also observed between two items from different domains
(Table I), specifically item 12 and 13 (Fig. 5).

The items providing the most information in characterising
the typical patient (i.e. patient with the typical disease severity) at
baselinewere ‘Breathless—personal care’ and ‘Breathless—indoor
activities’ (Fig. 6). Some other items, however, proved to be less
informative (e.g. ‘Sputum difficulty’) (Fig. 6). Also, in general, all
items (except item 3, ‘Mucus quantity’) appeared to be more
informative for the ‘sicker’, or a typical subject from the studied
population, compared to the ‘healthier’ part of the population
(Fig. 7). The item characteristic curves (ICC) for all 14 items are
shown in Fig. S6 (supplementary material), and the values of the
ICC parameters are reported in Table S2.

A comparison of model-simulated and observed cumu-
lative proportion of subjects who already had a symptom-
defined exacerbation event, from a model with the Markov
elements and a model without the Markov elements is shown

in Fig. 8 and indicated that the addition of the Markov
elements improved model performance.

DISCUSSION

A combination of an item response theory model and 14
item-specific longitudinal Markov models was successfully devel-
oped for the first time to our knowledge. This integrated
modelling approach proved to be able to describe frequently
collected and therefore correlated composite score data, as was
exemplified here using daily EXACT®patient reported outcome
data from patients with COPD receiving standard of care only.

The importance of developing a model, where IRT is
used together with the longitudinal Markov elements, is
twofold. Firstly, using the IRT methodology has several
advantages over the total-score approach. For example, as it
uses all individual item scores and not just a total score, it
prevents information loss, which might otherwise result in
model misspecification. Additionally, it does not ignore the
categorical nature of the data, which occurs when modelling
the total score as a single continuous variable. Secondly, by
including the longitudinal Markov elements (on an item
level), the developed model also provides a way to describe
the dependence between frequently collected longitudinal
data such as those obtained nowadays from patient-reported
diaries which are now filled in at home, using an electronic
device.

The mean equilibrium time was estimated longer than a
day (1.2 days at start of the study, and 5.1 days at the end of
the study, Table S2), and a clear misfit of the model without
the Markov elements was observed (Fig. 8, Fig. S1), which
both confirmed that the addition of the Markov elements was
needed. The values of the MET parameter estimates also
show that the variability in patients reporting outcomes was
decreasing with time on study, since a higher MET value
indicates fewer transitions, i.e. more stable scores. This might
be because when a patient is recruited to a study, they might
be more compliant with their medications and have more
healthcare interactions.

The graphical evaluation of the model showed that the
final model can describe the data adequately. More specifi-
cally, the model was able to describe the proportions of item-
scores (Fig. 2 and Fig. S3a-d), the proportions of transitions
between previous and current item-scores (Fig. 3), and also
the total scores (Fig. 4). There were some underpredictions in
the situation when an item score would not change from 1
(Fig. 2), and also in the median total scores (Fig. 4); however,
these misspecifications were not that apparent, with the
model adequately capturing the time trends and the 95%
prediction intervals, and none of the additional changes to the
model that were tested provided an improvement.

When correlations between items were investigated, it was
confirmed that the grouping of the items in the COPD disease
domains (as captured in the EXACT® questionnaire) was
appropriate, since the correlation between items 1, 5 and 6; items
7 and 11; and items 2 and 3 (belonging to the chest domain,
breathlessness domain and cough and sputum domain,
respectively, Table I) were much stronger than between other
items (Fig. 5). Additionally, although not belonging to the same
domain, items 12 and 13 also showed to be correlated, which can
be expected, given their description—i.e. ‘Tired or weak’, and

Fig. 4. Visual predictive check (n = 1000) for the total score
(transformed to a 0–100 scale), i.e. sum of all individual item scores.
Black lines represent data (2.5th, 50th, 97.5th percentiles), and grey
areas are the corresponding 95% confidence intervals from 1000
simulations. Lack of a grey-shaded area indicates that the 95%
confidence interval of simulations fully agrees with the observed data.
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‘Disturbed sleep’, respectively (Table I). Since there were items
belonging to obvious domains, one could argue that several latent
variables should be included in the model; however, in our
example, this was not possible due to too few items belonging to
separate domains.

Since visual diagnostics confirmed that the model could
describe the data satisfactorily, i.e. there were no major
misspecifications, further potential improvements to the
model were not investigated. For example, we used minimal
Markov models, meaning that the MET was assumed to not
differ between compartments, and a dropout model was also
not investigated. Additionally, we did not evaluate any of the
available covariates in this work, nevertheless, the model was
able to describe the data when stratified by gender (Fig. S4)
and also when plotted against age (Fig. S5), indicating that
these covariates might not provide an improvement to the fit.
Another potential limitation might be that we did not have

information on whether the patients were at any time
admitted to a hospital and treated with another drug (not
standard of care), which may affect their disease progression.

In our model, continuous time Markov models were
used, where, in contrast with discrete time Markov models,
the probability of transition can change according to the time
difference between two consecutive observations. Therefore,
if a subject had missing observations for a study day, this did
not affect the fit.

When the final model’s ability to predict symptom-defined
exacerbations was tested, the model could predict the general
trend of the cumulative proportions of the subjects with an
exacerbation; however, some overprediction was observed when
the study day was greater than approximately 180 days (Fig. 8),
which might be due to fewer study participants continuing to
report their symptoms. However, the model with the same
structure without the Markov elements greatly underpredicted
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Fig. 8. The cumulative proportion of participants who already had an exacerbation, from a model with the Markov elements (left), and a
model without the Markov elements (right). Black lines represent data, and grey simulations (n = 100).
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the symptom-defined exacerbations even from the beginning of
the study. The poor performance of the model to predict
symptom-defined exacerbations without the Markov elements
can be understood from the definition of such exacerbation, i.e.
the total score had to be increased for at least two or three
consecutive days. As the variability in transitions between scores
was exaggerated in the model without theMarkov elements (Fig.
S1), a stable increase in a score did not occur; hence, a symptom-
defined exacerbation was not defined.

Future work could include adding a treatment effect to the
model, and although the model was developed using EXACT®
data, it could also be applied to daily data from other
questionnaires. With a treatment effect added to the model, the
model could be utilised for simulation of study designs in terms of
evaluating treatment effects, sample size and duration. Addition-
ally, the effect of patients’ characteristics on response over time,
especially important in early drug development, could also be
investigated and perhaps help shorten proof-of-concept studies.

Conclusion

A longitudinal mixed-effects IRT model with Markov
elements was developed for the first time to our knowledge
and applied to real data from an observational study. The
model was able to handle both composite scores and frequent
observations, which was exemplified in this analysis using
COPD item score and symptom-defined exacerbation data
from the EXACT® questionnaire. The developed model also
showed it could serve as a platform model for predicting
symptom-defined exacerbations.
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