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Variability Attribution for Automated Model Building
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Abstract. We investigated the possible advantages of using linearization to evaluate
models of residual unexplained variability (RUV) for automated model building in a similar
fashion to the recently developed method “residual modeling.” Residual modeling, although
fast and easy to automate, cannot identify the impact of implementing the needed RUV
model on the imprecision of the rest of model parameters. We used six RUV models to be
tested with 12 real data examples. Each example was first linearized; then, we assessed the
agreement in improvement of fit between the base model and its extended models for
linearization and conventional analysis, in comparison to residual modeling performance.
Afterward, we compared the estimates of parameters’ variabilities and their uncertainties
obtained by linearization to conventional analysis. Linearization accurately identified and
quantified the nature and magnitude of RUV model misspecification similar to residual
modeling. In addition, linearization identified the direction of change and quantified the
magnitude of this change in variability parameters and their uncertainties. This method is
implemented in the software package PsN for automated model building/evaluation with
continuous data.

KEY WORDS: automated model building; linearization; model evaluation; nonlinear mixed effects
models; stochastic model.

INTRODUCTION

Nonlinear mixed effect (NLME) modeling, commonly
known as the population approach, is increasingly used to
describe longitudinal data from preclinical/clinical experi-
ments, either to improve the efficiency of the drug develop-
ment process and subsequent dosing, or increase the
understanding of the studied underlying pathophysiological
system (1). In contrast to naive pooling approach, which
ignores individual differences, and two-stage approach, which
does not distinguish between subject and observation vari-
ability, NLME models allow pooling of sparse data from
different subjects while simultaneously quantifying multiple
levels of variability, thanks to its mixed effects nature. In
mixed-effects analysis, population parameters are included in
a model as fixed effects, and the variability within this
population as random effects. Random effects can incorpo-
rate variability on both the subject and observation levels, as
inter-individual variability (IIV), between occasion variability,

between study variability, and residual unexplained variability
(RUV). This ability to identify different sources of variability
is particularly critical to many clinical applications, e.g.,
therapeutic drug monitoring.

For highly nonlinear models, extending the structural base
model to include covariates or test different models for random
effects can be tedious and interrupted by numerical difficulties.
These problems increase exponentially with increasing the
complexity of the structure, covariate, and variability models.
To overcome such computational and time-intensive burden,
linear approximation of first-order conditional estimation
(FOCE) method was proposed and applied as a diagnostic tool
for testing covariates and random effects (2,3). When success-
fully implemented, linearization substantially reduced runtimes
compared to standard NLMEmodels as the fixed effects are not
estimated in the linearized models, but fixed to their estimates
from the fit of the NLMEmodel. Linearizedmodels were shown
to result in similar objective function values (OFVs) to the
NLME models, and accurately identify significant covariate
relations and stochastic components similar to conventional
analysis. Hence, linearization output models in a standardized
coding format, linearization was also recommended for auto-
mated model building by coupling to other covariate modeling
algorithms as stepwise covariate method (SCM) or full random
effects covariate modeling (FREM) (4). However, linearized
models still need to be estimated given the original observations
similar toNLMEmodels, so itmight be sensitive to local minima
or other estimation-related issues, especially in presence of
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interactions between empirical Bayes estimates and RUV
models. Major deviations between the OFV of the linearized
structure base model and its corresponding NLMEmodel should
be interpreted as a failure of implementation of linearization and
must be solved prior to further investigations using the linearized
model. It has not been shown previously that random effects
estimated in linearized models or their uncertainties’ have similar
values if estimated in the corresponding NLME models, which if
true, will support the role of linearization in automated model
building to predict changes in random variability assigned to
model parameters upon the inclusion of a potential covariate or
adoption of a new RUV model.

Meanwhile, a new method “residual modeling” was pro-
posed as a fast and robust diagnostic tool for assessing RUV
models for NLME analysis with continuous outcomes (5).
Residual modeling treats the outputted residuals from a NLME
model execution as a dependent variable to model its distribu-
tion’s mean and variance by a linear base model, then this base
model is extended to assess different RUV extensions. The
improvement in the fit between the residuals base model and its
extended versions can accurately identify the nature and
magnitude of potential RUV model improvements/
misspecifications, and hence, residual modeling has been already
implemented for automated model building. Residual modeling
uses a built-in library of six RUV extensions to model the
variance of the residuals’ distribution from a NLME model
execution. The built-in library includes autoregressive (AR1),
dynamic transform both sides (dTBS), residuals’ IIV, power, t-
distribution, and time-varying RUV models (6–10). The investi-
gated residuals were conditional weighted residuals (CWRES),
conditional weighted residuals with interaction (CWRESI),
individual weighted residuals (IWRES), and normalized predic-
tion distribution errors (NPDE); CWRES outperformed the rest,
as CWRES modeling correctly identified the type of the needed
RUV model and accurately predicted both the estimates of
parameters governing this RUV model and the magnitude of
improvement of fit after implementing such RUV model.
Residual modeling does not suffer from local minima problems
or estimation related issues, as it is using residuals data, not the
original observations. This is an advantage for its purpose in fast
and robust selection of the best RUV model, but then by
definition, it cannot predict the impact of implementing a new
RUV model on random variability assigned to the rest of model
parameters or their uncertainties.

Here, we investigated if linearization can predict vari-
ability attribution for automated model building on the
inclusion of a new RUV extension. We used the same six
RUV models from our previous work for residual modeling.
(5) First, we compared the performance of linearization to
residual modeling in selecting the best RUV extension; then,
we compared random effects’ estimates and uncertainties on
linearized models with the different RUV extensions to their
corresponding NLME models.

METHODS

Linearization

For continuous outcome, let yij be the observation j for
individual i, θ is the vector of population parameters, ηi is the
vector of unexplained deviation of individual parameters θi

from the population parameters θ, xij is the vector of
individual i design components as dose and sampling times,
and εij is the residual error of observation j for individual i,
then the NLME model describing the observations:

yij ¼ f θ;ηi; xij
� �þ h ð1Þ

where f ismodel prediction, and h is theRUVmodel to be function
of εij. Such model can be extended further for multivariate
outcome, baseline or time varying covariates. Both random effects
ηi and εij are assumed to follow normal distribution with mean 0
and covariance matrix Ω and Σ, respectively, and the unknown
model parameters are estimated by maximum likelihood. Accord-
ing to the way of the dependence of h on f, this NLMEmodel can
be linearized based on first-order Taylor expansion around εij= 0
and the empirical Bayes estimate ηbi:
yij≈ f ðθ;ηbi; xijÞ þ f

0 ðθ; ηbi; xijÞðηi−ηbiÞ þ h
0
εij−0
� �þ ∂h

0

∂ηi
εij−0
� �

ηi−ηbiÞð ð2Þ

f ij ¼ f ðθ;ηbi; xijÞ þ f
0
θ;ηbi; xijÞ ηi−ηbiÞð� ð3Þ

hij ¼ εij ðh0 þ ∂h
0

∂ηi
ηi−ηbiÞð Þ ð4Þ

yij
� ¼ f ij þ hij ð5Þ

where yij
∗ is the linearized model, fij is the approximated

individual predictions, and hij is the approximated individual
residual errors.

The NLME model is first evaluated to calculate the
different partial derivatives and ηbi needed, then yij

∗ is
estimated on the same dataset of the NLME model to obtain
ηi and εij, as these are the only unknown parameters in yij

∗. With
estimating only random effects alongside its standard coding
format, yij

∗ can be easily and quickly used as a base model for
further explaining ηiwith covariates or using different εijmodels
(3). Here, we extended (Eq. 5) to test six RUV models, and
compare their goodness of fit, parameters’ variability estimates,
and uncertainties to conventional testing by NLME models as
follow and shown in the Supplementary material.

RUV extensions

To test the dependence of εij at time point j on εik at time
point k, autoregression (AR1) error model with one extra
parameter can be implemented:

ρ εij; εik
� � ¼ e− ln 2ð Þ=t1=2ð Þ time j−timekð Þ ð6Þ

where ρ is the correlation between these errors and t1/2 is the
half-life of ρ. The improvement of fit after implementing AR1
error model in the linearized model (ΔOFVlin, AR1) is
calculated as the difference in OFV of the linearized base
model (Eq. 5) and OFV of the linearized model with AR1
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error model (Eqs. 5 and 6). ΔOFVlin, AR1 is comparable to the
improvement of fit on implementing AR1 error model in the
NLME model (ΔOFVNLME, AR1) between the base NLME
model (Eq. 1) and its AR1 error model extension.

In presence of skewness in residuals distribution, dy-
namic transform both sides (dTBS) approach is useful through
the estimation of a Box–Cox shape parameter λ and a power
term ζ that also address possible scedasticity in residual
magnitudes (8,9). Linearized models with dTBS approach
follows (Eq. 7) if λ was estimated to 0, and (Eq. 8) otherwise.
Improvement of fit on dTBS implementation (ΔOFVlin, dTBS)
is the difference in OFVs of the dTBS linearized model with λ
and ζ fixed to 1 and 0, respectively, and the dTBS linearized
model with both λ and ζ estimated.

ln yij�ð Þ ¼ ln f ij
� �

þ hij ∙ f ij
ζ ð7Þ

yij�λ−1
λ

¼ f ijλ−1
λ

þ hij∙ f ij
ζ ð8Þ

One of maximum likelihood assumptions regarding the
residual error εij is being identically distributed, this assumption
can be relaxed by adding inter-individual variability ηi, RUV on
the residuals to allow different RUV magnitudes. Improvement
of such extension in the fit of the linearizedmodel (ΔOFVlin, IIV)
is the difference in OFVs of (Eq. 5) and (Eq. 9).

yij� ¼ f ij þ hij ∙eηi;RUV ð9Þ

In absence of skewness, the dependence of residuals
magnitude on model predictions can be corrected with ζ alone
in what is known as power RUV model. Improvement of fit on
applying the power RUV model to the linearized models
(ΔOFVlin, ζ) is the difference in OFVs of (Eq. 5) and (Eq. 10).

yij
� ¼ f ij þ hij∙ f ij

ζ ð10Þ

Assuming normal distribution of residuals means that
large errors do not exist, which if not true will force maximum
likelihood estimation to shift model parameters’ estimates to
fulfill small errors assumption. This bias can be avoided by
introducing t-distributed residuals. The Laplacian method with
user-defined conditional likelihood (L) had to be used for a
Laplace linearized base model (Eq. 11) and linearized model
with t-distributed residuals (Eq. 12), where σ is the square
root of hij, and υ is the degrees of freedom; the difference of
these models’ OFVs is ΔOFVlin, υ.

L ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p� �
exp −

1
2

yij
�− f ij
σ

� �2
 !

ð11Þ

L ¼
Γ

υþ 1
2

� �

Γ
υ
2

ffiffiffiffiffiffiffiffiffiffi
υπσ2

p� � 1þ 1
υ

yij
�− f ij
σ

� �2
 !− υþ1

2ð Þ
ð12Þ

Lastly, time-varying errors allow different error magnitudes
for different time points. A typical example is that the absorption

phase in a pharmacokinetic model can have larger errors than the
elimination phase. This is implemented by allowing the change of
the standard deviation of residuals to be a step function of the
time or time after dose, at selected cutoff time point X.

ω ¼ θ1
if time > Xð Þ ω ¼ θ2

hij ¼ ω ∙εij h
0 þ ∂h

0

∂ηi
ðηi−ηbiÞ

 ! ð13Þ

where θ1 is the standard deviation of residuals before the cutoff
time point X, θ2 is the standard deviation of residuals after this
cutoff time point, and Σ is fixed to 1, as multiplying a random
variable by constant (ω ∙ εij) increase the variance by the square
of this constant (ω2). We used three cutoff points to divide the
data into four equal sized groups, and the improvement of fit
(ΔOFVlin, time) after extending the linearized base model (Eqs. 4
and 5) to the linearized model with time varying residuals (Eqs.
5 and 13) is the difference between their respective OFVs.

Evaluations

These extended linearized models (example code in
Supplementary material) were estimated to obtain their respective
improvement of fit ΔOFVlin, as well as Ωs’ estimates and
uncertainties. We compared the performance of ΔOFVlin in
predicting ΔOFVNLME to that of ΔOFVDiagnostic obtained by
residual modeling, where diagnostic refers to the used residual.
Afterwards, we compared Ωs’ estimates and uncertainties of
linearized models to their respective NLME models as shown in
Fig. 1. We used 12 real data examples for our evaluation (Table I).
Only when the linearized base model and the NLME base model
had similar OFV were RUV extensions added and further
estimated. All real data examples were treated as continuous.
Asenapine effectswere assessedusingPANSS,which is a composite
score, where items of positive, negative, and general nature are
scored and combined into one assessment. Despite this, the
asenapine data was treated as continuous data in the model. Also,
the asenapine model was implemented with residuals’ IIV model
from the start. Models varied in structure components from simple
pharmacokinetic one compartment model as moxonodine, to
complex description of nonlinear system of interacting multi-
dependent variables as the integrated glucose-insulin (IGI) model.
Seven models used log-transformed data. Two models used a
combined error model, two models used a proportional error
model and the remaining models used additive error models.
NONMEMversion7.4.3 (ICONDevelopment Solutions,Hanover,
MD, USA) was used for the analysis (22), with the aid of the
linearize tool inPsN (3,23), and graphswere generated inR (24). To
obtain the improvement of fit by residual modeling
(ΔOFVDiagnostic) when testing the different RUV extensions on
the real data examples, we used the resmod tool in PsN (5).

RESULTS

Linearizationwas successfully applied to all examples, justified
by the similarities in theOFVsof the linearizedbasemodels and the
NLME base models. All examples were extended successfully to
the different RUVmodels, except for AR1 and t-distribution error
models with Clomethiazole and the IGI models. All examples
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benefitted significantly with one or more of the RUV extensions,
except for Daunorubicin model. Across all examples, the agree-
ment between ΔOFVlin and ΔOFVNLME was good as shown in
Fig. 2. Comparing to the performance of residual modeling in
predictingΔOFVNLME, linearization surpassedCWRESI, IWRES,
andNPDEover all different ranges ofΔOFVNLME, and performed
better than CWRES at most ranges of ΔOFVNLME except at low
ranges of ΔOFVNLME(~ 10) where CWRES was slightly better.
Linearization identified accurately the most important RUV
extension to all examples similar to conventional analysis,

surpassing CWRES modeling that reversed the order of 1st and
2ndmost important extensionswith two examples, Ethambutol and
Disufenton sodium models. Also, linearization identified the RUV
extensions resulting in significant improvement offit in all examples
similar to conventional analysis, while CWRES modeling missed
only t-distribution error model with Asenapine model, shown in
Fig. 2.Asenapinemodel is the onlymodelwith residuals’ IIVmodel
as the basemodel,whichmaybe sufficient in explainingoutliers and
would turn the t-distributed error model rather less important. The
median ratio ofΔOFVlin/ΔOFVNLMEwas 0.95 amongmodels with

NLME base model

Output predic�ons, 
par�al deriva�ves 

and 

linearized 
base model

linearized model with 
RUV extension

Output CWRES

CWRES

base model

CWRES model with 
RUV extension

NLME model with 
RUV extension

Compare:
• ∆OFV , ∆OFV and  ∆OFV
• and 
• ( ) and ( )

Fig. 1. Schematic presentation of the method used to evaluate linearization ability in
predicting variability attributions

Table I. Summary of real data examples used for investigation

Model Data type RUV model Transformation No. of
observations

No. of
subjects

No. of
THETAs

No. of
OMEGAs
including
covariances

No. of
SIGMAs

Asenapinea (11) PD Additive with IIV – 7728 1328 16 5 1
Clomethiazole (12) PK Additive Log 2177 772 10 5 1
Daunorubicina (13) PD Additive Log 112 41 7 3 1
Digoxina,b (14) PK/PD PD: proportional

PK: additive
– 941 225 6 3 1

Disufenton sodiuma (15) PK Additive Log 1196 175 7 3 1
Ethambutola (16) PK Combined Log 1869 189 8 3 1
IGIab (17) PD Additive Log 6382 72 26 15 1
Miltefosinea (18) PK Proportional – 350 31 7 4 1
Moxonodinea (10) PK Additive Log 1021 74 5 6 1
Paclitaxela,c (19) PD Combined – 530 46 6 3 1
Pefloxacina (20) PK Additive Log 337 74 4 6 1
r-Hfsh (21) PK Additive – 314 60 7 2 1

a SIGMAs were fixed to 1 and modeled as THETAs (standard deviation)
bMore than one dependent variable
cAdditive component of RUV model was fixed
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significant improvement, compared to 0.8 for the median ratio of
ΔOFVCWRES/ΔOFVNLME.

Regarding the estimates ofΩs on linearizedmodels (Ωlin) and
their respective estimates onNLMEmodels (ΩNLME), they showed
good agreement with only one outlier: AUC50’s variability in
asenapinemodel. A plot of log (ΩNLME) versus log (Ωlin) across all
examples with base models and their RUVextensions is shown in
Fig. 3, with estimates less than − 4 on log scale excluded from the
graph, given that these estimates are low and would not be
considered in further model development. In total, nine estimates
were excluded based on this, e.g., the variability assigned to the
intercompartmental clearance in Clomethiazole model under IIV
on RUVand dTBS extensions. Standard errors (SEs) of each Ωlin

and its respective ΩNLME showed a good agreement in the
commonly expected range of SEs for a well identifiable continuous
data variability parameter (0–1), and bad agreement at the extreme
estimates of SE(ΩNLME), for instance, the SE of PAN0’s variability
in asenapine model was > 1000 with both dTBS and power RUV
extensions, which is unacceptable. Thismay be related to the scores
used to measure asenapine effect, i.e., PANSS. A plot of the log-
transformed estimates of SE(ΩNLME) and SE(Ωlin) is presented in
Fig. 4, with estimates less than − 4 on log scale excluded from the
graph. Lastly, relative standard errors (RSEs) for eachΩlin and its
corresponding ΩNLME were calculated on the standard deviation
scale as (Eq. 14), and their log-transformed estimates are presented
in Fig. 5, that in addition to showing the same trends as Fig. 4,
showed that standard errors after implementing t-distribution
extensions are less predictable by linearization than the other
RUVextensions.

RSE Ωð Þ ¼ SE Ωð Þ
Ω

=2 ð14Þ

DISCUSSION

In this paper, we explored if the use of linearization to
identify and quantify RUV model misspecifications, similar to

residual modeling (5), can provide additional advantages.
Residual modeling assesses whether RUV extensions are
required to address an RUV misspecification. It is done in an
extremely fast and robust way, thanks to the simple nature of
models for residuals data. In case of multiple dependent
variables, residual modeling evaluates the RUV extensions
separately for each dependent variable, identifying which
variable need which extension, and so reducing the risk of
ending up with an over-parameterized NLME model. How-
ever, being estimated on residual data has shortcomings, as
residual modeling cannot inform on the rest of the NLME
model parameters. Implementation of a needed RUV exten-
sion in a NLME model would be expected to improve the
uncertainties of Ω and θ subsequently, as the latter is a
function of the former. Linearization, in contrast to residual
modeling, uses the calculated parameters’ partial derivatives
with respect to ηbi from the fit of the NLME model. It
estimates the RUV model incorporating any extension and
the random effects components given the same data as the
NLME model. Thus, linearization can estimate explicitly the
random effects and their uncertainties in the base and the
extended model, and implicitly the magnitude and the
direction of change in the random effects and their uncer-
tainties, and that is what we had shown here.

We successfully implemented six RUV extensions to
the standardized linearization framework and linearized all
real data examples. However, estimation difficulties were
present when applying AR1 and t-distribution RUV
extens ions to the NLME/l inear ized models of
Clomethiazole and the IGI, but not in their respective
residual modeling. The agreement between ΔOFVlin and
ΔOFVNLME when improvement of fit is > 10 was nearly
perfect, indicating that only the estimates of random effects
were changing on implementing the different RUV exten-
sions in the NLME models. Deviations would be expected
if estimates of fixed effects were also changing. The overall
prediction performance of ΔOFVNLME by ΔOFVlin was
better than ΔOFVCWRES, however not by much.

Fig. 2. Plot of absolute ΔOFVNLMEversus absolute ΔOFV for CWRES, CWRESI, IWRES, linearization, and NPDE among the real data
examples for the six extended RUV models
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Linearization identified and quantified the nature and the
magnitude of RUV model misspecifications in these real data

examples more accurately than CWRES modeling, the latter
reversed the order of the most two important extensions in

Fig. 4. Plot of log SE (ΩNLME) versus log SE (Ωlin) across the real data examples for the six extended RUV models. Departures (± 2 units from
identity line) are the log standard error estimates of the variabilities assigned to PAN0, AUC50 and RES parameters in Asenapine model, and
BASE parameter in Paclitaxel model

Fig. 3. Plot of log (ΩNLME) versus log (Ωlin) across the real data examples for the six extended RUV models, with only one outlier: the
variability assigned to AUC50 parameter in Asenapine model with all RUV extensions except t-distributed error model
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Ethambutol and Disufenton sodium models and could not
identify t-distribution as a significant extension in Asenapine
model. Even though it is a minor difference, it illustrated the
high sensitivity of linearization to detect differences between the
RUV extensions that introduce similar flexibility in the model,
e.g., IIV and t-distribution RUV models both offer outlier
robustness in the NLME model. This showed that conclusions
drawn from the results of automated testing of RUVextensions
will remain the same on replacement of residual modeling with
linearization, and the only expected difference would be an
increased run time for linearization of structure models with
large random effects models.

Regarding the prediction of the impact of RUV
extensions on ΩNLME, linearization showed a good ability
with only one outlier (the Ω assigned to AUC50 in
Asenap ine mode l ) . In teres t ing ly, l inear i za t ion
underestimated this Ω with all RUV extensions except t-
distribution. This underestimation issue will escalate when it
comes to predicting SE(ΩNLME). Linearization did well in
assessing the expected ranges of uncertainties of variability
assigned to model parameters describing continuous data;
more deviations occurred as uncertainties’ estimates moved
away from that range, with the main problem being
Asenapine model. This might point out that violation of
assumptions regarding the nature of data will be a prob-
lematic in this automated testing procedure as Asenapine
effects are measured using PANSS, which is a composite
score, but treated as continuous data in the model. Among
the RUV extensions, t-distribution was the most associated
with deviations, mainly underestimation. That can be easily
tracked down to the use of LAPLACE method commonly

known for minimization-related problems, for instance,
SE(ΩNLME, υ) of AUC50 in Asenapine model was 1.66 ×
10−4 which is too close to 0, and an unreasonable estimate
for uncertainty, given that the estimate of ΩNLME, υ of
AUC50 is 2.9. This problem of unreasonable estimates in
SE(ΩNLME) explain all the extreme deviations seen in Fig.
4. One of these is PAN0 parameter in asenapine model
which ΩNLME, dTBS estimate was 168, but its SE(ΩNLME,

dTBS) was 4.15 × 104. With these deviations being justified, it
is safe to claim that linearization itself or its predictive
performance of SE(ΩNLME) showed no built-in drawbacks.
The same issues go for RSE(ΩNLME) as not respecting the
nature of the data, t-distribution extension, and the unreal-
istic estimates of ΩNLME and their uncertainties propagated
to most of the outliers in Fig. 5.

In conclusion, we investigated the possible merits of
linearization if used to evaluate RUV models for contin-
uous data. Linearization accurately identified the nature of
RUV extension if needed and predicted the improvement
of fit on its inclusion similar to residual modeling. In
addition, linearization can predict the impact of including
such RUV extension on the variability assigned to model
parameters and their uncertainties, allowing its utilization
for variability attribution with automated model building
procedures.
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