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Abstract. Pattern recognition is a key element in pharmacodynamic analyses as a first step to identify drug
action and selection of a pharmacodynamic model. The essence of this process is going from data to
insight through exploratory data analysis. There are few formal strategies that scientists typically use
when the experiment has been done and data collected. This report attempts to ameliorate this deficit by
identifying the properties of a pharmacodynamic model via dissection of the pattern revealed in response-
time data. Pattern recognition in pharmacodynamic analyses contrasts with pharmacokinetic analyses
with respect to time course. Thus, the time course of drug in plasma usually differs markedly from the
time course of the biomarker response, as a consequence of a myriad of interactions (transport to
biophase, binding to target, activation of target and downstream mediators, physiological response,
cascade and amplification of biosignals, homeostatic feedback) between the events of exposure to test
compound and the occurrence of the biomarker response. Homing in on this important—but less often
addressed—element, 20 datasets of varying complexity were analyzed, and from this, we summarize a set
of points to consider, specifically addressing baseline behavior, number of phases in the response-time
course, time delays between concentration- and response-time courses, peak shifts in response with
increasing doses, saturation, and other potential nonlinearities. These strategies will hopefully give a
better understanding of the complete pharmacodynamic response-time profile.

KEY WORDS: duration of response; exploratory data analysis; intensity of response; mixture dynamics;
modeling; onset of action; oscillatory response; physiological limit; response half-life; response-time
courses; saturation; transduction; turnover.

INTRODUCTION

During many years of project work in pharma drug
research and discovery settings, we have repeatedly experi-
enced instances where pharmacologists and kineticists/
modelers alike have utilized pharmacodynamic response data
suboptimally. It is our impression that this partly resides in
different terminologies and “language” used in the two
disciplines, but also in differences regarding interpretation
that emanates from the inherent focus on pharmacokinetics
or pharmacodynamics, depending on the very inclination of
the person analyzing the data. Given that important informa-
tion can be lost this way, it is evident to us that an integrated
view would greatly facilitate and increase power of data

analysis. In turn, this is likely to have positive repercussions
on speed and cost of drug discovery and development. In this
tutorial article, we endeavor to enable such integration by
focusing on data patterns and identifying potential underlying
factors that will further analysis and interpretation.

Pattern recognition is a key element in pharmacodynamic
data analyses when first selecting amodel to be regressed to data.
We call this process going from data to insight exploratory data
analysis. Despite being a key element toward further analysis and
understanding, there are no formal best practices that scientists
typically use. This report deals with identifying the properties of a
pharmacodynamic model by dissecting the pattern that response-
time data reveal graphically. Pattern recognition is a pivotal
activity when modeling pharmacodynamic data, because a
rigorous strategy is essential for dissecting the determinants
behind response-time courses. In the pharmacology field, pattern
recognition has also been proposed for interpreting results of
drug-drug interactions and pharmacokinetic data (1,2). To
inspire young kineticists beyond the slavery of computers, we
have practiced pattern recognition over three decades in our
pharmacology teaching. The central question is how much
information one can extract from the data without falling into
the trap of machine-made answers. The analyst should be in
charge of the knowledge extraction prior to utilizing software.

A set of points to consider are proposed that specifically
addresses exploratory data analyses, number of phases in the
response-time course, convex or concave curvature, baseline

“Things are much more marvelous than the scientific method allows
us to conceive” (Keller 1983, pp. 198–207)
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behavior, time delays between concentration- and response-
time courses, lag time prior to drug action, peak shifts in time
of the maximum response with increasing doses, saturation,
shape of return to predose response, and other potential
nonlinearities that are visually caught from the data. Pattern
recognition in pharmacodynamic analyses also differs from
pharmacokinetic analyses in that the time course of the test
compound in plasma diverges markedly from the time course
of the biomarker response. In pharmacokinetic pattern
recognition, the agent monitored in plasma (and/or other
matrices) is generally the same as the one that was originally
administered.

A flowchart for the model building process is proposed
in Fig. 1. Model building should ideally originate in knowl-
edge about mechanism(s) of action, exposure, the observed
consequences of several dose levels, and even repeated
dosing. It is important to always put the pharmacodynamic
outcome in the perspective of pharmacokinetic characteristics
of the test compound; furthermore, this should always be an
iterative process. Figure 1 is primarily meant as a first step to
build pharmacodynamic knowledge.

PRESENTATION OF CASE STUDIES

The basic turnover model, which has been applied to
several of the datasets in this tutorial, is shown in Fig. 2. This
class of models is also known as the indirect response model.
The production or loss processes can either be inhibited or
stimulated by the drug. When stimulation occurs on the
production term (turnover rate), the response increases over
time, and the opposite results when there is a stimulation of
the loss term (fractional turnover rate). Inhibition of produc-
tion drives the response in the opposite direction (decline),
whereas inhibition of the loss term increases the response.
This basic model can then be extended to a myriad of
permutations to capture the drug mechanisms and response-
time patterns.

Figure 3 shows a schematic overview of the 20 data
schemes to be discussed in this paper. These correspond to
patterns typically encountered in in vivo pharmacodynamic
practice and which to a great extent can be characterized by
means of turnover models (3,4).1 In some cases, alternative
models (other permutations of the proposed turnover model
or link models or binding on/off models) may be more
appropriate. The diagram in Fig. 1 was therefore compiled to
briefly highlight alternatives. We have intentionally focused
on turnover concepts given their unparalleled ability to
schematically mimic and explain pharmacodynamic re-
sponses. For each case study, we will provide an underlying
model including the differential equations that describes the
pattern(s) (system), parameters, constants, and number of
functions involved in the regression analysis. Underlying

biological contributory factors will likewise be discussed in
the same context.

& Case studies 1–4 illustrate the basic four turnover
(indirect response) models with inhibition on produc-
tion (case study 1) or inhibition on loss (case study 2),
and stimulation of production (case study 3) or
stimulation on loss (case study 4). These four
examples are covered more in detail with respect to
plasma kinetics, drug mechanism(s), and pharmaco-
dynamics. See also Jusko and Ko for additional drug
examples matching these four cases (5).

& Case studies 5–8 represent models with gradually
increasing complexity. The lack of baseline and
display of a linear (saturable) decline seen in case
study 5 can be compared to the basic turnover model
in case study 3. Case study 6 involves inhibition and
stimulation of kin arising from dual actions of an
agent. See Paalzow and Edlund for additional drug
examples of this pattern (6). A concentration-
response plot is also supplied due to its interesting
pattern. A synergistic system of simultaneous stimu-
lation of kin and inhibition of kout is shown in case
study 7. Case study 8 shows a system of delayed onset
of action, saturable intensity, peak shifts, and a
monotonic return toward the baseline and is there-
fore distinctly different from case study 3.

& Case studies 9–11 demonstrate irreversible drug
actions, exemplified by cell kill (case study 9),
bacterial kill (case study 10), and enzyme removal
(case study 11) datasets. Case study 10 displays an
upper physiological limit. See also Jumbe et al. and
Zhi et al. for other examples of tumor volume models
and bacterial kill, respectively (7,8).

& Case studies 12 and 13 illustrate pattern recognition
from a dose-response-time data perspective. Case
study 12 contains antinociceptive data from iv and sc
dosing with a delayed onset of action, peak shifts with
increasing doses, saturation, and model-dependent
decline toward the baseline. Case study 13 shows a
model that could be used when handling biological
factors such as transduction and downstream events
explaining the delayed response initiation and decline
pattern.

& Case studies 14–15 show oscillating baselines
resulting from the presence of an endogenous ligand
(agonist; case study 14) and a time-dependent
turnover rate kin(t) (case study 15), respectively.
Case study 15 emphasizes the utility of simultaneous-
ly fitting several sources of data. See also Chakraborty
et al. for modeling oscillating baseline concentrations of
cortisol (9).

& Case studies 16–20 all illustrate various kinds of
adaptation ranging from the gene to the functional
receptor response level. Case study 16 demonstrates
a single-dose profile to an antilipolytic agent, includ-
ing tolerance as well as rebound. Case studies 18 and
19 exhibit clear rebound patterns, whereas in case
studies 17 and 20, response approaches the baseline
monotonically due to slow plasma kinetics (t1/2
plasma> t1/2 response). Case studies 17–20 are

1 Some of the datasets are generously shared by different companies
under confidentiality terms; hence, their therapeutic origin or
mechanism of action is not revealed. Needless to say, ideally,
information about the study designs, pharmacological mecha-
nism(s), and/or true variability in the original data would have
improved the analysis. However, even in the absence of such detail,
the presented datasets still serve the purpose of pattern recognition.
In some cases, alternative models (other permutations of the
proposed turnover model or link models or binding on/off models)
may be more appropriate.
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modeled by means of a feedback model demonstrat-
ing its capacity to capture complex response-time
courses. A concentration-response plot is also sup-
plied for case study 18 due to its intriguing pattern.
Ramakrishnan et al. present an extended feedback
mechanism-based pharmacodynamic model (10).

A schematic picture of the turnover models is shown in
Fig. 4.

The four basic turnover (indirect response) models for a
diverse range of pharmacological mechanisms and response-

time patterns have been reviewed previously (5). It was
concluded that turnover models are relevant in pharmacoki-
netic and pharmacodynamic modeling for which the produc-
tion or loss of a biomarker is responsible for the action of
drugs. Our report focuses on the dissection of causes of the
shapes that make up the response-time course, thereby
increasing our understanding of the complete response-time
profile. In order to make typical features emerge more
clearly, we have therefore collected and adapted a set of
patterns extracted from literature data.

The number of parameters which can be calculated for a
given model is not as easily derived by a function as can be
done for the majority of pharmacokinetic models (2,11). One
of the reasons for this is that in pharmacokinetic models, the
dose is known as well as how it is administered, and the
concentration-time course of the same compound is measured
in plasma. By comparison, in pharmacodynamics, a drug is
administered and measured in, e.g., plasma, but the response
monitored is a consequence not only of drug exposure (and
dose) per se but also a plethora of other interactions (cascade
of events, feedback/adaptation/compensation mechanisms,
synergy, saturation, transduction, endogenous agonists, other
experimental conditions including environmental aspects,
etc.). In that sense, pharmacokinetic processes are more
predictable (often first-order absorption and disposition

Fig. 1. Schematic diagram of some points to consider toward model setup. Start by plotting
concentration- and response-time data and combine the two into a concentration-response
plot, yielding hysteresis if there are time delays (diagnostic plots). If there is no obvious
hysteresis (rapid equilibrium), the shape and placement of data along the concentration
axis reveal the model structure. Apply an instantaneous (direct) response model to either
response-time data or concentration-response data. If time delays are obvious in the
diagnostic plots, then consider either a link, turnover or binding on/off model. Check for
delayed onset of action and peak shifts in the R-t courses with increasing doses. If peak
shifts exist, try either a turnover model or a binding on/off model. Let parameter accuracy
and precision be part of the model selection process. Compare half-life of response (t1/2ke0,
t1/2kout, t1/2koff) with half-life of drug in plasma for rate-limiting step. Remember that
mechanistic information should, whenever possible, drive the model building process. Fit
all available response-time data simultaneously

Fig. 2. Principal components of the basic turnover model, also known
as the indirect response model, applied for case studies 1–4.
Inhibition of kin causes a response R to decline. Stimulation of kin
results in an increased response. Inhibition of kout gives increased
response and stimulation of kout a decreased response. Red arrows
indicate the direction of the response relative to its baseline when a
drug is either stimulating or inhibiting (3)
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kinetics, sums of exponentials, rarely nonlinear at pharmaco-
logical concentrations) compared to the pharmacodynamic
response. The latter can seldom or never be approximated by
a sum of exponentials, does not follow the principle of
superposition, is often highly nonlinear, may assume any
variety of atypical baseline behavior, may display circadian/
circannual or other types of rhythm(s), and is frequently a
mixture of endogenous agonist and drug(s) effects and subject
to control or modulation by homeostatic feedback
mechanisms.

We assume that the underlying plasma kinetics are
known in the majority of case studies and can be represented
by a sum of exponentials. The nonlinear behavior shown in
the response-time courses is therefore a consequence of
nonlinear pharmacodynamic processes and is not confounded
by the kinetics. In case studies 5, 13, and 18, we apply a dose-
response-time data analysis and estimate the biophase
parameters simultaneously with the pharmacodynamic pa-
rameters, since no data describing exposure to drug are
available.

A set of points to consider are proposed that may help
guide the model selection unless the mechanism of action is
known.

Case Study 1

In this study, the kinetic/dynamic relationship was
studied for compound X, intended to inhibit enzymatic
production of a protein (amyloid precursor protein, APP) in
the CNS, believed to impact Alzheimer’s disease. Data were
pooled from a group of mice which had received a single dose
of 100 μg kg−1 orally of compound X (Fig. 5, upper graph
(4)). The brain concentration of one of the fragments
resulting from APP cleavage (Aβ1-40) was used as
pharmacodynamic response biomarker. Subgroups of two to
three animals were sacrificed at different time points to generate
plasma concentration- and response (enzyme activity=Aβ1-40

formation levels)-time courses. Vehicle/controls showed a
constant enzyme baseline activity over time. Plasma concentra-
tions peaked at 30 min, while the minimum enzyme activity in
the brain (maximal pharmacodynamic response) occurred at 2–
2.5 h, thus demonstrating a clear time delay of about 2 h
between plasma concentration and enzyme activity. The enzyme
activity remained stably suppressed for 2 h after drug treatment
before a ∼4-h recovery time to baseline ensued. Based on the
findings, the exposure vs. response data analysis aimed at fitting
a turnover model with inhibitory action of production of

Fig. 3. Schematic illustration of the 20 data patterns (4) discussed in this report with the baseline response shown by the
horizontal dashed line in all case studies except number 5, where the baseline equals zero. 1. Inhibition of production of
response. 2. Inhibition of loss of response. 3. Stimulation of production of response. 4. Stimulation of loss of response. 5.
Biomarker response (locomotor activity) starting from a baseline essentially equal to zero. 6. Multiple site simultaneous
action. 7. Synergistic action. 8. Transduction modeling. 9. Cell growth/kill model. 10. Bacterial cell growth/kill modeling. 11.
Irreversible enzyme inhibition. 12. Dose–response-time data analysis—multiple routes of administration. 13. Dose–
response-time data analysis—transduction. 14. Oscillatory hormone model driven by endogenous agonist exposure. 15.
Oscillatory baseline driven by a time-dependent turnover rate. 16. Pool/precursor model. 17. Negative feedback and drifting
baseline. 18. Negative feedback using a push-and-pull model. 19. Gene regulation model. 20. Negative feedback modeling

67Pattern Recognition in Pharmacodynamic Analysis



response (i.e., leading to downstream suppression of APP
fragmentation) and simulate the equilibrium concentration-
response relationship with the final parameter estimates from
the regression.

When data are plotted in time order, the concentration-
response relationship shows a clear disequilibrium, illustrated
by a clockwise hysteresis curve (Fig. 5, bottom left graph).
Note also the saturation of response which occurs over the 5-
to 25-μM concentration range. The latter graph emphasizes
the nonlinear inhibitory nature of the exposure-response
relationship which reaches saturation at about 5 μM.

As seen in Fig. 5, there is an initial 30-min period with
simultaneous increases in plasma concentration and enzyme
suppression. However, thereafter, enzyme activity displays an
apparent independent time course relative to test compound
plasma exposure. From the biological perspective, such a
pattern might suggest that the enzyme inhibition has a rapid
onset (due to short half-life) but is also irreversible, and thus
resynthesis of new enzyme molecules (in the absence of test
compound exposure) is required for reinstatement of full
function.

The apparently independent time course of suppressed
enzyme activity shown in Fig. 5 (bottom right graph) in
relation to test compound plasma levels can be expressed
mathematically as a first-order input/output (Eq. 1) with
inhibitory drug action (Eq. 2) on the production of response
(direct inhibition of the turnover rate of enzyme activity).

Equation 1 represents the joint impact of drug absorp-
tion and elimination processes.

C ¼ A⋅ e−K⋅t−e−Ka⋅t
� � ¼ 32:1⋅ e−0:605⋅t−e−8:8⋅t

� � ð1Þ

The kinetic parameters (A, K, and Ka, representing a
macro constant conglomerate of dose and other model
parameters, elimination rate constant, and absorption rate
constant, respectively) were fixed to their estimated values.
This function then served to drive the nonlinear drug
“mechanism” function I(C), Eq. 2, when fitting the turnover
model (Eq. 3) to response-time data. The plasma
concentration-time curve only serves as a smooth to “drive”
the inhibitory drug “mechanism” function (Eq. 2).

I Cð Þ ¼ 1−
Imax⋅Cn

IC50 þ Cn ð2Þ

I(C) means that the inhibitory action is a function of the
plasma drug concentration C. I(C) acts directly on factors
responsible for production of response, namely the turnover
rate kin. Imax, IC50, and n denote the test compound efficacy
parameter, the potency, and the sigmoidicity factor,
respectively.

Fig. 4. Turnover models used for each of the 20 case studies schematically shown in Fig. 3 (4). R and M are the response and moderator
compartments, respectively. The turnover rate kin (arbitrary unit t−1) is the production (synthesis, secretion) of response and the fractional
turnover rate kout is the loss; kin is typically a zero-order process and kout first-order (t

−1). I(C), S(C), S(D), and S(irrev) denote the inhibitory
and stimulatory drug mechanism functions driven by plasma concentration, the stimulatory function driven by the biophase amount in dose-
response-time (DRT) data analyses, and the irreversible drug mechanism function used for tumor kill, bacterial kill, and irreversible enzyme
binding, respectively. ∼S(C) denotes the oscillatory drug stimulation. S(Ab iv,po) and S(Ab po) are the stimulatory drug mechanism functions
driven by biophase amount after iv/po and po administration, respectively. Case studies 1–20 will demonstrate different permutations of various
levels of complexity
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The turnover of response can be described mathemati-
cally by Eq. 3 below:

dR
dt

¼ production⋅inhibition−loss

Baseline ¼ R0 ¼ production
loss

¼ kin
kout

dR
dt

¼ kin⋅I Cð Þ−kout⋅R

Rss ¼ kin
kout

⋅I Cð Þ ¼ R0⋅ 1−
Imax⋅Cn

ss

ICn
50 þ Cn

ss

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

The basic turnover model contains two parameters, the
turnover rate kin and the fractional turnover rate kout. The
baseline value is the ratio of kin to kout. The turnover rate,
also called production in Eq. 3, is directly inhibited by the
drug “mechanism” function I(C) (Eq. 2). The drug is not
acting directly on the response R (Aβ1-40 concentration) per
se but inhibits directly one of the factors kin that governs the
level of response R. Another classic example of this type of
drug intervention is the inhibitory action of warfarin on
vitamin K which is responsible for the production of
prothrombin complex activity (12). By inhibiting the regen-
eration of vitamin K by means of warfarin, the prothrombin
complex activity decreases, leading to impaired coagulation.

By fitting a mechanism-based pharmacodynamic model
(Eq. 3) to the response-time data (in Fig. 5, upper graph), we
obtain estimates of both systems parameters (kin and kout)
and drug parameters (Imax, IC50). Simulating the equilibrium
relationship between concentration and response in Eq. 3
(bottom line) with the final parameter estimates yields the
equilibrium concentration-response relationship in Fig. 5
(bottom right graph).

Note that enzyme activity response starts at the baseline
value R0 and then gradually decreases down toward a lower
minimum value Rmin as the concentration of inhibitor C
increases (Fig. 5, bottom right graph).

The key features of the patterns in this case study are

& A pharmacodynamic biomarker that starts at a stable
baseline and that is suppressed over time after drug
treatment

& A time delay between the concentration peak and
response trough

& A saturated response which displays as a flat portion
of the response-time course

A plot of the concentration-response data in time order
reveals a clear counterclockwise response and a sustained
response over a wide concentration range. The mechanism of
action is via direct nonlinear inhibition of the turnover rate of
response. The time delay is captured by a turnover model,
representing production of new enzyme molecules in the
absence of drug exposure, and subsequent functional

Fig. 5. Upper graph: plot of concentration-time and response (enzyme activity)-time data
in mice after an oral dose of 100 μg kg−1. A clear time delay is seen between the two time
courses. A flat 2-h time course is seen in the response in spite of declining plasma
concentrations of the test compound. Bottom left: observed concentration-response data
plotted in time order. Note the clockwise hysteresis shown by the gray arrows and the 5 to
25 μM concentration interval where the (enzyme inhibitory) response appears saturated.
Bottom right: semilogarithmic plot of the predicted concentration-response relationship of
compound X. The final parameter estimates of the system and drug parameters together
with their individual precisions (CV %) are also included. Note that this equilibrium
function (Eq. 3, bottom row) lacks the hysteresis loop when plotted since time is no longer
an issue. The blue dashed line in the two bottom graphs depicts the minimum response
level
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restoration. This allows us to fit a mechanism-based turnover
model combined with a two-parameter nonlinear drug “mech-
anism” function to the data. The equilibrium concentration-
response relationship is then simulated using Eq. 4 and the
final parameter estimates from the regression of response-time
data.

Case Study 2

The test compound was administered as a 6-h constant
rate infusion at three dose levels. A pharmacodynamic
biomarker was simultaneously measured over time (Fig. 6,
case study 2 (3)). The mechanism of drug action in this case is
by inhibition of the loss of response. A comparable, classic,
example of such pharmacological action is the inhibitory
action of furosemide on the NKCC symporter-mediated
reuptake of water from urine back to blood, thereby resulting
in an increased urinary excretion rate (5,15).

The baseline response in the data ranges between 40 and
45 units. Dose-normalized areas of the response-time course

above baseline indicated saturation when plotted against dose
administered, which then suggests a saturable (nonlinear)
drug “mechanism” function. A slight peak shift in the
response is seen with increasing doses of the drug. The
pharmacological response still rises for about 1 h after
stopping the constant rate of infusion at 6 h at the highest
dose level. This also suggests that maximal drug action
(saturation) remains for a while in spite of declining plasma
exposure to the test compound. When plasma concentrations
are plotted against response, an atypical disequilibrium
appears as counterclockwise hysteresis curves. The concen-
tration maximum appears earlier than the response
maximum.

The drug has kinetic properties of mono-exponential
disposition with volume of distribution V of 40 L and
elimination rate constant K 0.9 h−1. Equation 4 was first fit
to the plasma kinetics.

dC
dt

¼ In
V

−K⋅C ð4Þ

Fig. 6. Case study 2: observed (filled symbols) and model predicted (solid lines, Eq. 7) response-time data following three 6-h constant rate
intravenous infusion levels. The gray horizontal bar at 40–45 response units represents the baseline variability. The yellow bar shows the length
of infusion (4). Case study 3: observed (filled symbols) and model predicted (lines, Eq. 9) response-time data at three oral dose levels of 10.75,
43, and 172 mg kg−1 given at 45 min, respectively, to rats. Note that the responses peak at approximately the same time after each dose (4).
Case study 4: observed (filled symbols) and model predicted (lines, Eq. 13) response-time data after three constant rate intravenous infusions of
compound X to patients during 4 h at 6400, 32,000, and 160,000 dose units. The horizontal red dashed line indicates the baseline value at about
30 units. The drug acts via stimulation of the fractional turnover rate kout. The vertical red arrows show the time to pharmacodynamic steady
state. Note that the time to steady state and the onset of action are shortened with increasing doses. The yellow bar shows the length of infusion
(4). Case study 5: locomotor activity scores (counts per minute)-time data following two ip 3.12 and 5.62 μg kg−1 doses of dexamphetamine
(13,14). Note the apparently linear and parallel decline in response over time independent of dose. The dashed and solid lines are the resulting
model fits when using a bolus- or a first-order input/output biophase model, respectively
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In is the infusion regimen. It is also known that the drug
intervenes with factors controlling the loss of response (Eqs. 5
and 6).

I Cð Þ ¼ 1−
Imax⋅C
IC50 þ C

ð5Þ

Similar to, for example, case studies 4, 8, 12, and 13,
dose-normalized areas-under-the-response-time curves
AUCR decreased when plotted against the dose. This
suggests a nonlinear drug “mechanism” function. Inhibition
of the loss of response in Eq. 6 is then substituted by I(C).

dR
dt

¼ production−loss⋅inhibition

dR
dt

¼ kin−kout⋅I Cð Þ⋅R

R0 ¼ production
loss

¼ kin
kout

Rss ¼ kin
kout

⋅
1

I Cð Þ ¼ R0⋅
1

I Cð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

In Fig. 6 (upper left graph), the time courses of response
are shown at three dose (exposure) levels. Note that
pharmacodynamic steady state is not reached within the 6-h
infusion for any of the three infusion regimens. Thus, the
initial slopes are not the true values of kin due to the
incomplete inhibitory effect of the drug on the fractional
turnover rate. However, a good approximation of kin is
obtained from the initial rising slope at the highest
response-time course.

The key patterns in response-time and concentration-
response data are

& The nondrifting baseline (obtained from a separate
study)

& The stimulatory (increase in) response-time courses
& Saturation obtained from dose-normalized areas under
the response-time courses above baseline

& Peak shifts with increasing exposure levels
& The relatively rapid asymptotic return to baseline upon
cessation of infusion

All these features collectively suggest that a turnover
model with inhibitory action of the loss of response is a good
starting point, which is also the mechanism of action.

Case Study 3

Three oral doses of a new compound, acting on the
urinary bladder sphincter muscle via stimulatory alpha2-
receptor action, were given to three groups of rats, and a
physiological biomarker (voiding volume) was measured
frequently over an 8-h period (Fig. 6, case study 3 (4)).
Data show a predose baseline value (R0), a rapid onset of
action with maximum response within 1 h after dosing, a lack
of saturation with increasing doses, and a dose-dependent
duration of response above the baseline.

A simple one-compartment model could describe the
plasma kinetics of the drug within the studied dose range. The

kinetic parameters served as input to the stimulatory function
of the response model. The volume of distribution V and
elimination rate constant K were 5.2 L and 0.46 h−1,
respectively.

An exponential stimulatory drug “mechanism” function
is proposed, which includes a concentration parameter EC50

corresponding to the plasma concentration where the re-
sponse is twice the baseline. This structure is proposed since
there is no tendency toward observed saturation with
increasing doses. The stimulatory drug “mechanism” function
is written as

S Cð Þ ¼ 1þ Cn
ss

ECn
50

¼ 1þ Css

EC50

� �n

ð7Þ

where the exponent n can be set as a parameter or fixed to a
constant value of 1 to avoid overparameterization of the
model. Equation 8 represents the drug response originating
from direct stimulation of the production of the response (i.e.,
stimulation of buildup with lack of peak shift, Fig. 6, upper
right)

dR
dt

¼ production⋅stimulation− loss

Baseline ¼ R0 ¼ production
loss

¼ kin
kout

dR
dt

¼ kin⋅S Cð Þ−kout⋅R

Rss ¼ kin
kout

⋅S Cð Þ ¼ R0⋅S Cð Þ ¼ R0⋅ 1þ Css

EC50

� �� �

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

The time to pharmacodynamic steady state is governed
by the half-life of kout assuming a constant plasma concen-
tration Css. The level of response at steady state (Rss) is
independent of time but dependent on the actual plasma drug
concentration Css (and on baseline response R0) so that

Rss ¼ R0⋅ 1þ EC50

EC50

� �n� �
¼ R0⋅2 ð9Þ

The value of parameterizing the pharmacodynamic
model this way (Eq. 7) becomes evident when Css equals
the EC50 value and the response is increased 100% from its
baseline value (Eq. 9, where Rss becomes 2 times the baseline
value R0).

The key pattern seen in experimental data are

& A nondrifting baseline response (obtained from a
separate study)

& A time delay between peak concentration and peak
response

& A dose-dependent rise in response, with no peak shift
in response with higher doses

& A lack of saturation (information obtained from dose-
normalized area under the response-time curves above
the baseline) at higher doses

& An asymptotic return toward the predose baseline value

This pattern is captured by a turnover model with linear
(exponent n=1) stimulatory action on the production of
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response. Another example of a biological system principally
comparable from the pattern point of view is the stimulatory
action of erythropoietin on red blood cell count (16).

Case Study 4

This case study demonstrates the response-inhibitory
action of a test compound given as a constant infusion during
4 h at three rates. The response starts at a defined baseline
and is suppressed by the test compound (Fig. 6, case study 4
(4)). The onset of action is dose-dependent in that an increase
in exposure to test compound shortens the onset of action and
the time to pharmacodynamic steady state. The mechanism of
action is via stimulation of factors responsible for the loss of
response (S(C)·kout). The response exhibits its nadir at the
highest exposure to test compound and very little added
effect is seen relative to the intermediate-dose level in spite of
a 5-fold increase in dose between the intermediate- and high-
dose groups. There is also a 1-h delay before return toward
baseline with the highest dose group, and no rebound is
observed upon reaching predrug baseline response level
again. Dose-normalized areas of the response-time courses
also display nonlinearities when plotted against dose, sug-
gesting that S(C) is a saturable nonlinear expression. For less
than 1 h, the three time courses back to baseline rise in
parallel. Another example where increased drug exposure
may lead to a similar time-response pattern is the observed
body weight suppression after CB1-receptor antagonists. Such
agents are anorexigenic but will also at higher exposure
increase energy expenditure and thereby increase the burning
of body fat, both processes in turn contributing to body
weight loss (17).

Equation 10 was first fit to the plasma kinetics.

dC
dt

¼ In
V

−K⋅C ð10Þ

In represents the 4-h infusion regimens. The test
compound acts on the loss of response (Fig. 6, bottom left
graph) according to a nonlinear (saturable) drug “mecha-
nism” function, where Smax, SC50, and n are the drug efficacy
parameter, potency, and sigmoidicity factor (exponent),
respectively.

S Cð Þ ¼ 1þ Smax⋅Cn
ss

SCn
50 þ Cn

ss
ð11Þ

which then enters the function of turnover of response
(Eq. 12)

dR
dt

¼ production− loss⋅stimulation

Baseline ¼ production
loss

¼ kin
kout

dR
dt

¼ kin−kout⋅R⋅S Cð Þ

Rss ¼ kin
kout

⋅
1

S Cð Þ ¼ R0⋅
1

1þ Smax⋅Cn
ss

SCn
50 þ Cn

ss

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ

Note that pharmacodynamic steady state is reached at
about 2 h for the low infusion regimen and at less than 1 h for
the high infusion regimen (Fig. 6, bottom left graph).

The key patterns obtained from visual inspection of
response-time and concentration-response data are

& A nondrifting baseline (obtained from a separate
study)

& A concentration (dose)-dependent suppression of
response

& Time delays between concentration and response
(hysteresis)

& A faster onset of action and shorter time to pharma-
codynamic steady state with increasing exposure to test
compound

& A saturation of response (as judged from dose-
normalized areas under the response-time courses)

& An asymptotic return toward baseline

A turnover model with saturable stimulatory action on the
loss of response adequately captured the observed response-
time courses. The pattern, particularly the shortened time to
onset seen at increased exposure, is consistent with a drug
mechanism involving enhanced loss of the pharmacodynamic
response. This might be due to actions at a single process,
or—in case the pharmacodynamic response is controlled by
multiple systems, like body weight—the recruitment of two or
more processes that are influenced by the same target (as
exemplified in the discussion of CB1 antagonists above (17).

Case Study 5

Data were digitized from van Rossum and van Koppen
on locomotor activity score after intraperitoneal administra-
tion of dexamphetamine to rats at two dose levels (Fig. 6, case
study 5 (13,15)). Data suit the purpose of dose-response-time
modeling since the resolution is high, with adequate granu-
larity in both the rise and decline in response and a clear peak
shift with dose, and two dose levels were used. We will show
that the slope of the post-peak linear decline in the locomotor
activity score was independent of dose (3.12 and
5.62 μg kg−1).

A biophase model was fitted mimicking a first-order
input into the biophase compartment (Eq. 13), resulting in
the functions where Ab denotes the amount in the biophase

Ab tð Þ ¼ D⋅K
0
⋅t⋅e−K

0
⋅t ð13Þ

The stimulatory drug “mechanism” function is

S Abð Þ ¼ Smax⋅An
b

SDn
50 þAn

b

S Ab 0ð Þð Þ ¼ 0

8><
>: ð14Þ

parameterized with Smax, SD50, and n corresponding to the
maximum drug-induced efficacy, potency, and the Hill
exponent, respectively (14). Note that the drug “mechanism”
function (Eq. 14) lacks the constant term (1+ …) typically
found in these functions since no baseline information is
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available. This means that in the absence of drug, there will
be no buildup of locomotor activity, which may perhaps seem
a little odd. However, the group reporting these data has in
other similar studies allowed 1 or more hours of habituation
to experimental cages before recording the motor activity
data. Such preadaptation minimizes the exploratory behav-
ior otherwise expressed by rodents put in a novel environ-
ment, particularly if carried out during the light phase of the
24-h cycle, thus explaining the very low level of locomotor
activity before and after the period of drug challenge.
Modeling turnover rate kin and the Smax expression did not
improve the fit but resulted in practically unidentifiable
parameter values.

The drug “mechanism” function is then incorporated
into the systems equation of the pharmacological response

dR
dt

¼ S Abð Þ−kout Rð Þ⋅R

kout Rð Þ ¼ kout;max⋅
1

kM þ R

Rss Abð Þ ¼ kM⋅
S Abð Þ

kout;max−S Abð Þ

8>>>>>>><
>>>>>>>:

ð15Þ

where kin has been removed since the model lacks a
baseline value of locomotor activity. The kout(R) term is
the response-dependent fractional turnover rate constant
(Eq. 15, middle row). In light of the linear decay of
response (Fig. 6), the loss of response will be modeled as
a saturable term kout(R) with a fractional turnover rate kout
as a function of R.

The pharmacological response will reach an equilibrium
state if the rate of production is less than the maximal rate of
loss, i.e., when the first term in Eq. 15 (upper row) is smaller
than the maximal upper bound of the second term, i.e., if
S(Ab)<kout. The equilibrium biophase amount-response rela-
tionship is given by Eq. 15 (bottom row).

The data are rich since it contains high-resolution
response-time at two dose levels. It appears that the
dexamphetamine-locomotor activity scores is a linear relation
of the time post-peak independent of dose. Equation 15
(middle row) is therefore suggested as a reasonable approx-
imation of the zero-order decline of response-time data. The
model is simultaneously fit to both response-time courses.
Dose-normalized areas increased with dose which indicates
some kind of saturation in the loss of response and/or
saturable stimulation function which is also supported by the
peak shift in the response-time courses.

The pattern of case study 5 deviates from that of case
study 3 in that the former lacks a baseline and has a linear
post-peak decline in contrast to case study 3 which has a
curve-linear decline.

The key patterns of this dataset are

& A near-zero baseline
& A rapid rise in the onset of action
& A dose-dependent peak shift and linear post-peak
response decline

The peak shift indicates nonlinear stimulation and the
dose-independent parallel post-peak decline suggests saturable
(nonlinear fractional turnover rate) elimination. The near-zero

baseline (or nonobservable baseline) is dealt with by removing
the turnover rate from the equations. Remember that the
analysis of response-time data is generally improved by access
to the actual exposure profile(s) driving the response.

Case Study 6

Data were collected from a clinical study of the new
Alzheimer compound, γ-secretase (GSECR) inhibitor
LY450139 (18). Oral doses (40, 100, 140 mg) gave a dose-
dependent reduction in the plasma Aβ1-40 concentrations
which then returned toward baseline in a dose-dependent
manner (Fig. 7, case study 4). All doses gave a substantial
rebound effect, suggested to be due to the release of
peripheral depots of stored Aβ1-40. The suppression of Aβ1-

40 lasted for 6, 9, and 11 h in the low-, intermediate-, and high-
dose groups. The integral of the unwanted rebound effects
was substantially larger than the integral of suppressed
response.

As referred to above, low concentrations of GSECR
inhibitors may have a stimulatory effect on the γ-secretase
complexes expressed in the peripheral but not central
tissue(s). This stimulatory effect in peripheral tissues is
overcome by inhibition at higher concentrations (Siemers
et al. (18)). The proposed mechanism-based turnover model
may thus be expressed

Fig. 7. Upper graph: observed (filled symbols) and model predicted
(lines) response-time data in plasma after oral administration of
LY450139 to human volunteers. Data scanned from Siemers et al.
(18). Dataset analyzed with a dual action (inhibitory/stimulatory) on
the turnover rate of response (Eq. 16). Bottom graph: concentration-
response plot with data from all three dose groups collated
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dR
dt

¼ production⋅inhibition⋅stimulation−loss

R0 ¼ kin
kout

dR
dt

¼ kin⋅I Cð Þ⋅S Cð Þ−kout⋅R

Rss ¼ kin
kout

⋅I Cð Þ⋅S Cð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

There is a pronounced inhibition (reduction) of response
at high concentrations where I(C) will dominate over S(C)
(IC50 still high in comparison to SC50). At low concentrations,
the S(C) term dominates and a response above baseline R0 is
established (Eq. 16, bottom row). Alternative models have
been presented elsewhere (19).

The key patterns of this dataset are

& A defined predose baseline value
& An initial dose-dependent suppression followed by
& A dramatic rebound of response, which displays
& A peak shift with increasing doses

This biphasic behavior is modeled by means of dual
action inhibitory/stimulatory drug mechanism functions.
Suppression of response occurs at high initial plasma concen-
trations of the test compound (inhibitory action) and rebound
which is a consequence of a predominant stimulatory action
restricted to a peripheral vs. central compartment at lower
concentrations.

Case Study 7

The CNS activity of compounds A and B have been
established in a series of preclinical studies, and a recent
analysis pointed at some important aspects of synergistic
effects during concomitant treatment with A and B in certain
acute psychotic disorders (Fig. 8, case study 7 (4)).
Compound A inhibits biochemically the removal of a CNS
mediator, while compound B stimulates the release of the
same mediator, both mechanisms resulting in an increased
synaptic presence of the mediator. Combined exposure to A
and B shortens the time of onset of response, increases the
intensity beyond prediction, and extends the duration of the
response. The baseline has been shown to be stable within the
observational time frame. It is evident that inhibiting the
removal of the mediator (= I(C) in the schematic) by
compound A while at the same time enhancing the output
(= S(C) in the schematic) by compound B will result in a
marked accentuation of the final response. Moreover, a
steeper slope of biomarker response buildup is seen after
compound A compared to compound B (Fig. 7, case study 7).
This indicates that, at the exposures in the example, slowing
the rate of mediator removal has a stronger impact on the
response than does the facilitation of release. Thus, while
based on the combined mechanisms of A and B, a synergistic
response might certainly be predicted, the strong augmenta-
tion of response attained upon their combination disclosed
further insights on the underlying biology of the processes
and their relative importance in this context. In turn, such
knowledge might also help to further understand the

pathophysiology of the condition to be treated, and poten-
tially adjusting component dosing protocols to optimize
therapy.2

The exposure profiles of compounds A and B were
modeled separately and then served as input to S(CB) and
I(CA), respectively. The turnover model of the CNS response-
time data is shown in Fig. 4 (case study 7) together with the
proposed mechanisms of action; stimulation of the release (=
S(CB)·kin) and inhibition of removal (= I(CA)·kout·R) of the
mediator. The turnover of response dR/dt can be described by
Eq. 17

dR
dt

¼ production⋅stimulation−loss⋅inhibition

dR
dt

¼ kin⋅S CBð Þ−kout⋅I CAð Þ⋅R

Rss ¼ R0⋅
S CBð Þ
I CAð Þ ¼ R0⋅

1þ Emax⋅CB

EC50;B þ CB

1−
Imax⋅Cn

A

ICn
50;A þ Cn

A

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17Þ

where kin is the turnover rate (production), kout the fractional
turnover rate (loss), S(CB) the stimulatory action of com-
pound B, and I(CA) the inhibitory action of compound A.
Equation 17 can be rearranged for prediction of the steady-
state response Rss under continuous exposure to A and B.
Equation 17 (bottom) also states that the combined impact of
the two test compounds is synergistic S(CB)/I(CA) rather than
additive S(CB)+I(CA), where Emax, EC50B, Imax, and IC50A

are the efficacy and potency of compounds B and A,
respectively. Prior information supports the conclusion that
Imax can be set to unity (i.e., there is total blockade of loss of
response at a high enough exposure to compound A).

The key patterns of this dataset are

& A stable baseline (obtained from a separate
experiment)

& A slow rise in response by either stimulation of kin or
inhibition of kout

& Synergistic action when compounds are given
simultaneously

This pattern is elucidated by administration of two
compounds alone or combined. The onset of action is slow,
reaches a peak, and then declines back to the baseline value.
When given together, a faster onset of action, a higher intensity
of response, and a longer duration of action are seen. This
greater than additive (i.e., synergistic) action when compounds
are combined can be explained by their cooperative effect
originating from simultaneous stimulation of production of
response and inhibition of its loss. Also, a faster return of the
response back to baseline with the combination treatment may
be indicative either of rapid tolerance development or the early
cessation of inhibitory action by agent A on factors determin-
ing the loss of response (20).

2 An “additive” drug “mechanism” on the response by two com-
pounds results in a 1+1=2 response. A “multiplicative” (synergistic)
drug “mechanism” on the response results in a greater response
than the sum of the individual contributions.
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Case Study 8

Concentration-time data and response-time readouts in
this case study were obtained from an anonymized set of
human data. The study design had the following characteris-
tics: stable baseline during the run-in period (Fig. 8, case
study 8 (4)), three dose levels in an ascending dose protocol
fashion, and tested in the same subject at three separate
occasions. A 20–24-h delay was observed for the onset of
biomarker response which increased in a dose-dependent
fashion. A peak shift was observed with increasing doses,
manifesting as a tendency toward saturation at the two
highest doses. Dose-normalized areas under the response-
time courses declined when plotted against dose, strengthen-
ing the notion that the stimulatory response is saturable.
Intensity of response increased less than dose-proportionate-
ly. The biomarker response waned toward the baseline, after
a relatively constant value for 72 h at the highest dose.

A mono-exponent ia l model was fi t to the
concentration-time data. The nonlinear drug stimulatory
function is written as

S Cð Þ ¼ 1þ Emax⋅C
EC50 þ C

ð18Þ

The turnover model for interaction between ligand C
and receptor Rrec is

dRrec

dt
¼ kin⋅S Cð Þ−kout⋅Rrec

¼ kout⋅ R0⋅S Cð Þ−Rrecð Þ ¼ 1
τ
⋅ R0⋅S Cð Þ−Rrecð Þ

ð19Þ

where τ is the transit time through each intermediate
compartment. That is, τ corresponds to the time needed to

Fig. 8. Case study 7: observed (filled circles) and model predicted (solid lines) response-time data of the stimulatory effect of compound B on
production of response (filled circles; middle time course), inhibitory effect of compound A on loss of response (open circles; bottom time
course), and the combined response of the two after simultaneous dosing (filled triangles; top time course). Compounds A and B were infused
over a period of 4 h with a total amount of 4000 and 8000 μmol, respectively. The red curve and bidirectional arrows show the theoretically
predicted outcome of a strictly additive drug action of compounds A and B relative to compound B alone. The yellow bar shows the length of
infusion (4). Case study 8: observed (symbols) and predicted (lines) response-time data. Note the concave rise in response during the first ∼36 h
after dosing. The maximum response displays a tendency toward saturation at the highest dose. There is also a small peak shift with increasing
doses, which is due to the nonlinear stimulatory function (Eq. 20). The dashed horizontal line shows the constant baseline value (4). Case study
9: linear plot of observed (solid symbols) and model predicted (lines) tumor volume-time data in a number of mice. The vehicle control (0 mg)
displays an exponential growth in tumor volume, whereas the other dose groups show a dose-dependent time shift in the growth/regrowth
curves. The two highest dose groups also exhibit a stalled tumor growth for ∼200 h and shrinkage in tumor volume for ∼600 h, respectively (4).
Case study 10: observed (symbols) and predicted (lines) response (bacterial count) vs. time after 1, 2, 4, and 8 μg of a new antibiotic U-FU.
Note the large range of response counts (5 orders of magnitude) (4)
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transit and convey the signal via a chain of mediators further
and further downstream from the initial point of drug-target
interaction. The turnover of response in each transit com-
partment in the chain from receptor Rrec (Eq. 19) to observed
response R4 becomes

dR1

dt
¼ 1

τ
⋅ Rrec−R1ð Þ ¼ kout⋅ Rrec−R1ð Þ

dR2

dt
¼ 1

τ
⋅ R1−R2ð Þ ¼ kout⋅ R1−R2ð Þ

dR3

dt
¼ 1

τ
⋅ R2−R3ð Þ ¼ kout⋅ R2−R3ð Þ

dR4

dt
¼ 1

τ
⋅ R3−R4ð Þ ¼ kout⋅ R3−R4ð Þ

8>>>>>>>><
>>>>>>>>:

ð20Þ

where R4 is the function for the observed functional response.
Note that the model can be parameterized either with kout or
the transit time τ, where kout equals 1/τ.

The key patterns of this dataset are

& A stable baseline (obtained from a separate
experiment)

& A delayed onset of action that may be mimicked by
one or more “transit” compartments

& Peak shifts in response with increasing doses
& Saturation at the highest dose
& A less than dose-proportional increase in response
& A slow return of the response toward the baseline

The 20–24-h delay in the onset of action along with the
aforementioned list of pattern characteristics suggests that the
biomarker response observed is located downstream of the
initial drug-target mechanism. A series of transit compartments
was thus introduced in the model to capture the slow onset of
action, and a nonlinear drug mechanism function used to tailor
saturable peak response at the highest dose. A constant
baseline value was assumed for the observed time range.

Case Study 9

This case study highlights modeling of tissue growth/kill
by means of a first-order growth second-order kill model.
Data were collected on tumor xenograft volume after vehicle
control and a single dose of 0.5, 2, and 10 μmol kg−1 of a test
compound given orally to mice (Fig. 8, case study 9 (4)). The
tumor volume data displayed an exponential increase over
time in the vehicle/control group (0 mg), thus an upwardly
drifting baseline reflecting the balance between tissue growth
and death in the absence of drug treatment. The tumor
volume response was shifted to the right with increasing
doses, and in the highest dose group (1 mg), there was also a
temporary decrease lasting ∼600 h, until the tumor size
eventually returned toward predose baseline. Tumor re-
growth occurred in a near-parallel fashion to the control
group with the two lower dose regimens, but appeared
somewhat slower with the highest dose (at least for the
duration of the experiment). These observations might
suggest that the lower doses primarily act on the tumor
growth process, whereas the highest dose additionally incor-
porates an effect on the “kill” mechanisms.

The basic turnover of the natural cell growth and cell
death is given by Eq. 21 (upper row). It is however assumed

that few cells are actually killed and removed in the vehicle
control group within the studied time frame, therefore
resulting in the approximation represented by the simplified
expression shown in the bottom row of Eq. 21.

dR
dt

¼ kgrowth⋅R2=3−kkill⋅R2=3

dR
dt

¼ kgrowth⋅R2=3

8>><
>>: ð21Þ

In the presence of the test compound, turnover of cell
growth and cell kill becomes

dR1

dt
¼ kgrowth⋅R

2=3
1 −kkill⋅R

2=3
1 ⋅S Cð Þ

dR2

dt
¼ kkill⋅R

2=3
1 ⋅S Cð Þ−kkill⋅R2=3

2

dR3

dt
¼ kkill⋅R

2=3
2 −kkill⋅R

2=3
3

dR4

dt
¼ kkill⋅R

2=3
3 −kkill⋅R

2=3
4

8>>>>>>>>>>><
>>>>>>>>>>>:

ð22Þ

The 2/3 power term was suggested by Jumbe et al. (7), to
account for a spherically based tumor shape and growth.
While it may be applicable in other contexts also, it should
not be used by default. The cytotoxic action of the test
compound S(C) is given as a nonlinear function of test
compound concentration, the maximum kill rate capacity, and
a parameter KC50 which corresponds to the plasma test
compound concentration at which the kill rate has reached
50% of maximal capacity.

S Cð Þ ¼ kkill;max⋅
Cn

KCn
50 þ Cn ð23Þ

which is a saturable kill process where the exponent n is fixed
to 1. The kkill,max parameter is unitless and is simply a scaling
factor of kkill. The model assumes that when no drug is
onboard, there will be no killing process, only tumor growth.
To avoid this limitation of the original model, we suggest that
Eq. 24 is rewritten as

S Cð Þ ¼

if C > 0 then

¼ 1þ kkill;max⋅
Cn

KCn
50 þ Cn

if C ¼ 0 then

¼ 1

8>>>>>><
>>>>>>:

ð24Þ

This means that S(C) is either the full expression (Eq. 24,
upper row) when drug is present or 1 (Eq. 24, bottom row)
when no drug is present.

TV(t) represents the tumor volume measured at time t,
where the initial (t=0) tumor volume is TV(0),

TV tð Þ ¼ V R1ð Þ þ :::::þ V Rnð Þ ð25Þ
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The number of compartments of cell proliferation
and death is very much dependent on the resolution of
experimental data and the duration of the initial plateau
in tumor volume upon dosing of the test compound. A
total of four compartments for the tumor volume TV(t)
is used in this example which could be tested by adding
or removing a transit compartment at a time to the
model. The number of transit compartments that gener-
ates the lowest objective function value is typically
chosen.

The tumor static concentration TSC of a single test
compound system, whereby tumor growth and death rates are
equal and tumor volume remains unchanged, is derived
below:

TSC ¼ kgrowth⋅KC50

kkill⋅kkill;max−kgrowth
ð26Þ

The calculated TSC provides insight on drug efficacy and
the in vivo sensitivity of the tumor cells (7). This concentra-
tion also provides guidance for optimal dose selection when
developed for drug combinations.

The key patterns of this dataset are

& A drifting baseline, displaying as exponential growth
in the control group

& A dose-dependent increase in the duration of drug
action before tumor growth recurs

& A possible differential impact of lower vs. high dose on
cell growth and kill processes

The growth of tumor volume vs. time displays an
exponential growth in the vehicle control group and then a
dose-dependent rightward time shift in tumor volume growth
with increasing drug doses. The intermediate dose seems to stall
growth for ∼200 h, whereas the high-dose group showed
shrinkage in tumor volume below the initial value for ∼600 h.
Data are lacking an upper physiological limit of tumor volume
which may have repercussions on the actual parameter
estimates. Disclaimer: Data in tumor volume studies are often
truncated in the volume or time dimension due to ethical
constraints. This may result either in errors in the model
structure and/or in biased parameter estimates. The use of
switches between the exponential and linear phases in growth
rates is biologically implausible and should therefore be
avoided whenever a mechanistic interpretation of models and
parameters is sought.

Case Study 10

In this example, a new potent antibacterial compound
was being developed. To establish its potency in a
resistant bacterial strain, a 10,000 unit dose of bacteria
was injected into the bloodstream of four groups of Wistar
rats (Fig. 8, case study 10 (4)). Doses of 1, 2, 4, or
8 μg kg−1 of the antibiotic were given to each of the
groups, respectively. The bacterial count in the vehicle/
control (0 μg) group rose by approximately 3-fold within
the 25-h time frame of the experiment. The drug dose
groups displayed a dose-dependent lowering in bacterial
count and a shortening in onset of action with increasing

dose. All curves show parallel first-order bacterial re-
growth over time. The upper “physiological” limit Nmax is
defined as the number of colony-forming bacterial units
(CFU) observed in the vehicle control group in the last
(25 h) readout.

The following first-order growth and second-order kill
differential equation model was fit to the data.

dN
dt

¼ kg⋅N⋅ 1−
N

Nmax

� �
−kk⋅C tð Þ⋅N ð27Þ

N is the number of bacterial counts, C(t) the biophase
function, kg the first-order growth rate constant, and kk the
second-order bacterial kill rate constant. Dosei and K are the
drug dose and elimination rate constant, respectively. The (1
−N/Nmax) term captures the linear reduction in bacterial
growth toward the upper limit Nmax.

The key patterns of this dataset are

& A set predose baseline value and a maximum bacterial
growth level

& A first-order growth pattern
& A dose-dependent increase in bacterial kill response
followed by regrowth

The key patterns in this case study are observed against a
defined vehicle/control response. The onset of drug action
becomes shorter and the maximum effect more pronounced
with increased dose, suggestive of a main stimulating effect
on the loss (= “kill”) mechanism. Bacterial regrowth appears
as a first-order process (kg) and occurs in parallel at all dose
levels.

Case Study 11

A new class of agents was developed to irreversibly
inhibit an enzyme believed to play a role in many inflamma-
tory disease conditions. High-resolution enzyme activity data
were obtained at two dose levels throughout 24 h (Fig. 9, case
study 11 (4)). A faster onset of action to a target response
level less than 6 response units was observed with the higher
dose. The intensity of response (trough value) was suppressed
by 50% and 90% after the low and high dose, respectively.
The duration of a corresponding clinical response was about
10 and 24 h in the low- and high-dose groups, respectively.
This might suggest that a more than 10–20% reduction of the
enzyme pool (i.e., to ≤9–10 units) is associated with clinical
utility.

The buildup of enzyme levels R is produced by a zero-
order turnover rate kin and eliminated by a first-order
process −kout·R, which represents the natural degradation
of enzyme. The drug concentration C acts via depletion of
R, expressed as −kirrev ·C·R. The second-order term
“−kirrev·C·R” implies that the total AUCR will be indepen-
dent of the shape of the drug concentration-time profile
provided the total AUC (drug) stays the same. The
turnover of response after an oral dose of drug X can be
written mathematically as
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dR
dt

¼ kin−kout⋅R−kirrev⋅C⋅R

R0 ¼ kin
kout

Rss ¼ kin
kout þ kirrev⋅Css

¼ R0⋅
1

1þ kirrev
kout

⋅Css

8>>>>>>>>><
>>>>>>>>>:

ð28Þ

where kin is the turnover rate, kout the fractional
turnover rate, kirrev the second-order rate constant for
the drug response complex (time−1·concentration−1), and
C the concentration of the drug. The equilibrium
concentration-response relationship is given by Eq. 28
(bottom line).

The key patterns of this dataset are

& A defined baseline (empirically assumed to be
constant)

& A dose-dependent shortening of the onset of action
with an increase in dose

& A leftward response trough shift with increasing doses

& A dose-dependent decrease of trough values
& A dose-dependent increase in duration of response
& A parallel return back to baseline in the two response-
time courses

The key patterns in this case study are not observed
against a defined vehicle/control response. However, the onset
of drug action becomes shorter and the trough response lower
with increased dose. The onset of response is rapid and the
offset is slow, likely due to slow de novo synthesis of enzyme.
Remember that the analysis of response-time data is always
improved by concomitant monitoring of the actual exposure
profile(s) driving the response.

Case Study 12

A potential analgesic drug was given at two dose levels
(1 and 10 μg kg−1) via the intravenous route and at three dose
levels (10, 50, and 100 μg kg−1) via the subcutaneous route.
The time (in seconds) to respond to a moderate pain stimulus
was determined at different times up to 3 h after dosing. The
test model utilizes a reflex response to heat, most commonly
induced by focusing a laser beam on the tail of a rodent and

Fig. 9. Case study 11: observed (symbols) and predicted (solid lines) responses from a single-dose study (400 and 1600 mg). The test compound
was given to the same subject at two occasions. Note the shift to the left in the enzyme activity trough value (red bars; decrease in tmax) with an
increase in dose (4). Case study 12: observed (symbols) and model predicted tail-flick response (lines) vs. time of drug X after different doses
given by the intravenous (dashed lines) and subcutaneous (solid lines) routes. The subcutaneous doses are 10, 50, and 100 μg kg−1 and the
intravenous doses are 3 and 10 μg kg−1. The red bars show the peak shifts in response with increasing iv doses (4). Case study 13: observed
(symbols) and predicted (solid lines) of basal acetylcholine release vs. time after acute dosing at three dose levels (control group, filled triangles;
20 μmol kg−1 open circles; 40 μmol kg−1 filled circles; 80 μmol kg−1 open diamonds) of the nicotinic agonist TC-1734 (21). Red bars denote peak
shifts in response with increased doses (4). Case study 14: observed human mediator- (concentration, red) and biomarker- (response, blue) time
data. The pattern to observe is that mediator precedes the biomarker response by 4–5 days. The amplitude in response is about 0.4 units
fluctuating from a mean response of about 0.6 units. The response has a cycle period of 28 days
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monitoring the time until the animal withdraws its tail as a
measure of pain sensitivity. The tail-flick response-time data
were obtained from each dose level after an acute dose
(Fig. 9, case study 12 (4)). No plasma exposure data are
available and we thus approach the problem by analyzing the
available dose-response-time data (22).

A mono-exponential model and a first-order input/
output model are assumed to suitably describe the biophase
kinetics after systemic (iv; Eq. 29, upper row) and extravas-
cular (sc; Eq. 29, bottom row) dosing, respectively.

Ab ¼ Div⋅ e−K⋅t� �
Ab ¼ Ka⋅F*⋅Dsc

Ka−Kð Þ e−K⋅ t−tlagð Þ−e−Ka⋅ t−tlagð Þh i
8><
>: ð29Þ

where Ab denotes the biophase amount, Div the intravenous
dose, K the elimination rate constant, Ka the absorption rate
constant, F* the biophase availability, Dsc the subcutaneous
dose, and tlag the lag time. Note that there are no volume
terms in Eq. 29 for the biophase amount expressions. The
stimulatory drug “mechanism” function is given by Eq. 30

S Abð Þ ¼ 1þ Emax⋅An
b

EDn
50 þAn

b
ð30Þ

where Emax, ED50, and n are the efficacy, dose at half-
maximal drug-induced response, and the sigmoidicity param-
eter, respectively.

This nonlinear function causes a peak shift in maximum
response with increasing doses and allows the turnover
system to capture the time window where saturation occurs
in response data. The turnover function of the response
where drug acts by stimulating the production of response is

dR1

dt
¼ kin⋅S Abð Þ−kout⋅R1

dR2

dt
¼ kout⋅R1−kout⋅R2

dRobs

dt
¼ kout⋅R2−kout⋅Robs

8>>>>><
>>>>>:

ð31Þ

The two transit compartments R1 and R2 are included to
capture the slow initial buildup of response Robs. The delay is
assumed to primarily reflect the access and buildup of
effective analgesic concentrations in the biophase(s) relevant
to modulation of the tail-flick response. The predicted
response at equilibrium is generated from Eq. 32

Rss ¼ kin
kout

⋅S Ab;ss
� � ¼ R0⋅ 1þ Emax⋅An

b;ss

EDn
50 þAn

b;ss

 !
ð32Þ

Ab,ss corresponds to the X-axis and Rss to the Y-axis.
The key patterns of this dataset are

& A baseline response (defined by the predose pain
response threshold in the same animals)

& A slightly delayed onset of action (buildup of
response) captured by a series of transit compartments

& A dose-dependent rightward peak shift due to the
nonlinear drug “mechanism” function

& Saturation at the highest subcutaneous dose
& Absorption rate-limited drug elimination and thus
duration of (subcutaneous) response

& A more rapid decline back to baseline following
intravenous compared to subcutaneous dosing

The key patterns in this case study are not observed
against a defined separate vehicle/control response, but iv and
sc data are compared, and the response-time course is related to
the predose pain threshold in the same animals. The onset of
drug action exhibits a slight delay followed by a concave
buildup. Increasing doses lead to a peak shift in maximum
response. Saturation occurs at the highest sc dose and decline
of response shows absorption rate-limited elimination.

Case Study 13

The biomarker data in this case represent acetylcholine
(ACh) levels in the cerebral cortex of rats (Fig. 9, case study
13). Single oral administration of a nicotinic agonist test
compound elicited a marked increase in the ACh levels in the
cerebral cortex, as measured by microdialysis (18). A dose-
response-time effect was observed over the 20- to 80-μmol-
kg−1 dose range, with a more sustained duration at higher
doses. While tachyphylaxis with ion channel receptors is not
uncommon, there was no significant attenuation of the
response after 4 days of repeated administration of the test
compound, thus fully consistent with the lack of tolerance to
the procognitive effects also seen with the drug under these
conditions.

Although exposure data from the aforementioned stud-
ies are lacking, a model will be proposed that captures the
four response-time profiles by means of inclusion of a
hypothetical input-output biophase compartment. The as-
sumption is that response-time data contain some kind of
“kinetic” information, reflecting the time course of the test
compound close to the target in the CNS rather than the
plasma kinetics.

We will extend the basic model with a series of
transduction steps (Eq. 35). The model contains a first-order
input (Ka)-output (K) biophase compartment that captures
the turnover of the amount of the test compound. However,
as not all parameters in such a biological process chain can be
identified and measured, we avoid overparameterization and
set Ka equal to K, which we then denote K′ in the model. The
latter parameter is part of the regression model parameters.
The amount in the biophase Ab is then assumed to drive the
receptor pool via a stimulatory function S(Ab).

The turnover of drug in the biophase was either modeled
as a bolus input with first-order loss or as a first-order input/
output model.

Ab ¼ Dose⋅e−K
0
⋅t

Ab ¼ Dose⋅Ka

Ka−K
⋅ e−K⋅t−e−Ka⋅t
� �

8>><
>>: ð33Þ

The K′ parameter is the hypothetical elimination rate
constant of the drug from the biophase, and Ka is the first-
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order input rate constant to the biophase compartment. The
stimulatory drug “mechanism” function S(Ab) acting on the
receptor pool is given by Eq. 34 as

S Abð Þ ¼ 1þ Smax⋅An
b

SDn
50 þAn

b
ð34Þ

Ab is the amount of drug in the biophase, Smax the maximum
drug-induced stimulation of the turnover rate of R1, SD50 the
amount in biophase giving 50% of maximum stimulation, and
n the dose-response curve sigmoidicity factor. The turnover of
action in the various receptor, transducer, and response
compartments is mathematically written as

dR1

dt
¼ 1

τ
⋅ R0⋅S Abð Þ−R1ð Þ

dR2

dt
¼ 1

τ
⋅ R1−R2ð Þ

::::
dRi−1

dt
¼ 1

τ
⋅ Ri−2−Ri−1ð Þ

dRi

dt
¼ 1

τ
⋅ Ri−1−Rið Þ

8>>>>>>>>><
>>>>>>>>>:

ð35Þ

where τ is the transit time, R0 the baseline response level, and
R1 the receptor variable. Our model includes a receptor
compartment where the stimulation of turnover rate occurs,
five transducer compartments mimicking the extended delay
of response, and a terminal response compartment Ri. Since
we have a dataset covering the baseline behavior during
225 min, we will also use those data in the model. The
equilibrium biophase amount-response relationship is given
by Eq. 36.

Rss ¼ R0⋅S Abð Þ ¼ R0⋅ 1þ Smax⋅An
b

SDn
50⋅A

n
b

� �
ð36Þ

The key patterns of this dataset are

& A stable baseline (obtained from experimental data in
the same study)

& A small initial delay (15 min), possibly due to
distributional factors

& A concave time course of onset of action
& A dose-dependent peak shift and duration of response
& A flat portion at the highest dose

The concave onset may imply some kind of transduction
process (the buildup of response increases exponentially after a
brief lag time). The peak shifts and saturable top dose-response
are strong indicators of nonlinear stimulation. The reasoning
and modeling of this example would appear to be a very
plausible approach, accounting for the shape of the kinetic/
dynamic response relation by the introduction of a series of
compartmental transduction delays. Hence, the outcome would
be explainable in credible physiological/biological terms.
However, before embarking on an elaborate modeling effort,
it is advisable always to make a “reality” check! Thus, in this
particular instance, there is substantial reason to believe that a
major part of the explanation rather results from methodolog-
ical factors. Thus, the microdialysis membrane used in the

study contains permanently negatively charged groups. This
property will strongly affect the extraction dynamics of
compounds that are positively charged (at physiological pH,
or otherwise)—in essence because the membrane acts as an
ion-exchange column under these conditions (23). This, in turn
may well explain the initial “concave” portion as well as the
protracted washout part of the ACh response curve following
drug administration. Therefore, even if the biological interpre-
tation underlying the model in this very case may not
accurately reflect the pharmacodynamic outcome, there may
well be other situations in which the initially referred “trans-
duction process” reasoning is much closer to the causal factors.

Case Study 14

This example contains information from an anonymized
set of data obtained in studies of the infradian relation
between a hormone and a downstream biomarker in man.
The oscillatory pattern in the biomarker response was
mirrored by variations in an endogenous mediator hormone
that also displayed a 28-day cycle between peak values. The
amplitude of the biomarker response was about 0.4 units with
a peak at 1 (unity) and a trough of 0.2. The role of the
mediator hormone is considered to act as a stimulator of
production of the biomarker response, which appears to be
delayed by approximately 4–5 days relative to the mediator
concentration (Fig. 9, case study 14 (4)).

The plasma concentration-time course of mediator is
given as a table function, which means that a table of the
actual plasma concentrations is input into the drug “mecha-
nism” function. Concentration-time values between the actual
observations are linearly interpolated.

Ci ¼ f tableð Þ ð37Þ

The nonlinear stimulatory mediator “mechanism” func-
tion S(C) is defined as

S Cð Þ ¼ 1þ Smax⋅Cn

ECn
50⋅C

n ð38Þ

The mediator is assumed to directly “drive” or stimulate
factors responsible for production of the biomarker response
via a nonlinear function (Eq. 39, third row).

dR1

dt
¼ kin⋅S Cð Þ−kout⋅R1

dR2

dt
¼ kout⋅R1−kout⋅R2

S Cð Þ ¼ 1þ Smax⋅Cn

SCn
50 þ Cn

Rss ¼ R02⋅S Cð Þ ¼ R02⋅ 1þ Smax⋅Cn

SCn
50 þ Cn

� �

8>>>>>>>>><
>>>>>>>>>:

ð39Þ

R2 in Eq. 39 (second row) is the observed biomarker
response and R02 the baseline value. A single turnover
compartment did not adequately account for the 4–5-day
time delay between plasma concentrations of the hormonal
mediator C and the biomarker response. Since the
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endogenous levels of the mediator C are oscillating over a 28-
day cycle, S(C) and the biomarker readout R will also
oscillate. The equilibrium hormone concentration-biomarker
response relationship is shown in Eq. 39 (bottom row) where
R0 stands for the averaged baseline readout across the full 28-
day cycle, Smax the efficiency parameter, SC50 the potency, n
the response curve sigmoidicity parameter, and C the
concentration of the hormonal mediator in plasma.

The key patterns of this dataset are

& An oscillating baseline response driven by an oscillating
hormone concentration across a 28-day infradian cycle

& A 4–5-day shift between hormone concentration and
biomarker response

& An up- and downward response variation amplitude
of 0.6 units across the 28-day cycle

The presented pattern is thus an example of a response which
oscillates across a set cycle time, with a clearly observable delay
between the mediator concentration and biomarker response
readout. Despite a seemingly protracted trough in the mediator
levels in this example, most of the biomarker response curve
remains separated from its nadir response (0.2). This suggests that
the correlation between the two variables may be best captured by
a nonlinear saturable drug “mechanism” function.

Case Study 15

Quantitative pharmacodynamic information on the cor-
tisol response was derived from a study using a constant rate
infusion regimen of dexamethasone (0.17, 1.7, and
17 μg kg−1) to six standardbred horses. An oscillatory
turnover rate based on a cosine function (amplitude and
cycle) captured the oscillatory behavior in data well when
simultaneously fitted to all dose groups. Turnover rate and
fractional turnover rate and the drug (potency, efficacy, and
sigmoidicity parameters) properties were quantified for all
horses. Representative data for one horse are shown in
Fig. 10 (case study 15 (24)).

The synthetic glucocorticoid dexamethasone is assumed
to directly inhibit the endogenous production of cortisol. A
turnover rate equation may therefore be formulated where
the drug “mechanism” function is described as

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn ð40Þ

where I(C) is the inhibitory drug “mechanism” function, Imax

the maximum drug-induced inhibition of cortisol, IC50 the
dexamethasone plasma concentration at 50% reduction of the
cortisol turnover rate, and n the exposure-response curve
sigmoidicity factor. The turnover of hydrocortisone with the
inhibitory drug “mechanism” incorporated (Fig. 10, case
study 15) is thus described by

dR1

dt
¼ kin tð Þ⋅I Cð Þ−kout⋅R1

dR2

dt
¼ kout⋅R1−kout⋅R2

R0 ¼ kin
kout

8>>>>><
>>>>>:

ð41Þ

where dR1/dt and dR2/dt are the rate of change of response inR1

and R2, respectively. R1 is associated with the drug action in the
biophase and R2 the downstream response, i.e., cortisol in
plasma. The terms kin(t) and kout denote the time-dependent
turnover rate and the first-order fractional turnover rate,
respectively. Cortisol is released into plasma in response to a
circadian input process, and the (baseline) circadian turnover
rate kin(t) thus approximated by a cosine function described as

kin tð Þ ¼ kin;mean þ α⋅cos
2π
24

⋅ t ¼ t0ð Þ
� �

ð42Þ

where kmean is the mean input rate, response amplitude, and t
and t0 the clock time within the 24-h cycle and peak time,
respectively. The ratio term 2∙π/24 converts the 24-h period
into radians. An absolute response amplitude of about 20
units is identified from baseline data which has a mean of
about 60 and oscillates between 40 and 80 response units over
a 24- -cycle. The time-dependent response baseline is given as

R0 tð Þ ¼ kin tð Þ
kout

ð43Þ

The key patterns of this dataset consist of

& A natural oscillating baseline which defines the
response amplitude and shape

& A clear-cut dose separation in the response-time
courses with complete response suppression ap-
proaching zero at the highest dose

& A dose-dependent separation in the duration of
suppressed response, followed by recovery to the
natural baseline oscillations

Since the background natural oscillating baseline differs
from zero, the response can be parameterized including both
the turnover (= production) rate (in this case a function) and
fractional turnover (= loss) rate. A nonlinear inhibitory drug
mechanism function captured the 100-fold dose range better
than a linear function since the biomarker responses were
simultaneously fit for all dose levels.

Case Study 16

The antilipolytic response in a group of healthy volunteers
was followed in plasma after a constant rate intravenous
infusion over 6 h of the adenosine A1 receptor agonist ARA
(Fig. 10, case study 16). The response (levels of free fatty acids,
FFA) started at a baseline and declined to a trough value at
about 2 h after the start of the constant rate infusion. The
response then gradually returned back toward the baseline in
spite of a stable (or even slightly mounting) drug exposure,
interpreted to reflect functional adaptation (tolerance). Upon
cessation of the constant rate infusion at 6 h, the response also
displayed a rebound (increase above the baseline). A pool/
precursormodel was suggested by the authors to account for the
overall shape of the response (25). This type of model aims to
describe drug action on the linkage between two serially coupled
production/loss “tanks” (cf. Fig. 2), rather than an effect on
turnover/fractional turnover in either of the two.
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This profile then served as input to the nonlinear
inhibitory “mechanism” function, lowering the FFA concen-
trations

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn ð44Þ

where IC50 and n denote the potency and the sigmoidicity
factor of the drug, respectively. This inhibitory drug “mech-
anism” function links the kinetics to the dynamics. Hence, the
turnover of the pool/precursor P compartment becomes

dP
dt

¼ kin−kout⋅P⋅I Cð Þ

P0 ¼ kin
kout

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn

Pss ¼ kin
kout⋅I Cð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð45Þ

where kin and kout are the turnover rate and fractional
turnover rate of the response, respectively. The turnover of
the response compartment, baseline response, and steady-
state response becomes

dR
dt

¼ kout⋅P⋅I Cð Þ−kout⋅R

R0 ¼ kin
kout

Rss ¼ kin
kout

8>>>>><
>>>>>:

ð46Þ

Equation 46 (bottom row) shows that the response is
independent of drug exposure at steady state and returns to
the baseline value kin/kout. This is a landmark when using the
pool/precursor turnover model for modeling acute dosing
data. Note also that we have used the same rate constant kout
from the pool and response compartments due to parameter
redundancy.

Fig. 10. Case study 15: observed (filled symbols) and model predicted (lines) response-time data following a bolus + infusion regimen of
dexamethasone to a horse. Shown are baseline data obtained from vehicle dosing (0 mg solid down triangles and gray line), low dose
(0.17 μg kg−1, red dots and line), intermediate dose (1.7 μg kg−1, blue squares and line), and high dose (17 μg kg−1, purple diamonds and line).
Data are obtained from Ekstrand et al. (24). Case study 16: observed antilipolytic response (filled squares) and plasma concentration (filled
circles) data of Zannikos et al. (25) during and after a constant rate intravenous infusion of the test compound (13). Case study 17: observed
(filled symbols) and model predicted (gray line) EEG effect-time data following an intravenous infusion of compound X. The drug infusion
starts at 30 min and stops at 40 min. The dashed red line shows the baseline drift. The yellow bar shows the length of infusion. Case study 18:
free fatty acid FFA response vs. time. Observed (symbols) and model predicted (line) response-time data in one rat after constant rate infusion
of NiAc for 30 min indicated by the yellow horizontal bar (Isaksson et al. (26))
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The key features of this pattern analysis are

& A predose baseline
& Pool/precursor-driven adaptation at constant or rising
plasma exposure

& A post-infusion rebound effect

The key patterns in this case study are not observed
against a defined vehicle/control response. The response
displays a clear adaptation in spite of constant or increasing
plasma concentrations of the test compound. A standard pool/
precursor model is applied in the original publication. A slight
tendency of rebound is observed for the terminal observa-
tion(s), but as the time course is truncated, the exact extent of
rebound cannot be determined from the data.

Case Study 17

This case study aims at showing how to model a
pharmacological response biomarker (EEG signal) measured
in rats during and after a 10-min constant intravenous
infusion of a new experimental agonist A (Fig. 10, case study
17). The biomarker displays an intriguingly complex behavior
with a rapid rise, an overshoot outlasting the infusion period,
return toward an apparent pharmacodynamic steady state,
then followed by a slower decline back to the baseline. The
baseline exhibits a slight drift over time, which will be tackled
by means of a time-dependent turnover rate kin(t) in the
analysis.

To account for the observed pattern, we assume a
negative feedback system such as the one schematically
illustrated in Fig. 3 (case study 17 (4)). Whatever happens
in or with the response R compartment will eventually also
indirectly affect a moderator M compartment. The moderator
compartment in turn has its own rate constant ktol and
kinetics of turnover that control the rate of “tolerance”
development.3 The change in the tolerance moderator level
M will eventually also affect either the buildup of R via kin or
the loss of R via kout. In the present case, we assume that the
moderator regulates R via an inhibitory effect of kin, i.e.,
negative feedback.

Directly after the start of infusion (∼30 min) of the test
compound, the response increased rapidly from about 150
units up to approximately 230 units at the end of infusion
(∼40 min). Observe the rapid upswing, the overshoot despite
stop of drug infusion, the peak response lasting for ∼30 min
post-infusion, the prolonged relatively stable response (“roof
of the cathedral”) for yet another ∼80 min, and thereafter a
slow downswing to baseline (at ∼210 min) without observable
rebound. This unusual pattern may be conceptualized in
biological terms by assuming that the drug upon reaching a
certain threshold level will also trigger a negative feedback
modulator/process that takes the edge off the response for a
period of time (50–150 min), until the drug levels again are
below concentrations required to activate this dampening
factor or process. The EEG effects of compound X in the rats
are modeled by means of a system of differential Eq. 47,

where I(C) is the inhibitory drug “mechanism” function—that
is, the feedback modulator/process.

dR
dt

¼ kin tð Þ
M

−kout⋅R⋅I Cð Þ

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn

dM
dt

¼ ktol⋅R−ktol⋅M

8>>>>><
>>>>>:

ð47Þ

One may also want to apply a model with stimulation
S(C) of the turnover rate kin.

dR
dt

¼ kin tð Þ
M

⋅S Cð Þ−kout⋅R

S Cð Þ ¼ 1þ Smax⋅Cn

ICn
50 þ Cn

dM
dt

¼ ktol⋅R−ktol⋅M

8>>>>><
>>>>>:

ð48Þ

The concentration-time data C are modeled by means of
a two-compartment linear model. At pharmacodynamic
steady state and with inhibition of kout or stimulation of kin,
the response becomes

Rss ¼
ffiffiffiffiffiffiffiffiffi
kin
kout

s
⋅

ffiffiffiffiffiffiffiffiffiffi
1

I Cð Þ

s
¼ R0⋅

ffiffiffiffiffiffiffiffiffiffi
1

I Cð Þ

s

Rss ¼
ffiffiffiffiffiffiffiffiffi
kin
kout

s
⋅
ffiffiffiffiffiffiffiffiffiffi
S Cð Þ

p
¼ R0⋅

ffiffiffiffiffiffiffiffiffiffi
S Cð Þ

p

8>>>><
>>>>:

ð49Þ

The time course of drift in baseline was modeled by
means of a time-dependent change in the turnover rate kin(t)
in Eqs. 47 and 48 (top lines) where kin(t) is modeled
according to

kin tð Þ ¼ kin 0ð Þ þ α⋅t ð50Þ

The key patterns of this dataset are

& A time-dependent drift in baseline (approximated by
visually comparing flat portions of the time-response
curves before drug vs. end of experiment; the study
lacks a separate baseline experiment)

& A rapid onset of action (upon the 10-min intravenous
infusion) reaching a peak of response followed by

& An early response overshoot despite cessation of the
infusion

& A rapid decline down to and apparently constant
response for about 80 min

& No observable rebound

At about 150 min, the response-time trajectory assumes a
steady rate of decline toward the baseline without displaying
any rebound effects. Also note the substantial drift in the
baseline with time. This was tackled by a time-dependent
turnover rate which increases linearly with time. The unusual
response pattern captured by the modeling approach described
also helped in creating testable hypotheses on the role and

3 It is beyond the scope of the present framework to discuss the
concept of tolerance broadly. However, suffice it to say that the
expression in this context is used to cover various modes of
counterregulatory and adaptive processes that serve to diminish
the response to a drug, be it upon acute or repeated administration.
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impact of the underlying modulator/process involved in the
EEG response observed and what is achievable in response
during extended exposure.

Case Study 18

This case study shows data obtained from an acute
constant rate infusion experiment of the antiatherogenic,
lipid-lowering GPR109A (HM74A) agonist nicotinic acid
(NiAc) in rats and simultaneously monitoring the time
course of plasma nonesterified FFA (pharmacodynamic
response biomarker) levels (Fig. 10, case study 18 (26).
Activation of GPR109A in adipose tissue leads to reduced
lipolysis and in turn to decreased release of FFA into plasma.
The response remains suppressed for a little less than 10 min
after the stop of infusion. This observation is interpreted to
indicate that the NiAc exposure remains at a level still
sufficient to achieve significant GPR109A-induced restraint
of adipose lipolysis, as reflected in low plasma levels of FFA.
The subsequent return of FFA toward the baseline
(∼10 min) following cessation of NiAc infusion is rapid and
followed by a substantial rebound “overshoot” effect (area
of rebound is approximately 40% of the area of FFA
suppression), that returns to baseline within the subsequent
60 min.

Figure 11 is a plot of the exposure relative to the FFA
response during the experiment, showing a clockwise hys-
teresis during the constant rate NiAc infusion. Between 5
and 28 min, there is very little change in the plasma
concentration, but the FFA response is nonetheless some-
what further suppressed. The NiAc infusion is stopped at
30 min and a rapid drop in exposure to test compound
ensues. The rebound response occurs when test compound
concentration has fallen below its concentration range for
significant pharmacodynamic effect, some time between 40
and 45 min. The clockwise hysteresis observed during high
drug exposure changes direction to an anticlockwise hyster-
esis upon drug washout concomitant with the display of
rebound.

A one-compartment model with an endogenous turnover
rate (endogenous production of NiAc) was fitted to NiAc
plasma concentration-time data. Clearance Cl and volume of
distribution V were estimated to 0.099 L min−1 kg−1 and

0.23 L kg−1, respectively. I(C) represents the drug
“mechanism” function of NiAc that is inhibitory upon the
production of FFA (response R)

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn ð51Þ

where C is the plasma concentration of NiAc, IC50 the plasma
concentration of NiAc that inhibits the production of FFA by
50% (potency), Imax the maximum FFA-inhibitory capacity,
and n the exposure-response sigmoidicity parameter. It is
assumed that the activation and loss of FFA response R can
be modeled by the following relationship

dR
dt

¼ kin⋅I Cð Þ⋅R0

M
−kout⋅R

dM
dt

¼ ktol⋅R−ktol⋅M

R0 ¼ kin
kout

8>>>>>>><
>>>>>>>:

ð52Þ

NiAc inhibits the turnover rate kin of FFA via the drug
“mechanism” function I(C). That is to say that the net
downstream result of NiAc agonistic action on GPR109A
(HM74) receptors is a reduction of the conversion of adipose
triglycerides into FFA (concomitantly released into plasma,
the matrix used to monitor the response). Changes in FFA
are also counterbalanced by an endogenous modulator,
denoted M. Note that the loss of R is indirectly governed by
means of M. The production of M is hence controlled by R
and the rate constant for turnover of M. The ktol parameter
corresponds to development of tolerance to the drug effect.
The ktol parameter is assumed to govern both production and
elimination of M in this particular example because M is not
measured per se.

The key patterns of this dataset are

& A predose baseline
& A rapid initial drop in response (due to short half-life
of FFA: (26))

& A suppression of response throughout the duration of
the 30-min infusion

& A sustained suppression for almost 10 min after stop
of infusion

& A rapid recovery of response thereafter
& A substantial rebound “overshoot” which then slowly
returns back to baseline within an hour from the peak
rebound

Analysis of the exposure-response curves shows a time
delay between concentration and response-time courses and a
saturation of response at about 1 μM exposure to drug. Only
one infusion regimen is applied so it is not possible to judge
about peak shifts at lower or higher infusion rates.
Interestingly, the return from overshoot is slower than the
initial drug-induced drop in levels. It appears unlikely that the
plasma half-life of the FFA would have changed during the
experiment. The observed difference in slopes therefore sug-
gests that it is the generation and/or release of the FFA kin that

Fig. 11. NiAc concentration- fatty acid (FFA) response plot of data
from case study 18 in time order during and after a 30-min constant
rate intravenous infusion to rats. The numbers indicate time points
and arrows show the time order of events
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has become transiently upregulated by the initial NiAc-induced
inhibition of its formation.

Case Study 19

The data for this example is taken from an experiment
whereby the effect of an anonymized test compound upon the
gene expression for a specific target was studied. The
pharmacodynamic target data (fold induction of messenger
RNA (mRNA)) are shown in Fig. 11 (case study 19) after two
single oral doses of test compound X. There is an initial peak
at 2–3 h followed by a downswing that passes the baseline at
6–9 h, then reaching the maximum rebound at 11–14 h before
gradually again returning to the baseline at 30–36 h. The
duration of the observed response clearly outlasts the plasma
exposure of the (relatively short half-life) compound. A
reasonable assumption is that this reflects an action of the
drug which serves to trigger a series of processes that due to
underlying physiology displays more protracted buildup and
waning phases. The higher dose of the drug reaches
maximum response later and also rebounds later and deeper.
Note the semilogarithmic scale of mRNA induction which
more clearly displays the rebound of mRNA data starting at 7
and 10 h after the low and high dose, respectively.

The exposure profiles of the test compound served as a
“driver” of the stimulatory effect S(C) on the turnover rate of
mRNA. The turnover equations for R (fold mRNA induc-
tion) and M (moderator) are given by the system of
differential equations (Eq. 53),

dR
dt

¼ kin⋅S Cð Þ⋅ R0

M2

� �
−kout⋅R

dM1

dt
¼ ktol⋅R1−ktol⋅M1

dM2

dt
¼ ktol⋅M1−ktol⋅M2

8>>>>>><
>>>>>>:

ð53Þ

where kin is the turnover rate and kout the fractional turnover
rate of R and ktol the fractional turnover rate of M. Note that
a sequence of transit compartments of R and M was selected
in order to capture the initial concave rise over time of fold
mRNA data. The initial conditions of Eq. 53, R0, M01, and
M02, of R and M have the same value (1, unity). The relation
between kin and kout when no drug induced stimulation
occurs is defined by Eq. 54.

kin ¼ kout⋅R0 ð54Þ

Each parameter in the model is estimated graphically
from experimental data. An approximate initial estimate of
kout is obtained from the assumption that two transit
compartments are required to capture the initial time delay
in the mRNA response.

The key patterns of this dataset are

& Adefined predose baseline (obtained in a separate study)
& A rapid rise in the onset of action
& A dose-dependent peak shift followed by a rapid decline
and a rebound at both dose levels that is deeper and
shifted toward later time points with the higher dose

The peak shift indicates nonlinear stimulation of the
gene transcription (mRNA) response. The overall curve
shapes, including post-peak rebound, suggest the presence
of a negative modulator mechanism/process—e.g., end-
product inhibition—that serves to keep the net gene product
output within a preset physiological frame relative to demand
over time.

Case Study 20

This set of data deals with the acute effect of an
antidepressant agent on the extracellular levels of the
neurotransmitter serotonin. The original data are obtained
from Bundgaard et al. (27). The model was extended to
incorporate a two-step moderator transduction model (28).
Response-time data are shown in Fig. 12 (case study 20) after
three 60-min constant rate intravenous infusions (solid gray
bar) and washout.

Escitalopram is a selective serotonin (5-hydroxytrypta-
mine, 5-HT) reuptake inhibitor (SSRI) exhibiting antidepres-
sant and anxiolytic activities in preclinical and clinical studies.
Acutely, SSRIs selectively block neuronal 5-HT reuptake, in
turn resulting in increased concentrations of the neurotrans-
mitter at the serotonergic cell body and nerve terminal level.
This SSRI-induced increase will enhance the serotoninergic
transmission. However, it is counteracted initially by the
accompanying 5-HT-elicited activation of neuronal negative
feedback processes that reduce neuronal firing, synthesis, and
release of new 5-HT into the synapse. This limits the acute
action of SSRIs on 5-HT neurotransmission and has been
hypothesized to contribute to the delayed clinical efficacy of
such agents (cf. 29–31). Upon repeated SSRI treatment, the
negative feedback is then attenuated and the serotonergic
firing rate and 5-HT release is restored. In turn, this now
“unlocks” the effect of an SSRI on overall serotonergic
neurotransmission. The aforementioned negative feedback
derives from several different receptor populations and may
therefore for modeling purposes be amalgamated into a
single moderator compartment (27). However, empirical
studies later found that the suboptimal precision in potency
derived from such an approach could be greatly increased by
introducing a second moderator (28). The data are thus
modeled by applying a two-step series of moderator com-
partments M1 and M2.

The regression of response-time data was done using the
following turnover equation:

dR
dt

¼ kin
M2

−kout⋅R⋅I Cð Þ
dM1

dt
¼ kout⋅I Cð Þ⋅R−ktol⋅M1

dM2

dt
¼ ktol⋅M1−ktol⋅M2

8>>>>>><
>>>>>>:

ð55Þ

Here, R is the pharmacodynamic response, kin the
turnover rate (basal level of serotonin), M1 and M2 the first
and second moderator compartments, kout the fractional
turnover rate (first-order loss of 5-HT through its removal
from the extracellular space), and I(C) the drug inhibitory
function on the reuptake transporter of serotonin. The action
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of M (M1 and M2; the receptor-mediated negative
autoregulatory feedback) on R was assumed to occur via
inhibition of production of the response R (level of 5-HT),
which is attractive from a mechanistic and as well a neuronal
resource management point of view. The turnover rate kin of
R was parameterized with the baseline value R0 and
fractional turnover rate kout as

R0 ¼
ffiffiffiffiffiffiffiffiffi
kin
kout

s

kin ¼ R2
0⋅kout

8>><
>>: ð56Þ

By setting Eq. 55 equal to zero (0) at baseline and
rearranging the terms, M01 and M02 (baseline values of
moderators M1 and M2) are equal to R0 at baseline. The ktol
parameter is the first-order rate constant of the negative
feedback mechanism, incorporating all of the aforemen-
tioned acutely “buffering” processes. At equilibrium, M is
equal to R, reflecting the balance between autoregulatory
modulation and inhibition of reuptake to decrease and
increase, respectively, the extracellular levels of 5-HT.
According to the model, test compound concentrations C
act by blocking the reuptake of serotonin according to
Eq. 57.

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn ð57Þ

where Imax is the efficacy (maximum drug-induced inhibi-
tion of the loss of response), IC50 the potency (plasma
concentration reducing the maximum inhibition of loss of
response by 50%), and n the sigmoidicity factor (steep-
ness of the equilibrium concentration-response relation-
ship at IC50). In the absence (R0, M0) and presence (Rss,
Mss) of the test compound, the baseline values of R and
M become

R0 ¼ M01 ¼ M02 ¼
ffiffiffiffiffiffiffiffiffi
kin
kout

s

Rss ¼ Mss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kin
kout

⋅
1

I Cð Þ

s
¼ R0⋅

ffiffiffiffiffiffiffiffiffiffi
1

I Cð Þ

s
8>>>><
>>>>:

ð58Þ

The key patterns of this dataset are

& A predose baseline which remained constant through-
out the experiment (data not shown)

& A rapid increase in the pharmacodynamic response
& A dose-dependent peak shift with response saturation
at the two highest doses

& A parallel decline at all dose levels to predosing
baseline when infusion is stopped

The peak shift indicates a nonlinear inhibitory function
acting on the reuptake transport of 5-HT from the synaptic cleft
back into the presynaptic storage compartment. The almost
superimposable response-time courses of the intermediate and
highes t dose sugges t the presence of funct ional
counterregulatory adaptation. This is further highlighted by
the concentration-response relationships for the three doses.
Indeed, there is ample support for this kind of (acute) buffering
processes from pharmacological studies. For example, marked
increases in 5-HT beyond those induced by SSRI alone can be
elicited by coadministration of agents blocking 5-HT1A and 5-
HT1B autoreceptors to attenuate the action of negative
feedback mechanisms (e.g., 29,30).

DISCUSSION

Experimental protocol/study design may depend on
implicit laboratory “traditions” as well as on the background
education and scientific fostering of the investigator (phar-
macologists vs. pharmacokineticists). However, we believe
that there are some universal similarities with regard to how
the actual outcome of an experiment is approached. Thus,

Fig. 12. Case study 19: semilogarithmic plot of experimental (symbols) and model predicted (lines) fold mRNA time data at two doses. Note
the decline of mRNA below the predose baseline level (rebound) at both doses (high dose, blue squares; low dose, red dots). Also note the
logarithmic response scale to more clearly show the relative change (increase or decrease) from the baseline (we used an adapted dataset with
an alternative model than previously applied). Case study 20: observed (filled symbols) response vs. time from the three dose groups of rats
after administration of 2.5 (red circles), 5 (black diamonds), and 10 (blue squares) mg/kg of escitalopram as an intravenous infusion over 60 min
(14). The inhibitory action of the loss of response I(C) designates blockade of the serotonin reuptake transporters, resulting in elevated levels
of serotonin, R (27–31)
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from our personal experience, when looking at a response-
time course, the initial—subconsciously habitual—focus of a
pharmacologist is to get a grip of what is conveyed by the
overall shape of the curve: the development and change over
time of exposure and a biomarker response (pharmacody-
namic effect) following drug challenge. Interpretations based
on this first glance will naturally have to take into account the
biological system studied (the mechanism(s) of action), doses
used (dose, rate, and route of administration), the very nature
of the biomarker readout in question, its maximum efficacy,
and any potential confounders to its expression (c.f. Table I).
From a pharmacologist’s point of view, the first look thus
informs about

& Whether there is a delay in the onset of response, and if so,
to what extent does it involve
– Route of administration (e.g., po vs. iv)
– Distributional factors (e.g., transport across barriers,

access to biophase matrix)
– Biological system aspects (e.g., target matrix/

compartment and transduction vs. pharmacodynamic
response variable studied, counterregulatory adjust-
ments, cascading)

– Methodology (e.g., time resolution, sampling tech-
nique(s), other confounders)

& The intensity of the response and time to peak relative to
exposure/doses

& The exposure-response relationship and saturation, assum-
ing that more than one dose level is studied

& The duration and decay of the response relative to
exposure

& Presence of pharmacodynamic rebound upon treatment
cessation/drug washout

All of the above observations help in creating a
preliminary pharmacological view on how exposure and
biomarker variables may interact to generate the pattern
observed. This information is then utilized to create hypoth-
eses that may be formulated in mathematical model terms,
and subsequently analyze how well the model fits the data
observed.

From a pharmacokineticist’s/modeler’s point of view,
pattern recognition is a pivotal aspect of the exploratory
analysis process before modeling of data. Therefore, a careful
strategy is essential for dissecting the patterns revealed by
concentration-time, response-time, and concentration-
response relations. This encompasses a set of points that
specifically addresses baseline behavior, number of phases in
data including convex or concave bending, time lags, peak
shifts, shape of onset of action, intensity level, saturation,
route-dependent response-time courses, duration of response,
shape of decline of response, functional adaptation/buffering,
synergistic effects, etc. (c.f. Table I). Signature profiles and
proposed models are summarized in Figs. 3 and 4 in the
“INTRODUCTION” section.

From our personal experience, many pharmacologists
center their attention on absolute pharmacodynamic read-
outs, any associated issues, and mechanism-of-action resolu-
tion. Less priority is therefore put into the formulation and

Table I. Some Typical Features in Response-Time Data Interpreted by Pharmacologists and Modelers

Features in data Pharmacologist’s view Modeler’s view

Baseline Is the baseline response sufficiently defined and validated? If
not, what can be done to control for variation, drift,
confounders, and to maximize the pharmacodynamic
response window?

Constant, oscillating, handling sensitive. What model
captures features of rest/sleep, handling, and disease
progression?

Onset of action If delayed, to what extent are administration route-, drug
formulation-, PK-, and/or PD response-related (or
methodology) factors involved?

Delayed or proceeds Cmax, initial rate of rise, steepness.
How can this be formalized in terms of equations?

Intensity How does the response observed compare to what is expected
based on the biology of the system, including empirical
findings with other agents targeting the system? What is the
relation to dose/exposure? Has maximum efficacy been
reached, and to what extent does the maximum efficacy
reflect desired target action vs. nonspecific effects?

Delayed or proceeds Cmax, high, low, dose-proportional,
saturated, waning, synergistic. Is there a physiological
limit or is it drug-dependent?

Duration How does the duration relate to drug properties, underlying
physiology/biology vs. target characteristics and level of
drug exposure? What is the t1/2 of the PD response?

Dose-proportional, offset, decline, steepness, regimen
dependent, monotonic decline, rebound. Is it caused by
drug or system properties?

Acute findings To what degree does recruitment of counterregulatory
mechanisms limit expression of the acute PD response? If
present, how may such mechanisms be circumvented?

Can data be used for prediction of chronic dosing?
Tolerance, adaptation, synergy

Chronic findings Is the PD response size a/o profile altered upon chronic vs.
acute dosing? If so, what biology (tolerance, adaptation) vs.
PK-related factors may be involved?

Can data be used for prediction of a specific response
upon chronic dosing? Tolerance, adaptation, synergy

Rebound Is there an over- or undershoot in the PD action upon drug
withdrawal? What may be the cause of this, and can it be
avoided by altering drug, formulation, a/o treatment
scheduling properties?

What is the area under the rebound vis-á-vis area under
response? Is there a dampened system? Can modeling
teach us something about avoiding the rebound effect?

Utilization of
information

Creating a preliminary qualitative view on how drug
properties, exposure, and biological system variables may
interact to generate the pattern observed.

Creating the input to model-based (quantitative) assess
ment of data.

PK pharmacokinetic, PD pharmacodynamic
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expression of kinetic/dynamic relations in mathematical
(quantitative) terms like in the equations in this paper, as
modeling may appear cumbersome and less straightforward
as an approach to the analysis of experimental data. We
however believe that an even cursory conceptualization of the
kinetic/dynamic outcome of any given experiment will help in
avoiding throwing away valuable information, to the benefit
of the compound and follow-up study design optimization.

The following list describes key features in a response-
time dataset from a modeling point of view:

& Baseline (stable, well-defined, or variable; oscillating
or monotonically drifting; or zero/lack of baseline)

& Onset of action (delayed and/or later than Cmax, rise,
steepness)

& Intensity (later than Cmax, high, low, dose-propor-
tional, saturated, waning, synergistic)

& Duration (dose-proportional, offset, decline, steep-
ness, regimen-dependent, monotonic decline,
rebound)

& Repeated administration (tolerance, adaptation, syn-
ergy, disease progression)

A modeler’s (pharmacokineticist’s) view may focus
primarily on the statistical aspects and less on the biological
perspective. The generation of models may therefore become
more empirical and numerical than mechanistic. However,
below, we attempt to dissect and “translate” the components
of the modeling equations into biological reasoning and
underlying mechanistic explanations, in the hope to make
the procedure more accessible and transparent. To generate a
theoretical model, we first need to take into account likely
processes and mechanisms defining baseline behavior and key
factors influencing the chosen pharmacodynamic readout
across the time frame of the experiment. Whenever possible,
it is recommendable to include richer datasets, particularly
information about the nature of baseline behavior (variabil-
ity). If robust baseline information is available, such data
should ideally be part of the model. It is also suggested that
analyses based on baseline (or vehicle)-subtracted relative
(%) effects should be avoided (32).

Standard, Nondrifting, Baseline Situation

Some central themes for the data patterns and some of
their determinants are summarized below. The change in
response R over time can be expressed in terms of a
differential equation dR/dt (Eq. 59 top) starting with the
situation at baseline (i.e., in the absence of pharmacological
or physiological challenge, Eq. 59 bottom). A baseline
response is a consequence of turnover rate kin and loss kout.

dR
dt

¼ kout⋅R0−kout⋅R

Baseline ¼ R0 ¼ kin
kout

8>><
>>: ð59Þ

For example, in the case where the buildup of a defined
response via stimulation of kin is the major determinant,
Eq. 59 becomes

dR
dt

¼ kout⋅R0⋅S Cð Þ−kout⋅R

Rss ¼ kin
kout

⋅S Cð Þ ¼ R0⋅S Cð Þ

8>><
>>: ð60Þ

Baseline Equal to Zero

When the baseline is essentially zero, R can be modeled
as in Eq. 61

dR
dt

¼ S Cð Þ−kout⋅R

Baseline ¼ 0

Rss ¼ S Cð Þ
kout

8>>>>>><
>>>>>>:

ð61Þ

In this particular case, the steady-state response Rss is
then only determined by the drug “mechanism” function and
kout. This kind of situation could for example apply to studies
measuring locomotor activity in habituated or monoamine-
depleted rodents, which remain essentially immobile until
challenged with agents able to promote (directly or indirectly)
dopaminergic neurotransmission (e.g., van Rossum and van
Koppen (13)). Once the stimulant drug is then eliminated
from the body, the locomotor response again returns to its
pretreatment “zero” baseline—as illustrated in case study 5
above.

Drifting or Oscillating Baseline

The baseline response sometimes drifts down- or upward
over time. This naturally affects the modeling equations, such
that the ratio between kin and kout at baseline will be smaller
or greater than unity, respectively. Thus, for example, in case
study 9 (Fig. 8), the rate of tumor growth (kin) clearly exceeds
that of apoptosis (kout), resulting in a vehicle curve ap-
proaching an exponential increase of the response (tumor
volume). Drug treatment in this situation led to rightward
shifts of the curve with rising doses and at the highest dose
even to a period of “reversed” growth—suppression/tumor
shrinkage—until following drug washout when tumor volume
expansion re-emerged. The different curve shapes in this
example therefore also hints about the relative impact of the
drug on production (= growth) vs. loss (= “kill”) mechanisms
at different levels of exposure.

The baseline response may also display an oscillating
behavior (e.g., Fig. 10, case study 15) which if so can be
represented by means of a cosine input function.

R0 ¼ kin tð Þ
kout

Rss ¼ kin tð Þ
kout

⋅S Cð Þ

8>><
>>: ð62Þ

This type of baseline pattern is typically observed in the
context of endogenous hormonal responses, which may
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display regular infradian, circadian, or ultradian cycles. It may
also be as in case study 14 (Fig. 9), where an oscillating drug
“mechanism” function in itself is governed by an oscillating
endogenous agonist “driver.” In either of these situations, it is
evident that awareness of the underlying physiology is a
prerequisite for the formulation of a suitable modeling
approach.

Needless to say, a deeper insight through visual pattern
recognition and the identification of a matching model
may—as illustrated i.a. by the above examples—benefits the
optimization of drug as well as treatment protocol design. We
are convinced that the reader will have several examples from
their own experience attesting to this view.

Onset of Action

The onset of action may manifest itself as a concave
buildup of the response R and is mimicked by a series of
transit compartments prior to the compartment that repre-
sents the measured pharmacological response Ri. As an
example, the activation of the target receptor (Rreceptor) may
require a series of downstream (transduction/transcription/
translation/signaling, etc.) cascade events (R1−Ri) with vary-
ing time frames and efficiency before the final pharmacody-
namic readout response R can be observed. This process may
thus be expressed as in the model ing Eq. 66
below—attempting to capture the transition phases in be-
tween the very ligand-receptor binding at the prevailing level
of exposure (S(C)), and the final degree of response R,
relative to the baseline pharmacodynamic response R0.

dRreceptor

dt
¼ kout⋅ R0⋅S Cð Þ−Rreceptor

� �
dR1

dt
¼ kout⋅ Rreceptor−R1

� �
…
dRi−1

dt
¼ kout⋅ Ri−2−Ri−1ð Þ

dRi

dt
¼ kout⋅ Ri−1−Rið Þ

ð63Þ

This type of function not only accounts for delays in the
onset but also in the duration of response. Amplification of a
signal within the series of transit steps is taken care of by
Eq. 64, wherein Ri−1

γ represents the response at the defined
transit step, with the index γ designating the level of
amplification

dRi

dt
¼ kout⋅ Rγ

i−1−Ri
� � ð64Þ

A peak shift in the maximum response with increasing
doses suggests a nonlinear drug “mechanism” function,
provided there is no peak shift in plasma concentration. If
the intensity of response displays saturation at higher doses, it
may be a consequence of a nonlinear drug “mechanism”
function or a physiological limit. To discriminate between
these two factors, independent types of provocations of the
response-time course may be needed to dissect the origin of
the observation.

I Cð Þ ¼ 1−
Imax⋅Cn

ICn
50 þ Cn

S Cð Þ ¼ 1þ Smax⋅Cn

SCn
50 þ Cn

8>><
>>: ð65Þ

An alternative drug “mechanism” function is with
exponential growth of inhibition.

I Cð Þ ¼ 1− a⋅Cð Þn

S Cð Þ ¼ 1þ a⋅Cð Þn

8<
: ð66Þ

If maximum response occurs at the same time point
independent of dose, it may be prudent to consider a linear
drug “mechanism” function acting on the turnover rate

I Cð Þ ¼ 1−a⋅C

S Cð Þ ¼ 1þ a⋅C

8<
: ð67Þ

If this observation is coupled to an observed saturation,
some other model (e.g., link) structure than a turnover model
has to be considered. Drug action on factors responsible for
the loss of response (kout·I(C) or kout·S(C)) will always cause
a leftward or rightward peak shift in response with a change
in dose since half-life of response changes. Dose-normalized
areas under the response-time courses plotted vs. dose will
reveal whether the drug “mechanism” function behaves
linearly (horizontal line) or nonlinearly (increasing or de-
creasing with dose).

Duration of Response

The duration of the response relative to the drug
exposure is a very important piece of information for the
analysis and modeling of kinetic/dynamic data. There may be
several potential reasons for the disconnect between drug
exposure and pharmacodynamic response. Such as, indirect
action on factors determining the response (e.g., Fig. 5, case
study 1; Fig. 9, case study 14), the pharmacodynamic response
may attenuate despite sustained drug levels (e.g., Fig. 10, case
study 16), and/or there may be a rebound response following
elimination of the drug from the system (e.g., Fig. 7, case
study 6; Fig. 10, case study 18). All of the aforementioned
examples require insight into the underlying cause(s), both in
terms of pharmacokinetic-related and biological system/
pharmacodynamic-related factors, in order for a suitable
modeling approach to be generated.

CONCLUDING REMARKS

The objective of this communication has been to focus
on the power of what may be initially captured by visual
inspection of “shapes” or “patterns” of response-time pro-
files. We have then tried to decompose these “shapes” and
proposed what determines the rise, intensity, and decline of
response. This is then described in terms of mathematical
expressions of turnover (indirect response) models. This
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approach may serve as a road map to pattern recognition of
response-time data. It is our hope that the descriptions will
facilitate for the presumptive reader the analysis and inter-
pretation of kinetic/dynamic data. The pattern recognition
approach to response curve shapes will assist the selection of
suitable modeling approaches to the actual experiment, and
to superior design of any follow-up studies. Hence, by
optimally utilizing information displayed openly (or some-
times in disguise…) in the study data, an improved under-
standing of target biology as well as of the various
components determining drug action will be accomplished.

As evident frommany of the case studies in this tutorial, the
pharmacodynamic response curves can be more or less discon-
nected from plasma exposure time courses. In this respect, it
seems that time delays are particularly common, likely because
biological system processes typically involve transduction cas-
cades, “buffering” mechanisms, organ/tissue interplay process-
es, etc. In addition, some compounds interact with their targets
in a more or less irreversible fashion. By applying a pattern
recognition approach, detailed knowledge of drug compound
properties, and thorough insight into the underlying biology of
the response under study, a superior modeling of the experi-
mental readout can be attained. This is clearly different from the
routine, empirical approach sometimes taken, but that should
always be avoided (cf. “They were so intent making everything
numerical, that they frequently missed seeing what was there to
be seen.”; (33)). Finally, to this end, we cannot emphasize
enough the importance of tight collaboration between pharma-
cology and DMPK-oriented scientists in the interpretation of
experimental readouts.

ACKNOWLEDGMENTS

Data of case study 1 were originally generated and analyzed
by Dr. C. Dagenais at AstraZeneca, Wilmington, DE, and were
then generously shared during numerous workshops within and
outside AZ. Data of case study 9 were generated at AstraZeneca,
Waltham, MA, and then adapted to suit the purpose of pattern
recognition. The preliminary data of case study 19were generously
shared by D. Hovdal, AstraZeneca AB, Mölndal, Sweden. An
alternative model to the originally used was then applied.

REFERENCES

1. Duan JZ. Drug-drug interaction pattern recognition. Drugs R D.
2010;10:9–24.

2. Gabrielsson J, Meibohm B, Weiner D. Pattern recognition in
pharmacokinetic analysis. AAPS J. 2015. doi:10.1208/s12248-015-
9817-6.

3. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic
models of indirect pharmacodynamic responses . J
Pharmacokinet Biopharm. 1993;21:457–78.

4. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacody-
namic data analysis: concepts and applications, 1st–4th edition,
Swedish Pharmaceutical Press, Stockholm (1994–2010).

5. Jusko WJ, Ko HC. Physiologic indirect response models
characterize diverse types of pharmacodynamic effects. Clin
Pharmacol Ther. 1994;56:406–19.

6. Paalzow LK, Edlund PO. Multiple receptor responses: a new
concept to describe the relationship between pharmacological
effects and pharmacokinetics of a drug: studies on clonidine in
the rat and cat. J Pharmacokin Biopharm. 1979;7:495–510.

7. Jumbe NL, Xin Y, Leipold DD, Crocker L, Dugger D, Mai E,
et al. Modeling the efficacy of trastuzumab-DM1, an antibody
drug conjugate, in mice. J Pharmacokinet Pharmacodyn.
2010;37:221–42. doi:10.1007/s10928-010-9156-2.

8. Zhi J, Nightingale CH, Quintiliani R. Microbial pharmacody-
namics of piperacillin in neutropenic mice of systematic infection
due to Pseudomonas aeruginosa. J Pharmacokin Biopharm.
1988;16:355–75.

9. Chakraborty A, Krzyzanski W, Jusko WJ. Mathematical model-
ing of circadian cortisol concentrations using indirect response
models: comparison of several methods. J Pharmacokinet
Biopharm. 1999;27:23–43.

10. Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA,
Jusko WJ. Fifth-generation model for corticosteroid pharmaco-
dynamics: application to steady-state receptor down-regulation
and enzyme induction patterns during seven-day continuous
infusion of methylprednisolone in rats. J Pharmacokinet
Pharmacodyn. 2002;29:1–24.

11. Jusko WJ. Guidelines for collection and analysis of pharmacoki-
netic data. In: Burton ME, Shaw LM, Schentag JJ, Evans WE,
editors. Applied pharmacokinetics: principles of therapeutic drug
monitoring, 4th edition. Philadelphia: Lippincott Williams &
Wilkins; 2006.

12. Nagashima R, O’Reilly RA, Levy G. Kinetics of pharmacologic
effects in man: the anticoagulant action of warfarin. Clin
Pharmacol Ther. 1969;10:22–35.

13. van Rossum JM, van Koppen AT. Kinetics of psycho-motor
stimulus drug action. Eur J Pharmacol. 1968;2:405–8.

14. Gabrielsson J, Peletier LA. Dose–response-time data analysis
involving nonlinear dynamics, feedback and delay. Eur J Pharm
Sci. 2014;59:36–48. doi:10.1016/j.ejps.2014.04.007.

15. Goodman & Gilman’s the pharmacological basis of therapeutics,
12th ed. In: Brunton LL, Chabner BA, Knollmann BC, editors.
MacGraw Hill Education; 2012.

16. Krzyzanski W, Ramakrishnan R, Jusko WJ. Basic pharmacody-
namic models for agents that alter production of natural cells. J
Pharmacokinet Biopharm. 1999;27:467–89.

17. Fong TM, Heymsfield SB. Cannabinoid-1 receptor inverse
agonists: current understanding of mechanism of action and
unanswered questions. Int J Obes (Lond). 2009;33:947–55.

18. Siemers ER, Dean RA, Friedrich S, Ferguson-Sells L, Gonzales
C, Farlow MR, et al. Safety, tolerability, and effects on plasma
and cerebrospinal fluid amyloid-beta after inhibition of gamma-
secretase. Clin Neuropharmacol. 2007;30:317–25.

19. Gabrielsson J, Peletier LA. Mixture dynamics: dual action of
inhibition and stimulation. Eur J Pharm Sci. 2013;50:215–26.

20. Peletier LA, Gabrielsson J, den Haag J. A dynamical systems
analysis of the indirect response model with special emphasis on
time to peak response. J PharmacokinPharmacodyn.
2005;32:607–54.

21. Gatto GJ, Bohme GA, Caldwell WS, Letchworth SR, Traina
VM, Obinu MC, et al. TC-1734: an orally active neuronal
nicotinic acetylcholine receptor modulator with antidepressant,
neuroprotective and long-lasting cognitive effects. CNS Drug
Rev. 2004;10:147–66.

22. Smolen VF. Quantitative determination of drug bioavailability
and biokinetic behavior from pharmacological data for ophthal-
mic and oral administration of a mydriatic drug. J Pharm Sci.
1971;60:354–63.

23. Tao R, Hjorth S. Differences in the in vitro and in vivo 5-
hydroxytryptamine extraction performance among three
common microdialys i s membranes . J Neurochem.
1992;59:1778–85.

24. Ekstrand C, Ingvast-Larsson C, Olsén L, Hedeland M,
Bondesson U, Gabrielsson J. A quantitative approach to
analysing hydrocortisone response in the horse. J Vet
Pharmacol Ther. 2015. doi:10.1111/jvp.12276.

25. Zannikos PN, Rohatagi S, Jensen BK. Pharmacokinetic-
pharmacodynamic modeling of the antilipolytic effects of an
adenosine receptor agonist in healthy volunteers. J Clin
Pharmacol. 2001;41:61–9.

26. Isaksson C, Wallenius K, Peletier LA, Toresson H, Gabrielsson
J. Turnover modeling of non-esterified fatty acids in rats after
multiple intravenous infusions of nicotinic acid. Dose-Response.
2009;7:247–69.

90 Gabrielsson and Hjorth

http://dx.doi.org/10.1208/s12248-015-9817-6
http://dx.doi.org/10.1208/s12248-015-9817-6
http://dx.doi.org/10.1007/s10928-010-9156-2
http://dx.doi.org/10.1016/j.ejps.2014.04.007
http://dx.doi.org/10.1111/jvp.12276


27. Bundgaard C, Larsen F, Jørgensen M, Gabrielsson J.
Mechanistic model of acute autoinhibitory feedback action after
administration of SSRIs in rats: application to escitalopram-
induced effects on brain serotonin levels. Eur J Pharm Sci.
2006;29:394–404.

28. Peletier LA, Gabrielsson J. A nonlinear feedback model
capturing different patterns of tolerance and rebound. Eur J
Pharm Sci. 2007;32:85–104.

29. Hjorth S. Serotonin 5 HT1A autoreceptor blockade potentiates
the ability of the 5-HT reuptake inhibitor citalopram to increase
nerve terminal 5-HT output in vivo: a micro-dialysis study. J
Neurochem. 1993;60:776–9.

30. Hjorth S, Auerbach SB. 5-HT1A autoreceptors and the mode of
action of selective serotonin reuptake inhibitors (SSRI). Behav
Brain Res. 1995;73:281–3.

31. Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H,
Auerbach SB. Serotonin autoreceptor function and antidepres-
sant drug action. J Psychopharmacol. 2000;14:177–85.

32. Gabrielsson J, Hjorth S, Vogg B, Harlfinger S, Gutierrez PM,
Peletier LA, et al. Modeling and design of challenge tests:
inflammatory and metabolic biomarker study examples. Eur J
Pharm Sci. 2015;67:144–59.

33. Keller FE. A feeling for the organism: the life and work of
Barbara McClintock. New York: W. H. Freeman; 1983.

91Pattern Recognition in Pharmacodynamic Analysis


	Pattern Recognition in Pharmacodynamic Data Analysis
	Abstract
	INTRODUCTION
	PRESENTATION OF CASE STUDIES
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4
	Case Study 5
	Case Study 6
	Case Study 7
	Case Study 8
	Case Study 9
	Case Study 10
	Case Study 11
	Case Study 12
	Case Study 13
	Case Study 14
	Case Study 15
	Case Study 16
	Case Study 17
	Case Study 18
	Case Study 19
	Case Study 20

	DISCUSSION
	Standard, Nondrifting, Baseline Situation
	Baseline Equal to Zero
	Drifting or Oscillating Baseline
	Onset of Action
	Duration of Response

	CONCLUDING REMARKS
	References



