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Abstract. Biomaterials used as drug carriers are often considered inactive and assumed to have no other
roles than modifying pharmacokinetics and biodistribution of a drug. On the other hand, there are
several examples in which the carrier materials show bioactivities in the body, which may have been
underestimated or inadvertently ignored. This review highlights several examples where biomaterials
used as drug carriers bring biological effects, known or newly discovered, and discusses their implications

in development of new drug delivery systems.
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INTRODUCTION

One of the primary requirements of a drug carrier is
biocompatibility—the lack of tissue reactions against the
material causing premature removal and/or unwanted im-
mune responses. Various natural and synthetic polymers have
been explored as biocompatible drug carriers, under an
assumption that they have no other roles than delivering the
payload to target tissues. However, many studies including
ours show that the carriers may play more active roles in
therapeutic effects of the product, although some of them
may not have been explicitly discussed as the main topic of
the study. For example, we have reported that a new chitosan
derivative has a unique ability to suppress pro-inflammatory
cytokine production from endotoxin-challenged macrophages
(1). Moreover, we have delivered platinum into the perito-
neal cavity using hyaluronic acid nanoparticles and hydrogels
for local chemotherapy of ovarian cancer and found that they
rather cause a slight increase in tumor burdens at later time
points (2), which suggests a potential involvement of empty
carriers and degradation products in the growth of residual
tumors. These studies indicate that drug carriers can have
biological effects to the host, which may not have been
anticipated during the system design or inadvertently ignored
in data analysis. The potential effect of biomaterial itself is a
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significant issue in evaluating new formulations, since the
obtained pharmacological activities may not necessarily be
due to the alternation of pharmacokinetics/biodistribution
alone. Without this knowledge, one may overestimate the
functionality of a drug carrier and reach a misleading
prediction of clinical effects of the product. In this review,
we discuss bioactivities of pharmaceutical ingredients com-
monly pursued as drug carriers, known or newly discovered,
and their implications in drug product development.

CHITOSAN AND CHITOSAN DERIVATIVES

Chitosan is an aminopolysaccharide composed of D-
glucosamine and N-acetyl-D-glucosamine, obtained by
partial deacetylation of chitin, a key component of
crustacean shells (3). The amine groups in chitosan
provide unique features useful for drug delivery, such as
pH-sensitive water solubility (soluble in acidic pH, insol-
uble in neutral or basic pH), cationic charges amenable to
complexation with anionic macromolecules such proteins
and nucleic acids, and chemical reactivity with other
functional molecules (4). Therefore, chitosan has been
employed in a variety of drug delivery systems from
hydrogels to nanoparticles as a standalone carrier or a
partial component of a system (5). Another attractive
feature of chitosan is the biocompatibility, with negligible
toxicity after single or repeated use in oral and parenteral
applications (5,6), and the biodegradability based on
hydrolysis by enzymes ubiquitous in human body such as
lysozyme, lipase, or amylase (3).

As a pharmaceutical excipient, chitosan is often
assumed to be a pharmacologically “inert” material, but
its biological activities have long been a significant
research topic. For example, chitosan is shown to have
hemostatic activities and has been pursued as a wound
healing agent. The hemostatic activities are independent
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of the classical coagulation cascade but based on charge
interactions between cationic chitosan and anionic cell
membrane of erythrocytes, which lead to platelet activa-
tion and thrombus formation (7). Moreover, chitosan
promotes wound healing process by activating macro-
phages, stimulating cytokine production, and formation
of scar tissues (8,9). In addition, chitosan shows antimi-
crobial activities against a broad spectrum of bacteria with
little toxicity toward mammalian cells (10). The mecha-
nism of antimicrobial activities of chitosan remains elusive,
although it is frequently attributed to strong electrostatic
interactions between chitosan and bacterial cell surface,
followed by disruption of membrane barrier functions and
leakage of cellular components (10).

The cationic charge of chitosan is also exploited for
removing endotoxin, the main cause of bacterial sepsis.
Endotoxin has strong negative charges due to lipid A and
interacts with chitosan via electrostatic interaction. Machado
et al. reported that endotoxin binds to chitosan with Ky of
107! M at pH 7, comparable to adsorbents based on polylysine
(Kq 5510 M) or N,N-dimethylaminopropylacrylamide (Kq
7.2x107'" M) (11). Chitosan immobilized on a cellulose
membrane was shown to remove endotoxin from distilled
water and interferon preparations with removal efficiency
close to 90% at optimal conditions (12). However, the poor
water solubility of chitosan at physiological pH limits its utility as
a therapeutic agent for systemic treatment of sepsis. In this
regard, it is worthwhile to note a water-soluble chitosan
derivative created by partial amidation of chitosan (13), called
zwitterionic chitosan (ZWC), negatively charged and hence
water-soluble at neutral pH unlike the parent chitosan. Due to
the water solubility, intraperitoneally injected ZWC was well
absorbed leaving no residues in the peritoneal cavity, whereas a
salt form of chitosan (chitosan glutamate) created extracellular
deposits, surrounded by large activated macrophages (Fig. 1a)
(1,13). Interestingly, ZWC suppressed the production of pro-
inflammatory cytokines by lipopolysaccharide (LPS)-challenged
macrophages (Fig. 1b) (1). Moreover, IP-administered ZWC
attenuated the onset of endotoxin-induced sepsis in mice, with
no signs of adverse tissue responses seen with chitosan
(unpublished data). These properties suggest that ZWC may
have potential utility in systemic treatment of sepsis.

Biological activity of chitosan derivative was also ob-
served in applications where chitosan was used as a carrier of
anti-cancer drugs. Glycol chitosan was modified with 5p-
cholanic acid to form nano-sized self-assemblies consisting of
hydrophobic core encapsulating poorly water-soluble drugs
and hydrophilic glycol surface (14). The hydrophobically
modified glycol chitosan (HGC) nanoparticles were used for
the delivery of hydrophobic anti-cancer drugs such as
paclitaxel (14), docetaxel (15), or camptothecin (16). The
HGC-encapsulated drugs were comparable (14) or superior
(15,16) to free drug controls in delaying tumor progression
with relatively low systemic toxicity profiles. Interestingly,
empty HGC nanoparticles administered at a dose (200 mg/kg)
equivalent to HGC-drug particles at 20 mg/kg PTX resulted
in tumor regression, although the mechanism remained
unclear (Fig. 2) (14). The authors speculated that HGC might
have changed the local environment of tumor tissues (14).
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Fig. 1. a (Top) Hematoxylin and eosin (H&E) staining of liver
sections of different treatment groups. (Bottom) Cytology of the
peritoneal fluid from different treatment groups using H&E staining.
Ch: extracellular chitosan deposits. b Effect of chitosan treatment (all
in 2 mg/mL) on cytokine release from LPS (1 pg/mL)-challenged
macrophages. **p<0.01; ***p<0.001 vs. LPS. LPS lipopolysaccharide,
CS chitosan, ZWC zwitterionic chitosan. Adapted from (1)

HYALURONIC ACID

Hyaluronan, or hyaluronic acid (HA), is a polysaccha-
ride composed of D-glucuronic acid and N-acetyl-D-
glucosamine (17), a glycosaminoglycan abundant in the skin,
lung, synovial fluid, and blood (18). HA binds to cluster
determinant 44 (CD44) (19), a cell surface protein upregu-
lated in many cancers of epithelial origin (20). Due to this
property, HA has been incorporated into various
nanomedicine constructs as a targeting ligand (20,21). As a
natural component of extracellular matrix tissues, HA is also
biocompatible and biodegradable, making an excellent build-
ing block for engineered tissue scaffolds and drug delivery
systems (22). HA has several biological functions such as
lubrication, water homeostasis, macromolecular filtering, and
regulation of cellular activities (23). HA is known to activate
cell migration and proliferation and regulate inflammation
and tissue remodeling, which have been explicitly exploited in
tissue engineering and wound healing (24). However, the
biological effects of HA on target tissues as drug carriers have
not been a topic of active discussion.

We recently observed that HA could bring about
undesirable consequences to cancer therapy. We used an in
situ crosslinked HA hydrogel as a carrier of platinum in an
animal model of intraperitoneal cancer (2). Platinum was first
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Fig. 2. In vivo anti-tumor activity of HGC, Cremophor EL-based PTX,
and PTX-HGC nanoaggregates after administration i.v. Arrows indicate
the times of injection The results represent the means+SD (n=6). The
symbols are as follows: saline (black circle); HGC (black square),
Cremophor EL-based PTX, equivalent to 20 mg/kg PTX (black
triangle); PTX-HGC, equivalent to 20 mg/kg PTX (black inverted
triangle); and PTX-HGC, equivalent to 50 mg/kg PTX (black diamond).
Reprinted with permission from (14). Copyright © 2006 Elsevier

encapsulated in HA nanoparticles, mixed in the HA hydrogel
precursors, and injected to the peritoneal cavity of animals
bearing intraperitoneal tumors to prolong the drug exposure
to the tumors. The platinum-loaded HA hydrogel suppressed
tumor progression initially to a level comparable to cisplatin
(free drug solution) but caused a slight increase in tumor
burdens at later time points (4 weeks or later), contrary to
our expectation. This observation was not explained by the
attenuation of drug release from the HA gel, since the control
group administered with two half doses of cisplatin solution
with a week interval (mimicking sustained drug release)
showed superior tumor regression compared to the
platinum-HA gel-treated group. Given that biological activ-
ities of HA gel have been exploited in tissue engineering to
support the growth of tissues (25), we suspect that the HA
gel, after exhausting platinum, may have partaken in the
tumor growth (2). In this regard, it is worthwhile to revisit an
earlier study reporting the enhancement of intraperitoneal
tumor growth in animals treated with HA (26). In addition, it
was argued that HA had the potential to interfere with
interactions between tumor cells and monocytes or tumor-
infiltrating macrophages, which would otherwise have pro-
vided anti-tumor effects through their effector functions
(27,28). These observations collectively suggest that the
empty HA carriers may have cell-proliferative effects, which
favor progression of tumors. On the other hand, we do not
necessarily preclude the use of HA gel as a drug carrier,
especially when the drug can last longer with HA gel, leaving
a shorter (or no) period for exposure to drug-free carriers.
Studies using paclitaxel and HA gel mixture (29) or covalent
conjugates of paclitaxel-HA (30,31), which released drug over
a longer period of time than in our platinum study, took
advantage of HA’s biocompatibility and affinity for CD44 and
demonstrated improved safety profiles with comparable or
superior anti-tumor effects to Taxol.
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CHONDROITIN SULFATE

Chondroitin sulfate is a polysaccharide consisting of two
alternating monosaccharides (N-acetylgalactosamine and glu-
curonic acid), present on the cell surface and in the extracellular
matrix (32) and covalently bound to proteins to form a
proteoglycans (33). Chondroitin sulfate has been widely used
in drug delivery as a hydrophilic component of self-assembled
nanocarriers (33-39). In addition, due to the anionic charge and
the ability to bind to CD44, chondroitin sulfate has been used in
combination with polymeric gene carriers to reduce the cationic
charge (40-46) and improve the target specificity (45-47). The
chondroitin sulfate associated with cationic gene carriers is also
shown to modify intracellular trafficking of the gene complex
(promote endosomal escape and accumulation at the nuclear
periphery) in favor of gene transfection (48).

While most studies have focused on reducing cytotoxicity of
polycations with chondroitin sulfate, we recently observed the
opposite trend with a chondroitin sulfate-polycation complex. We
found that a combination of polyethyleneimine derivative with
disulfide crosslinking (49) and chondroitin sulfate-B (also known
as dermatan sulfate) showed unique toxicity at a specific weight
ratio in a group of cancer cells including B16-F10 melanoma and
PC-3 prostate cancer cell lines (unpublished data). Neither
dermatan sulfate nor polyethyleneimine derivative showed
significant toxicity when used alone. The unique toxicity translat-
ed to decrease in tumor density in a mouse model of B16-F10
melanoma (Fig. 3). We speculate that the effect of chondroitin
sulfate-polycation complex on a certain group of cancer cells may

a no treatment or b IV injection of a polyethyleneimine derivative-
dermatan sulfate binary complex
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be due in part to the interference of critical functions of dermatan
sulfate in their progression (50-52).

PLURONICS

Pluronics (also known as Poloxamers) are tri-block
copolymers consisting of hydrophilic ethylene oxide (EO)
and hydrophobic propylene oxide (PO) blocks, arranged in
the order of EO-PO-EO blocks (Fig. 4a) (53). Their
amphiphilic structures allow them to serve as a surfactant,
forming polymeric micelles to help solubilize hydrophobic
compounds. At body temperature, Pluronics have a critical
micelle concentration ranging from 1 pM to 1 mM, depending
on the length of EO and PO blocks (53). Kabanov et al.
observed that Pluronics sensitized drug-resistant cancer cell
lines to anti-cancer drugs, which would otherwise have a
limited cytotoxic activity to the cells and confirmed the effect
in several drug-resistant tumor models (54). Several mecha-
nisms account for the ability of Pluronics to sensitize drug-
resistant tumors (Fig. 4b) (55,56). First, Pluronics interfere
with drug efflux from the multi-drug-resistant cells and
increase intracellular accumulation of anti-cancer drugs. The
polymer binds to lipid bilayers, perturbing the structure of
cell membranes. This leads to the inhibition of ATPase
activity of drug efflux transporters such as Pgp and BCRP.
Pluronics also inhibit mitochondrial respiration and ATP
synthesis, depleting intracellular energy needed to sustain
the drug resistance. Moreover, the interaction of Pluronics and
mitochondria leads to production of reactive oxygen species and
release of cytochrome c, enhancing drug-induced apoptosis and
further contributing to chemosensitization (57). Taking advan-
tage of this unique property, a micelle formulation of doxoru-
bicin incorporated in two Pluronics (SP1049C) was developed
and tested in clinical studies (58-60). In a phase 2 clinical study
in patients with advanced adenocarcinoma of the esophagus and
gastroesophageal junction, SP1049C demonstrated appreciable
anti-tumor activity as a single agent and an acceptable safety
profile (59). SP1049C is currently pursued as an agent targeting
cancer stem cells, which are highly tumorigenic and intrinsically
drug resistant (55,61).

POLAR LIPIDS

Polar lipids are a class of biomolecules with polar head
groups linked to hydrophobic tails, classified as phospho-,
glyco-, and sulfo-lipids according to the type of polar groups.
Due to the amphiphilic nature, polar lipids form nanometer
scale assemblies like micelles and liposomes with well-defined
biophysical properties. In particular, liposomes have widely
been used as carriers for drugs with unfavorable toxicity
profiles such as doxorubicin and amphotericin, making the
first generation nanomedicines approved by the FDA.

Due to the similarity to mammalian cell membranes
and the natural origin of the components, liposomes are
considered generally safe and biocompatible (62). Howev-
er, studies in the past decade report immunomodulatory
effects of liposomes. Several components of liposomes
account for the immunogenicity. Polyethylene glycol
(PEG), added to polar head groups of phospholipids to
sterically stabilize liposomes, was found to be responsible
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for rapid elimination of a second dose of PEGylated
liposomes (63). It was later determined that IgM with
high affinity for PEG on the liposomes mediated
the complement activation, resulting in accelerated clear-
ance and enhanced hepatic uptake of the second-injected
PEGylated liposomes (Fig. 5a) (64). In addition, polar
lipids with cationic head groups, such as 1,2-dioleoyl-3-
trimethylammonium-propane (DOTAP), have
immunostimulatory properties, activating cellular signaling
pathways responsible for production of chemokines and
pro-inflammatory cytokines (Fig. 5b) (65). Conversely,
cationic lipids also inhibit LPS-induced pro-inflammatory
responses via electrostatic interaction with LPS (66) and/
or interfering with TLR-4/MD-2 signaling (67). On the
other hand, liposomes containing negatively charged
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Fig. 4. a Structure of poloxamers. b Schematic representation of
multiple effects of poloxamers in MDR cells. Poloxamer molecule
binds with the cholesterol-rich domains in the cell membranes (“lipid-
rafts”) and perturbs their structure (7). This results in inhibition of
the ATPase activity of the drug efflux pumps, Pgp and BCRP (2).
Poloxamer translocates into mitochondria, decreases mitochondria
membrane potential and inhibits respiration (3). This leads to
inhibition of the mitochondrial H+-ATPase and ATP depletion (4).
The ATP depletion (4) along with inhibition of the ATPase activity of
the Pgp and BCRP (2) results in the impairment of the drug efflux
and increased accumulation of the drug in cells (5). The interaction of
poloxamer in mitochondria also releases cytochrome C, increases
ROS production, and shifts the cell signaling in response to the drug
toward apoptosis (6). Reprinted with permission from (55). Copyright
© 2013 Elsevier
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Fig. 5. a Accelerated blood clearance of PEGylated liposomes. RatsP>

were pretreated with PEGylated liposomes (lipid dose 0.001 pmol/
kg), followed by second dose of radio-labeled PEGylated liposomes
(5 pmol/kg) after different time intervals. Reprinted with permission
from (64) Copyright © 2006 Elsevier. b Schematic representation of
cell activation by cationic liposomes. I: Cationic liposomes recognize
a G-coupled receptor, activate MAP kinases ERK1/2 and p38 MAPK
through PI-3 kinase and induce the expression of co-stimulatory
molecules (CD80 and CD86) and chemokines (MIP1a, MIP1(, MCP-
1) in dendritic cells. II: Cationic liposomes stimulate dendritic cells
through TLR4 receptor and activate MAPKs and NF-kB, leading to
expression and/or secretion of several chemokines and cytokines (IL-
12, IL-6, TNF-a) in dendritic cells. Adapted from ref (65). ¢
Schematic of phosphatidylserine-containing liposomes (PSL) induced
pathway for PEG2 production in microglia/macrophages. SR-BI
dependent PSL phagocytosis induced ERK1/2 activation to upregu-
late PEG2 through COX-1/mPGES-2 cascades. The PSL-induced
PGE?2 suppresses the phagocyte activation. SR-BI class B scavenger
receptor type I; ERKI/2 extracellular signal-regulated kinases 1/2;
COX cyclooxygenase; PG prostaglandin; ¢cPGES cytosolic PGE
synthase; mPGES microsomal PGE synthase. Adapted from (68)

phospholipids, such as phosphatidylserine, mimic the effect
of apoptotic cells on phagocytes such as macrophages,
microglia, and dendritic cells and cause them to secret
anti-inflammatory mediators including prostaglandin E2
(PEG2) and shift from pro- to anti-inflammatory pheno-
type (Fig. 5¢) (68). These immunomodulatory effects of
liposomes are now actively pursued as a way of increasing
adjuvanicity of vaccines (69) or attenuating inflammation
(70-72).

CYCLODEXTRINS

Cyclodextrins (CDs) are cyclic oligosaccharides com-
posed of six, seven, or eight glucopyranose units, bound via o-
1,4-glycosidic linkages, corresponding to o-, -, and y-CD,
respectively (73). CDs have a truncated cone structure with a
hydrophilic exterior and a hydrophobic interior, which allows
them to host hydrophobic small molecular weight drugs and
helps solubilize them in aqueous solutions and improve their
bioavailability (74,75). For this reason, CDs and their
derivatives are widely used as inactive ingredients in more
than 35 pharmaceutical products, with well-established mono-
graphs in United States Pharmacopeia and National Formu-
lary, Japanese Pharmaceutical Codex, and European
Pharmacopoeia (76).

Orally administered CDs are generally considered safe
due to the low absorption from the gastrointestinal tract (76).
On the other hand, parenteral injection of CDs can cause
renal toxicity; hence, only a-CD is used in parenteral products
at very low concentrations (76). Recent studies also point to
potential cytotoxicity of CDs due to depletion of cell
membrane lipids. There is a good correlation between the
ability of CDs to solubilize cholesterol, hemolytic activity, and
cytotoxicity (77). Cholesterol depletion leads to alteration of
several cell functions, including cell morphology, actin
cytoskeletal organization, and compositions of cellular pro-
teins and membrane fatty acids (78). In addition to mem-
brane damage, high levels of o- and B-CDs (0.5 and 1%)
induced apoptosis by activating caspase-3 and caspase-7 (79).
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The opposite effects are also reported. Qin et al. reported that
the treatment with 10 pug/mL of cholesterol:methyl-p-CD
induced proliferation of primary rat vascular smooth muscle
cells by stimulating ERK1/2 signaling (80). Cholesterol
depletion by 2 mM of methyl-p-CD enhanced cell prolifera-
tion of primary chick myogenic cells by activation of the Wnt/
B-catenin pathway (81). While the toxicity of CDs may not be
generalized and should be interpreted in the context of
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Fig. 6. Schematic of design and mechanism of treatment of NHL with sequential treatment of NHL B cells with Fab
'-CCE and HPMA-(CCK)n polymers (adapted from ref. 87). Induction of apoptosis of NHL B cells is triggered by
crosslinking of its CD20 antigens mediated by antiparallel coiled-coil CCE/CCK heterodimer formation at the cell
surface. Fab’-CCE is a conjugate of the Fab’ fragment binding to CD20 and the CCE peptide
(YGGEVSALEKEVSALEKKNSALEKEVSALEKEVSALEK); HPMA-CCK, is a HPMA copolymer contain-
ing 9 grafts of the CCK peptide (CYGGKVSALKEKVSALKEEVSANKEKVSALKEKVSALKE) per
macromolecule. CCE/CCK heterodimeric coiled-coil structure was reprinted with permission from (88) Copyright
© 2014 Elsevier. The view is shown looking down the superhelical axis from the N-terminus of CCE and from the C-
terminus of CCK. CC denotes coiled-coil peptides, E and K denote peptides in which most of e and g positions are
occupied by either glutamic acid or lysine, respectively (84)

concentration, their effects on cell membrane lipid content
need to be taken into consideration in designing CD-
containing formulations.

N-(2-HYDROXYPROPYL) MATHACRYLAMIDE
COPOLYMER ASSEMLIES

N-(2-hydroxypropyl) methacrylamide (HPMA) copoly-
mers (Fig. 6) are hydrophilic synthetic polymers, developed in
1970s as carriers of anti-cancer drugs and proteins (82). Drug
molecules are covalently conjugated as pendants to the
HPMA backbone via a linker, which can be cleaved by
lysosomal enzymes upon cellular uptake (82). Drug-HPMA

conjugates are used to increase the bioavailability and passive
accumulation of drugs in tumors and to modify the mecha-
nisms by which drugs are taken up by cells and trafficked in
the cells (82). HPMA polymers have been used as a carrier of
several anti-cancer drugs including doxorubicin,
camptothecin, paclitaxel, and platinates and tested in clinical
studies for therapeutic validation (82,83).

More recently, HPMA polymers have been proposed as
drug-free macromolecular therapeutics for the treatment of B
cell non-Hodgkin lymphoma (NHL) (84,85). This approach is
based on the principal that crosslinking of CD20 antigens, a
biomarker expressed by most malignant B cells, causes cell
apoptosis (86). Here, CD20’s on malignant B cells are
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prelabeled with anti-CD20 Fab’ fragment coupled to a
peptide motif (e.g., CCE), which is recognized by a comple-
mentary peptide (e.g., CCK) to form an antiparallel coiled-
coil heterodimer. The treatment of prelabeled B cells with
conjugates of HPMA and multiple grafts of CCK (HPMA-
CCK,) induces crosslinking of CD20 antigens on the cell
surface, triggering apoptotic cell death (Fig. 6) (86). Sequen-
tial intravenous injections of Fab’-CCE and HPMA-CCK,,
led to extension of the survival period or increase in survival
rate in SCID mice bearing human B-lymphoma xenografts
(87). As an alternative to peptide pairs, which were found
immunogenic in immunocompetent Balb/c mice (88), a
complementary pair of morpholino oligonucleotides is cur-
rently pursued to improve binding kinetics and efficiency
(89,90). The HPMA-based drug-free macromolecular thera-
peutics shows an example of new roles that the polymers can
play beyond their traditional functions as a drug carrier.

FUTURE PERSPECTIVES

This short review highlights selected examples where
biomaterials used as drug carriers show biological effects that
may enhance or compromise the pharmacological activities of
the payload. Many carrier materials (also called “inactive”
ingredients) have been considered biocompatible and often
biologically inert. However, the safety and biocompatibility
are relative terms, and human bodies can develop various
mechanisms to respond to these extrinsic materials. Given the
potential bioactivities of carrier materials, it will be wise to
pay attention to the effect of biomaterial itself in evaluating
new formulation products and determine whether the altered
pharmacological activities are indeed the consequence of the
modification of drug delivery or attributable to the additive/
synergistic effects of the carrier at least partly. It will be only
when we understand the actual role of the carrier materials in
the body that we can develop a new drug delivery system with
a significant effect on the drug distribution. Moreover,
mechanistic understanding of activities of biomaterials will
provide a new opportunity to develop macromolecular
therapeutics for applications that low molecular weight drugs
have not addressed.
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