Skip to main content
Log in

The Interaction of Fatty Acid Amide Hydrolase (FAAH) Inhibitors with an Anandamide Carrier Protein Using 19 F-NMR

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

It has been reported that the endocannabinoid anandamide (AEA) binds to a class of fatty acid-binding proteins and serum albumin which can serve as carrier proteins and potentiate the cellular uptake of AEA and its intracellular translocation. Here, we employed 19F nuclear magnetic resonance spectroscopy to study the interactions of serum albumin with two inhibitors of fatty acid amide hydrolase (FAAH), the enzyme involved in the deactivation of anandamide. We found that, for both inhibitors AM5206 and AM5207, the primary binding site on serum albumin is drug site 1 located at subdomain IIA. Neither inhibitor binds to drug site 2. While AM5207 binds exclusively to drug site 1, AM5206 also interacts with other fatty acid-binding sites on serum albumin. Additionally, AM5206 has an affinity for serum albumin approximately one order of magnitude higher than that of AM5207. The data suggest that interactions of FAAH inhibitors with albumin may provide added advantages for their ability to modulate endocannabinoid levels for a range of applications including analgesia, antiemesis, and neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AEA:

N-arachidonoylethanolamine or anandamide

BSA:

bovine serum albumin

FAAH:

fatty acid amide hydrolase

References

  1. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384(6604):83–7. Epub 1996/11/07.

    Article  PubMed  CAS  Google Scholar 

  2. Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A. 1997;94(6):2238–42. Epub 1997/03/18.

    Article  PubMed  CAS  Google Scholar 

  3. McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005;74:411–32. Epub 2005/06/15.

    Article  PubMed  CAS  Google Scholar 

  4. Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, et al. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry. 2007;46(45):13019–30. Epub 2007/10/24.

    Article  PubMed  CAS  Google Scholar 

  5. Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006;12(1):21–38. Epub 2006/07/13.

    Article  PubMed  CAS  Google Scholar 

  6. Scherma M, Medalie J, Fratta W, Vadivel SK, Makriyannis A, Piomelli D, et al. The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology. 2008;54(1):129–40. Epub 2007/10/02.

    Article  PubMed  CAS  Google Scholar 

  7. Chang L, Luo L, Palmer JA, Sutton S, Wilson SJ, Barbier AJ, et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol. 2006;148(1):102–13. Epub 2006/02/28.

    Article  PubMed  CAS  Google Scholar 

  8. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A. 2001;98(16):9371–6. Epub 2001/07/27.

    Article  PubMed  CAS  Google Scholar 

  9. Jayamanne A, Greenwood R, Mitchell VA, Aslan S, Piomelli D, Vaughan CW. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol. 2006;147(3):281–8. Epub 2005/12/07.

    Article  PubMed  CAS  Google Scholar 

  10. Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, et al. The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharmacol Exp Ther. 2007;321(1):370–80. Epub 2007/01/11.

    Article  PubMed  CAS  Google Scholar 

  11. Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, et al. A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci. 2012;15(1):64–9.

    Article  CAS  Google Scholar 

  12. Kaczocha M, Glaser ST, Deutsch DG. Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A. 2009;106(15):6375–80.

    Article  PubMed  CAS  Google Scholar 

  13. Oddi S, Fezza F, Pasquariello N, D’Agostino A, Catanzaro G, De Simone C, et al. Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem Biol. 2009;16(6):624–32.

    Article  PubMed  CAS  Google Scholar 

  14. Karanian DA, Brown QB, Makriyannis A, Kosten TA, Bahr BA. Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci. 2005;25(34):7813–20. Epub 2005/08/27.

    Article  PubMed  CAS  Google Scholar 

  15. Karanian DA, Nikas SP, Zhao J, Wood JT, Williams JS, Makriyannis A, et al. Enhancement of endogenous cannabinoid responses through FAAH inhibition provides cellular and functional protection against excitotoxic brain damage. FASEB J. 2007;21:883.5.

    Google Scholar 

  16. Makriyannis A, Nikas SP, Alapafuja SO, Shukla VG (inventors); University of Connecticut (assignee). Fatty acid amide hydrolase inhibitors. Patent WO/2008/013963.

  17. Naidoo V, Nikas S, Karanian D, Hwang J, Zhao J, Wood J, et al. A new generation fatty acid amide hydrolase inhibitor protects against kainate-induced excitotoxicity. J Mol Neurosci. 2011;43(3):493–502.

    Article  PubMed  CAS  Google Scholar 

  18. Bojesen IN, Hansen HS. Binding of anandamide to bovine serum albumin. J Lipid Res. 2003;44(9):1790–4. Epub 2003/07/03.

    Article  PubMed  CAS  Google Scholar 

  19. Jisha VS, Arun KT, Hariharan M, Ramaiah D. Site-selective binding and dual mode recognition of serum albumin by a squaraine dye. J Am Chem Soc. 2006;128(18):6024–5. Epub 2006/05/04.

    Article  PubMed  CAS  Google Scholar 

  20. Kumar CV, Buranaprapuk A. Site-specific photocleavage of proteins. Angew Chem Int Ed. 1997;36(19):2085–7.

    Article  CAS  Google Scholar 

  21. Kumar CV, Buranaprapuk A, Opiteck GJ, Moyer MB, Jockusch S, Turro NJ. Photochemical protease: site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc Natl Acad Sci U S A. 1998;95(18):10361–6. Epub 1998/09/02.

    Article  PubMed  CAS  Google Scholar 

  22. Mao H, Gunasekera AH, Fesik SW. Expression, refolding, and isotopic labeling of human serum albumin domains for NMR spectroscopy. Protein Expr Purif. 2000;20(3):492–9. Epub 2000/11/23.

    Article  PubMed  CAS  Google Scholar 

  23. Sandberg A, Fowler CJ. Measurement of saturable and non-saturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin. Chem Phys Lipids. 2005;134(2):131–9. Epub 2005/03/24.

    Article  PubMed  CAS  Google Scholar 

  24. Simard JR, Zunszain PA, Hamilton JA, Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J Mol Biol. 2006;361(2):336–51.

    Article  PubMed  CAS  Google Scholar 

  25. Sułkowska A, Bojko B, Równicka J, Rezner P, Sułkowski WW. The competition of drugs to serum albumin in combination chemotherapy: NMR study. J Mol Struct. 2005;744–747:781–7.

    Article  Google Scholar 

  26. Zucker SD, Goessling W, Gollan JL. Kinetics of bilirubin transfer between serum albumin and membrane vesicles. Insight into the mechanism of organic anion delivery to the hepatocyte plasma membrane. J Biol Chem. 1995;270(3):1074–81. Epub 1995/01/20.

    Article  PubMed  CAS  Google Scholar 

  27. Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. Epub 1994/01/01.

    Article  PubMed  CAS  Google Scholar 

  28. He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209–15. Epub 1992/07/16.

    Article  PubMed  CAS  Google Scholar 

  29. Petitpas I, Grune T, Bhattacharya AA, Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol. 2001;314(5):955–60. Epub 2001/12/18.

    Article  PubMed  CAS  Google Scholar 

  30. Dockal M, Carter DC, Ruker F. The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J Biol Chem. 1999;274(41):29303–10. Epub 1999/10/03.

    Article  PubMed  CAS  Google Scholar 

  31. Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976;12(6):1052–61. Epub 1976/11/01.

    PubMed  CAS  Google Scholar 

  32. Sulkowska A, Bojko B, Rownicka J, Sulkowski W. Competition of drugs to serum albumin in combination therapy. Biopolymers. 2004;74(3):256–62. Epub 2004/05/20.

    Article  PubMed  CAS  Google Scholar 

  33. Dalvit C, Fagerness PE, Hadden DT, Sarver RW, Stockman BJ. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc. 2003;125(25):7696–703. Epub 2003/06/19.

    Article  PubMed  CAS  Google Scholar 

  34. Dalvit C, Vulpetti A. Technical and practical aspects of 19F NMR-based screening: toward sensitive high-throughput screening with rapid deconvolution. Magn Reson Chem MRC. 2012;50(9):592–7. Epub 2012/07/24.

    Article  CAS  Google Scholar 

  35. Jenkins BG, Lauffer RB. Detection of site-specific binding and co-binding of ligands to human serum albumin using 19F NMR. Mol Pharmacol. 1990;37(1):111–8. Epub 1990/01/01.

    PubMed  CAS  Google Scholar 

  36. Kitamura K, Kume M, Yamamoto M, Takegami S, Kitade T. 19F NMR spectroscopic study on the binding of triflupromazine to bovine and human serum albumins. J Pharm Biomed Anal. 2004;36(2):411–4. Epub 2004/10/22.

    Article  PubMed  CAS  Google Scholar 

  37. Shikii K, Sakurai S, Utsumi H, Seki H, Tashiro M. Application of the 19F NMR technique to observe binding of the general anesthetic halothane to human serum albumin. Anal Sci. 2004;20(10):1475–7. Epub 2004/11/05.

    Article  PubMed  CAS  Google Scholar 

  38. Xu Y, Tang P, Firestone L, Zhang TT. 19F nuclear magnetic resonance investigation of stereoselective binding of isoflurane to bovine serum albumin. Biophys J. 1996;70(1):532–8. Epub 1996/01/01.

    Article  PubMed  CAS  Google Scholar 

  39. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005;353(1):38–52. Epub 2005/09/20.

    Article  PubMed  CAS  Google Scholar 

  40. McMenamy RH, Oncley JL. The specific binding of l-tryptophan to serum albumin. J Biol Chem. 1958;233:1436–47.

    PubMed  CAS  Google Scholar 

  41. Pardridge WM, Fierer G. Transport of tryptophan into brain from the circulating, albumin-bound pool in rats and in rabbits. J Neurochem. 1990;54(3):971–6.

    Article  PubMed  CAS  Google Scholar 

  42. Price WS. Recent advances in NMR diffusion techniques for studying drug binding. Aust J Chem. 2003;56(9):855–60.

    Article  CAS  Google Scholar 

  43. Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson. 1989;83(2):252–66.

    CAS  Google Scholar 

  44. Stilbs P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc. 1987;19(1):1–45.

    Article  CAS  Google Scholar 

  45. Tanner JE. Use of the stimulated echo in NMR diffusion studies. J Chem Phys. 1970;52(5):2523–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants DA003801 (A.M.), DA007215 (A.M.), DA007312 (A.M.), and DA032020 (J.G.) from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Guo or Alexandros Makriyannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, J., Yang, DP., Nikas, S.P. et al. The Interaction of Fatty Acid Amide Hydrolase (FAAH) Inhibitors with an Anandamide Carrier Protein Using 19 F-NMR . AAPS J 15, 477–482 (2013). https://doi.org/10.1208/s12248-013-9455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9455-9

Keywords

Navigation