Skip to main content

Advertisement

Log in

Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This review presents an introduction to Raman scattering and describes the various Raman spectroscopy, Raman microscopy, and chemical imaging techniques that have demonstrated utility in biocolloidal self-assemblies, pharmaceutical drug delivery systems, and pulmonary research applications. Recent Raman applications to pharmaceutical aerosols in the context of pulmonary inhalation aerosol delivery are discussed. The “molecular fingerprint” insight that Raman applications provide includes molecular structure, drug-carrier/excipient interactions, intramolecular and intermolecular bonding, surface structure, surface and interfacial interactions, and the functional groups involved therein. The molecular, surface, and interfacial properties that Raman characterization can provide are particularly important in respirable pharmaceutical powders, as these particles possess a higher surface-area-to-volume ratio; hence, understanding the nature of these solid surfaces can enable their manipulation and tailoring for functionality at the nanometer level for targeted pulmonary delivery and deposition. Moreover, Raman mapping of aerosols at the micro- and nanometer level of resolution is achievable with new, sophisticated, commercially available Raman microspectroscopy techniques. This noninvasive, highly versatile analytical and imaging technique exhibits vast potential for in vitro and in vivo molecular investigations of pulmonary aerosol delivery, lung deposition, and pulmonary cellular drug uptake and disposition in unfixed living pulmonary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raman CV. Anisotropy of molecules.Nature. 1922;109:75–76.

    CAS  Google Scholar 

  2. Raman CV, Krishnan KS. A new type of secondary radiation.Nature. 1928;121:501–502.

    CAS  Google Scholar 

  3. Singh RCV. Raman and the discovery of the Raman effect.Phys Perspect. 2002;4:399–420.

    Google Scholar 

  4. Tudor AM, Melia CD, Binns JS, Hendra PJ, Church S, Davies MC. The application of Fourier-transform Raman spectroscopy to the analysis of pharmaceuticals and biomaterials.J Pharm Biomed Anal. 1990;8:717–720.

    PubMed  CAS  Google Scholar 

  5. Newman AW, Bryn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products.Drug Discov Today. 2003;8:898–905.

    PubMed  CAS  Google Scholar 

  6. McCreery RL, Hom AJ, Spencer J, Jefferson E. Noninvasive identification of materials inside USP vials with Raman spectroscopy and a Raman spectral library.J Pharm Sci. 1998;87:1–8.

    PubMed  CAS  Google Scholar 

  7. Lyon LA, Keating CD, Fox AP, et al. Raman spectroscopy.Anal Chem. 1998;70:341–361.

    Google Scholar 

  8. Wartewig S, Neubert RH. Pharmaceutical applications of mid-IR and Raman spectroscopy.Adv Drug Deliv Rev. 2005;57:1144–1170.

    PubMed  CAS  Google Scholar 

  9. Fini G. Applications of Raman spectroscopy to pharmacy.J Raman Spectrosc. 2004;35:335–337.

    CAS  Google Scholar 

  10. Dollish FR, Fateley WG, Bentley FF.Characteristic Raman Frequencies of Organic Compounds. New York, NY: Wiley-Interscience; 1974.

    Google Scholar 

  11. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG.The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Oxford, UK: Elsevier Science & Technology Books; 1991.

    Google Scholar 

  12. Bugay D. Characterization of the solid-state: spectroscopic techniques.Adv Drug Deliv Rev. 2001;48:43–65.

    PubMed  CAS  Google Scholar 

  13. Vickers TJ, Mann CK, Zhu J, Chong CK. Quantitative resonance Raman spectroscopy.Appl Spectrosc Rev. 1991;26:341–375.

    Google Scholar 

  14. Tian ZQ. Surface-enhanced Raman spectroscopy: advancements and applications.J Raman Spectrosc. 2005;36:466–470.

    CAS  Google Scholar 

  15. Bell SEJ, Sirimuthu NMS. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides.J Am Cancer Soc. 2006;128:15580–15581.

    CAS  Google Scholar 

  16. Vo-Dinh T, Yan F, Wabuyele MB. Surface-enhanced Raman scattering for biomedical diagnostics and molecular imaging.Top Appl Phys. 2006;103:409–426.

    CAS  Google Scholar 

  17. Miljanic S, Frkanec L, Biljan T, Meic Z, Zinic M. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.Langmuir. 2006;22:9079–9081.

    PubMed  CAS  Google Scholar 

  18. Wood E, Sutton C, Beezer AE, Creighton JA, Davis AF, Mitchell JC. Surface enhanced Raman scattering (SERS) study of membrane transport processes.Int J Pharm. 1997;154:115–118.

    CAS  Google Scholar 

  19. Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV. Surface-enhanced Raman scattering on colloidal nanostructures.Adv Colloid Interface Sci. 2005;116:45–61.

    PubMed  CAS  Google Scholar 

  20. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates.Nano Lett. 2006;6:2225–2231.

    PubMed  CAS  Google Scholar 

  21. Kneipp J, Kneipp H, Kneipp K. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering.Proc Natl Acad Sci USA. 2006;103:17149–17153.

    PubMed  CAS  Google Scholar 

  22. USP.〈1120〉 Raman Spectrophotometry USP 29-NF 24 The United States Pharmacopoeia and The National Formulary: The Official Compendia of Standards. Rockville, MD: US Pharmacopeial Convention; 2006:2983–2988.

    Google Scholar 

  23. Pinzaru SC, Pavel I, Leopold N, Kiefer W. Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering.J Raman Spectrosc. 2004;35:338–346.

    CAS  Google Scholar 

  24. Huong PV. Drug analysis by Raman and micro-Raman spectroscopy.J Pharm Biomed Anal. 1986;4:811–823.

    PubMed  CAS  Google Scholar 

  25. Vankeirsbilck T, Vercauteren A, Baeyens W, et al. Applications of Raman spectroscopy in pharmaceutical analysis.TrAC. 2002;21:869–877.

    CAS  Google Scholar 

  26. Strachan CJ, Rades T, Gordon KC, Rantanen J. Raman spectroscopy for quantitative analysis of pharmaceutical solids.J Pharm Pharmacol. 2007;59:179–192.

    PubMed  CAS  Google Scholar 

  27. Benevides JM, Overman SA, Thomas GJ. Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes.J Raman Spectrosc. 2005;36:279–299.

    CAS  Google Scholar 

  28. Lambert PJ, Whitman AG, Dyson OF, Akula SM. Raman spectroscopy: the gateway into tomorrow’s virology.Virol J. 2006;3:51.

    PubMed  Google Scholar 

  29. Ling J. Raman imaging microscopy—a potential cost-effective tool for drug development.Am Pharm Rev. 2005;8:44–49.

    CAS  Google Scholar 

  30. Hartschuh A, Sanchez EJ, Xie XS, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes.Phys Rev Lett. 2003;90:095503.

    PubMed  Google Scholar 

  31. Li L. AbuBaker O, Shao ZJ. Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion.Drug Dev Ind Pharm. 2006;32:991–1002.

    PubMed  CAS  Google Scholar 

  32. Bell SEJD, Andrew C, Fido LA, et al. Characterization of silicone elastomer vaginal rings containing HIV microbicide TMC120 by Raman spectroscopy.J Pharm Pharmacol. 2007;59:203–207.

    PubMed  CAS  Google Scholar 

  33. Randall CS, Dinenno BK, Schultz RK, Dayter L, Konieczny M, Wunder SL. Solid-state transformation of a leukotriene antagonist.Int J Pharm. 1995;120:235–245.

    CAS  Google Scholar 

  34. Chan KLA, Fleming OS, Kazarian SG, Vassou D, Chryssikos GD, Gionis V. Polymorphism and devitrification of nifedipine under controlled humidity: a combined FT-Raman, IR and Raman microscopic investigation.J Raman Spectrosc. 2004;35:353–359.

    CAS  Google Scholar 

  35. Cao X, Sun C, Thamann TJ. A study of sulfamerazine single crystals using atomic force microscopy, transmission light microscopy, and Raman spectroscopy.J Pharm Sci. 2005;94:1881–1892.

    PubMed  CAS  Google Scholar 

  36. Stoica C, Verwer P, Meekes H, Vlieg E, van Hoof PJCM, Kaspersen FM. Epitaxial 2D nucleation of the stable polymorphic form of the steroid 7αMNa on the metastable form: implications for Ostwald’s rule of stages.Int J Pharm. 2006;309:16–24.

    PubMed  CAS  Google Scholar 

  37. Kojima T, Onoue S, Murase N, Katoh F, Mano T, Matsuda Y. Crystalline form information from multiwell plate salt screening by use of Raman microscopy.Pharm Res. 2006;23:806–812.

    PubMed  CAS  Google Scholar 

  38. Sasic S. Raman mapping of low-content API pharmaceutical formulations, I: mapping of alprazolam in alprazolam/Xanax tablets.Pharm Res. 2007;24:58–65.

    PubMed  CAS  Google Scholar 

  39. Henson MJ, Zhang L. Drug characterization in low dosage pharmaceutical tablets using Raman microscopic mapping.Appl Spectrosc. 2006;60:1247–1255.

    Article  PubMed  CAS  Google Scholar 

  40. Ling J, Weitman SD, Miller MA, Moore RV, Bovik AC. Direct Raman imaging techniques for study of the subcellular distribution of a drug.Appl Opt. 2002;41:6006–6017.

    PubMed  CAS  Google Scholar 

  41. Kang E, Wang H, Kwon IK, Robinson J, Park K, Cheng J-X. In situ visualization of paclitaxel distribution and release by coherent anti-stokes Raman scattering microscopy.Anal Chem. 2006;78:8036–8043.

    PubMed  CAS  Google Scholar 

  42. Sasic S, Clark DA, Mitchell JC, Snowden MJ. Raman line mapping as a fast method for analyzing pharmaceutical bead formulations.Analyst. 2005;130:1530–1536.

    PubMed  CAS  Google Scholar 

  43. Tian F, Sandler N, Gordon KC, et al. Visualizing the conversion of carbamazepine in aqueous suspension with and without the presence of excipients: a single crystal study using SEM and Raman microscopy.Eur J Pharm Biopharm. 2006;64:326–335.

    PubMed  CAS  Google Scholar 

  44. Choo-Smith LP, Edwards HG, Endtz HP, et al. Medical applications of Raman spectroscopy: from proof of principle to clinical implementation.Biopolymers. 2002;67:1–9.

    PubMed  CAS  Google Scholar 

  45. Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro.Expert Rev Med Devices. 2006;3:215–234.

    PubMed  CAS  Google Scholar 

  46. Cheng J-X, Jia K, Eheng G, Xie XS. Laser-scanning coherent anti-Stokes Raman scattering microscopy and application to cell biology.Biophys J. 2002;83:502–509.

    PubMed  CAS  Google Scholar 

  47. Taleb A, Diamond J, McGarvey JJ, Beattie JR, Toland C, Hamilton PW. Raman microscopy for the chemometric analysis of tumor cells.J Phys Chem B. 2006;110:19625–19631.

    PubMed  CAS  Google Scholar 

  48. de Lange MJL, Bonn M, Müller M. Direct measurement of phase coexistence in DPPC/cholesterol vesicles using Raman spectroscopy.Chem Phys Lipids. 2007;146:76–84.

    PubMed  Google Scholar 

  49. Schaeberle MD, Morris HR, Turner JF, Treado PJ. Raman chemical imaging spectroscopy.Anal Chem. 1999;71:175A-181A.

    Google Scholar 

  50. Bakker Schut TC, Witjes MJH, Sterenborg HJCM, et al. In vivo detection of dysplastic tissue by Raman spectroscopy.Anal Chem. 2000;72:6010–6018.

    PubMed  CAS  Google Scholar 

  51. Chowdary MVP, Kumar KK, Kurien J, Mathew S, Krishna CM. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy.Biopolymers. 2006;83:556–569.

    PubMed  CAS  Google Scholar 

  52. Yu C, Gestl E, Eckert K, Allara D, Irudayaraj J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy.Cancer Detect Prev. 2006;30:515–522.

    PubMed  CAS  Google Scholar 

  53. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy.Proc Natl Acad Sci USA. 2005;102:12371–12376.

    PubMed  CAS  Google Scholar 

  54. Krishna CM, Kegelaerl G, Rubin S, Kartha VB, Manfait M, Sockalingum GD. Combined Fourier transform infrared and Raman spectroscopic identification approach for identification of multidrug resistance phenotype in cancer cell lines.Biopolymers. 2006;82:462–470.

    PubMed  CAS  Google Scholar 

  55. Brenan CJH, Hunter IW. Confocal image properties of a confocal scanning laser visible-light FT-Raman microscope.Appl Spectrosc. 1995;49:971–976.

    CAS  Google Scholar 

  56. Breitenbach J, Schrof W, Neumann J. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs.Pharm Res. 1999;16:1109–1113.

    PubMed  CAS  Google Scholar 

  57. Noda K, Sato H, Watanabe S, Yokoyama S, Tashiro H. Efficient characterization for protein crystals using confocal Raman spectroscopy.Appl Spectrosc. 2007;61:11–18.

    PubMed  CAS  Google Scholar 

  58. Caspers PJ, Williams AC, Carter EA, et al. Monitoring the penetration enhancer dimethyl sulfoxide in human stratum corneum in vivo by confocal Raman spectroscopy.Pharm Res. 2002;19:1577–1580.

    PubMed  CAS  Google Scholar 

  59. Zhang G, Moore DJ, Sloan KB, Flach CR, Mendelsohn R. Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy.J Invest Dermatol. 2007;127:1205–1209.

    PubMed  CAS  Google Scholar 

  60. Xiao C, Moore DJ, Rerek ME, Flach CR, Mendelsohn R. Feasibility of tracking phospholipid permeation into skin using infrared and Raman microscopic imaging.J Invest Dermatol. 2005;124:622–632.

    PubMed  CAS  Google Scholar 

  61. Caspers PJ, Lucassen GW, Puppels GJ. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin.Biophys J. 2003;85:572–580.

    PubMed  CAS  Google Scholar 

  62. Xie C, Mace J, Dinno MA, et al. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy.Anal Chem. 2005;77:4390–4397.

    PubMed  CAS  Google Scholar 

  63. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy.Anal Chem. 2004;76:599–603.

    PubMed  CAS  Google Scholar 

  64. Xie CG, Chen D, Li YQ. Raman sorting and identification of single living micro-organisms with optical tweezers.Opt Lett. 2005;30:1800–1802.

    PubMed  Google Scholar 

  65. Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells.Biophys J. 2005;90:648–656.

    PubMed  Google Scholar 

  66. Mannie MD, McConnell TJ, Xie C, Li YQ. Activation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy.J Immunol Methods. 2005;297:53–60.

    PubMed  CAS  Google Scholar 

  67. Deng JL, Wei Q, Zhang MH, Wang YZ, Li YQ. Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy.J Raman Spectrosc. 2005;36:257–261.

    CAS  Google Scholar 

  68. Ward S, Perkins M, Zhang JX, et al. Identifying and mapping surface amorphous domains.Pharm Res. 2005;22:1195–1202.

    PubMed  CAS  Google Scholar 

  69. Clarke FC, Jamieson MJ, Clark DA, Hammond SV, Jee RD, Moffat AC. Chemical image fusion. The synergy of FT-NIR and Raman mapping microscopy to enable a more complete visualization of pharmaceutical formulations.Anal Chem. 2001;73:2213–2220.

    PubMed  CAS  Google Scholar 

  70. Ringqvist A, Taylor L, Ekelund K, Ragnarsson G, Engstrom S, Axelsson A. Atomic force microscopy analysis and confocal Raman microimaging of coated pellets.Int J Pharm. 2003;267:35–47.

    PubMed  CAS  Google Scholar 

  71. Vo-Dinh T, Yan F, Wabuyele MB. Surface-enhanced Raman scattering for medical diagnostics and biological imaging.J Raman Spectrosc. 2005;36:640–647.

    CAS  Google Scholar 

  72. Howes BD, Scatragli S, Marzocchi MP, Smulevich G. Surface-enhanced resonance Raman spectroscopy of rifamycins on silver nanoparticles: insight into their adsorption mechanisms.J Raman Spectrosc. 2006;37:900–909.

    CAS  Google Scholar 

  73. Farquharson S, Shende C, Inscore FE, Maksymiuk P, Gift A. Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy.J Raman Spectrosc. 2005;36:208–212.

    CAS  Google Scholar 

  74. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV. Raman structural study of thymine and its 2′-deoxy-ribosyl derivatives in solid state, aqueous solution and when adsorbed on silver nanoparticles.Phys Chem Chem Phys. 2002;4:1943–1948.

    CAS  Google Scholar 

  75. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV. Conformational study of AZT in aqueous solution and adsorbed on a silver surface by means of Raman spectroscopy.J Raman Spectrosc. 2002;33:6–9.

    CAS  Google Scholar 

  76. Wang Y, Li YS, Wu J, Zhang ZX, An DQ. Surface-enhanced Raman spectra of some anti-tubercle bacillus drugs.Spectrochim Acta [A]. 2000;56:2637–2644.

    CAS  Google Scholar 

  77. Fabriciova G, Sanchez-Cortes S, Garcia-Ramos JV, Miskovsky P. Joint application of micro-Raman and surface-enhanced Raman spectroscopy to the interaction study of the antitumoral anthraquinone drugs danthron and quinizarin with albumins.J Raman Spectrosc. 2004;35:384–389.

    CAS  Google Scholar 

  78. Lee S, Kim S, Choo J, et al. Biological imaging of HEK293 cells expressing PLC1 using surface-enhanced Raman microscopy.Anal Chem. 2007;79:916–922.

    Article  PubMed  CAS  Google Scholar 

  79. Eliasson C, Engelbrektsson J, Loren A, Abrahamsson J, Abrahamsson K, Josefson M. Multivariate methodology for surface enhanced Raman chemical imaging of lymphocytes.Chemometr Intell Lab Sys. 2006;81:13–20.

    CAS  Google Scholar 

  80. Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells.Anal Biochem. 2003;322:198–207.

    PubMed  CAS  Google Scholar 

  81. Strehle KR, Cialla D, Rosch P, Henkel T, Kohler M, Popp J. A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system.Anal Chem. 2007;79:1542–1547.

    PubMed  CAS  Google Scholar 

  82. Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface.Anal Chem. 2004;76:5198–5202.

    PubMed  CAS  Google Scholar 

  83. Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay.Anal Chem. 2005;77:6147–6154.

    PubMed  CAS  Google Scholar 

  84. Deckert V, Zeisel D, Zenobi R, Vo-Dinh T. Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution.Anal Chem. 1998;70:2646–2650.

    CAS  Google Scholar 

  85. Rasmussen A, Deckert V. Surface- and tip-enhanced Raman scattering of DNA components.J Raman Spectrosc. 2006;37:311–317.

    CAS  Google Scholar 

  86. Schweiger G. Raman scattering on single aerosol particles and on flowing aerosols: a review.J Aerosol Sci. 1990;21:483–509.

    CAS  Google Scholar 

  87. Reid JP, Meresman H, Mitchem L, Symes R. Spectroscopic studies of the size and composition of single aerosol droplets.Int Rev Phys Chem. 2007;26:139–192.

    CAS  Google Scholar 

  88. Rosen H, Novakov T. Raman-scattering and characterization of atmospheric aerosol particles.Nature. 1977;266:708–710.

    CAS  Google Scholar 

  89. Buehler MF, Allen TM, Davis EJ. Microparticle Raman spectroscopy of multicomponent aerosols.J Colloid Interface Sci. 1991;146:79–89.

    CAS  Google Scholar 

  90. Stowers M, Friedlander S. Chemical characterization of flowing polydisperse aerosols by Raman spectroscopy.Aerosol Sci Technol. 2002;36:48–61.

    CAS  Google Scholar 

  91. Vehring R, Aardahl C, Schweiger G, Davis E. The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis.J Aerosol Sci. 1998;29:1045–1061.

    CAS  Google Scholar 

  92. Nelson MP, Zugates CT, Treado PJ, Casuccio GS, Exline DL, Schlaegle SF. Combining Raman chemical imaging and scanning electron microscopy to characterize ambient fine particulate matter.Aerosol Sci Technol. 2001;34:108–117.

    CAS  Google Scholar 

  93. Batonneau Y, Sobanska S, Laureyns J, Bremard C. Confocal microprobe Raman imaging of urban tropospheric aerosol particles.Environ Sci Technol. 2006;40:1300–1306.

    PubMed  CAS  Google Scholar 

  94. Hopkins RJ, Reid JP. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets.J Phys Chem B. 2006;110:3239–3249.

    PubMed  CAS  Google Scholar 

  95. Hopkins RJ, Reid JP. Evaporation of ethanol/water droplets: examining the temporal evolution of droplet size, composition and temperature.J Phys Chem A. 2005;109:7923–7931.

    PubMed  CAS  Google Scholar 

  96. Mitchem L, Hopkins RJ, Buajarem J, Ward AD, Reid JP. Comparative measurements of aerosol droplet growth.Chem Phys Lett. 2006;432:362–366.

    CAS  Google Scholar 

  97. Mitchem L, Buajarern J, Hopkins RJ, et al. Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity.J Phys Chem A. 2006;110:8116–8125.

    PubMed  CAS  Google Scholar 

  98. Reid JP, Mitchem L. Laser probing of single-aerosol droplet dynamics.Annu Rev Phys Chem. 2006;57:245–271.

    PubMed  CAS  Google Scholar 

  99. Buehler MF, Davis EJ. A study of gas aerosol chemical reactions by microdroplet Raman spectroscopy—the bromine/1-octadecene reaction.Colloids Surf A. 1993;79:137–149.

    Google Scholar 

  100. Rassat SD, Davis EJ. Chemical reaction of sulfur dioxide with a calcium oxide aerosol particle.J Aerosol Sci. 1992;23:165–180.

    CAS  Google Scholar 

  101. Chen B, Laucks M, Davis E. Carbon dioxide uptake by hydrated lime aerosol particles.Aerosol Sci Technol. 2004;38:588–597.

    CAS  Google Scholar 

  102. Tang IN, Fung KH. Characterization of inorganic salt particles by Raman spectroscopy.J Aerosol Sci. 1989;20:609–617.

    CAS  Google Scholar 

  103. Davis EJ, Rassat SD, Foss W. Measurement of aerosol/gas reaction rates by microparticle Raman spectroscopy.J Aerosol Sci. 1992;23:429–432.

    Google Scholar 

  104. Davis EJ, Aardahl CL, Widmann JF. Raman studies of aerosol chemical reactions.J Dispersion Sci Technol. 1998;19:293–309.

    CAS  Google Scholar 

  105. Zhang JX, Aiello D, Aker PM. Hydrogen-bonding at the aerosol interface.J Phys Chem A. 1995;99:721–730.

    CAS  Google Scholar 

  106. Fung KH, Tang IN. Aerosol particle analysis by resonance Raman spectroscopy.J Aerosol Sci. 1992;23:301–307.

    CAS  Google Scholar 

  107. Mitchem L, Buajarern J, Ward AD, Reid JP. A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation.J Phys Chem B. 2006;110:13700–13703.

    PubMed  CAS  Google Scholar 

  108. Spumy KR. On the chemical detection of bioaerosols.J Aerosol Sci. 1994;25:1533–1547.

    Google Scholar 

  109. Laucks ML, Roll G, Schweiger G, Davis EJ. Physical and chemical (Raman) characterization of bioaerosols—pollen.J Aerosol Sci. 2000;31:307–319.

    CAS  Google Scholar 

  110. Pan YL, Boutou V, Bottiger J, Zhang S, Wolf JP, Chang R. A puff of air sorts bioaerosols for pathogen identification.Aerosol Sci Technol. 2004;38:598–602.

    CAS  Google Scholar 

  111. Sengupta A, Laucks ML, Dildine N, Drapala E, Davis EJ. Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS).J Aerosol Sci. 2005;36:651–664.

    CAS  Google Scholar 

  112. Sengupta A, Brar N, Davis EJ. Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy.J Colloid Interface Sci. 2007;309:36–43.

    PubMed  CAS  Google Scholar 

  113. Kalasinsky KS, Hadfield T, Shea AA, et al. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation.Anal Chem. 2007;79:2658–2673.

    PubMed  CAS  Google Scholar 

  114. Zhang XY, Young MA, Lyandres O, Van Duyne RP. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy.J Am Cancer Soc. 2005;127:4484–4489.

    CAS  Google Scholar 

  115. Vincent J, Revak S, Cochrane C, Levin I. Raman spectroscopic studies of model human pulmonary surfactant systems: phospholipid interactions with peptide paradigms for the surfactant protein SP-B.Biochemistry. 1991;30:8395–8401.

    PubMed  CAS  Google Scholar 

  116. Vincent JS, Revak SD, Cochrane CD, Levin IW. Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly—Raman spectroscopic studies.Biochemistry. 1993;32:8228–8238.

    PubMed  CAS  Google Scholar 

  117. Hickey AJ, Mansour HM. Formulation challenges of powders for the delivery of small molecular weight molecules as aerosols. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane M, eds.Modified-Release Drug Delivery Technology. 2nd ed. New York, NY: Informa Healthcare; In press.

  118. Krafft C, Knetschke T, Funk RHW, Salzer R. Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping.Anal Chem. 2006;78:4424–4429.

    PubMed  CAS  Google Scholar 

  119. Kaminaka S, Yamazaki H, Ito T, Kohda E, Hamaguchi HO. Near-infrared Raman spectroscopy of human lung tissues: possibility of molecular-level cancer diagnosis.J Raman Spectrosc. 2001;32:139–141.

    CAS  Google Scholar 

  120. Kaminaka S, Ito T, Yamazaki H, Kohda E, Hamaguchi H. Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis.J Raman Spectrosc. 2002;33:498–502.

    CAS  Google Scholar 

  121. Koljenovic S, Schut TCB, van Meerbeeck JP, et al. Raman microspectroscopic mapping studies of human bronchial tissue.J Biomed Opt. 2004;9:1187–1197.

    PubMed  Google Scholar 

  122. Huang Z, McWilliams A, Lam S, et al. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues.Int J Oncol. 2003;23:649–655.

    PubMed  Google Scholar 

  123. Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng HS. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer.Int J Cancer. 2003;107:1047–1052.

    PubMed  CAS  Google Scholar 

  124. Min YK, Yamamoto T, Kohda E, Ito T, Hamaguchi H. 1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues.J Raman Spectrosc. 2005;36:73–76.

    CAS  Google Scholar 

  125. Kreher C, Bootz W, Niemann M, Scaffidi L, Spallek MW. Foreign particle characterization in inhalation drug products: a critical comparison of methods and techniques. In: Dalby RN, Byron PR, Suman JD, Peart J, Farr SJ, eds.Respiratory Drug Delivery IX. Palm Springs, CA: Davis Healthcare International Publishing; 2004:373–376.

    Google Scholar 

  126. Dem C, Egen M, Krueger M, Popp J. Understanding the spray dry design process through single droplet investigations. In: Dalby RN, Byron PR, Suman JD, Peart J, Farr SJ, eds.Respiratory Drug Delivery X. Boca Raton, FL: Davis Healthcare International Publishing; 2006:257–266.

    Google Scholar 

  127. Niemann M, Fusser M, Scaffidi L. A critical comparison: particle counting with light obscuration and automated Raman microscopy. In: Dalby RN, Byron PR, Suman JD, Peart J, Farr SJ, eds.Respiratory Drug Delivery X. Boca Raton, FL: Davis Healthcare International Publishing; 2006:529–532.

    Google Scholar 

  128. Hickey AJ, Mansour HM, Telko MJ, et al. Physical characterization of component particles included in dry powder inhalers, I: strategy review and static characteristics.J Pharm Sci. 2007;96:1282–1301.

    PubMed  CAS  Google Scholar 

  129. Hickey AJ, Mansour HM, Telko MJ, et al. Physical characterization of component particles included in dry powder inhalers, II: dynamic characteristics.J Pharm Sci. 2007;96:1302–1319.

    PubMed  CAS  Google Scholar 

  130. Ticehurst MD, York P, Rowe RC, Dwivedi SK. Characterisation of the surface properties ofα-lactose monohydrate with inverse gas chromatography, used to detect batch variation.Int J Pharm. 1996;141:93–99.

    CAS  Google Scholar 

  131. Murphy BM, Prescott SW, Larson I. Measurement of lactose crystallinity using Raman spectroscopy.J Pharm Biomed Anal. 2005;38:186–190.

    PubMed  CAS  Google Scholar 

  132. Niemela P, Paallysaho M, Harjunen P, et al. Quantitative analysis of amorphous content of lactose using CCD-Raman spectroscopy.J Pharm Biomed Anal. 2005;37:907–911.

    PubMed  Google Scholar 

  133. Kirk JH, Dann SE, Blatchford CG. Lactose: a definitive guide to polymorph determination.Int J Pharm. 2007;334:103–114.

    PubMed  CAS  Google Scholar 

  134. Ticehurst MD, Rowe RC, York P. Determination of the surface properties of two batches of salbutamol sulphate by inverse gas chromatography.Int J Pharm. 1994;111:241–249.

    CAS  Google Scholar 

  135. Brown AB, York P, Williams AC, Edwards HGM, Worthington H. Solid-state characterization of salbutamol salts using FT-Raman and SSNMR spectroscopy.J Pharm Pharmacol. 1993;45:1135.

    Google Scholar 

  136. Moshashaée S, Bisrat M, Forbes RT, Quinn ÉA, Nyqvist H, York P. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.J Pharm Pharmacol. 2003;55:185–192.

    PubMed  Google Scholar 

  137. Quinn EA, Forbes RT, Williams AC, Oliver MJ, McKenzie L, Purewal TS. A Raman spectroscopic study of the compatibility of proteins with hydrofluoroalkane propellants. In: Dalby RN, Byron PR, Suman JD, Peart J, Farr SJ, eds.Respiratory Drug Delivery VII. Tarpon Springs, FL: Davis Healthcare International Publishing; 2000:581–584.

    Google Scholar 

  138. Quinn EA, Forbes RT, Williams AC, Oliver MJ, McKenzie L, Purewal TS. Protein conformational stability in the hydrofluoroalkane propellants tetrafluoroethane and heptafluoropropane analysed by Fourier transform Raman spectroscopy.Int J Pharm. 1999;186:31–41.

    PubMed  CAS  Google Scholar 

  139. Guo C, Doub WH. Use of Raman imaging for determination of the particle size distribution (PSD) of active pharmaceutical ingredients (APIs) in metered dose inhalers. In: Dalby RN, Byron PR, Suman JD, Peart J, Farr SJ, eds.Respiratory Drug Delivery X. Boca Raton, FL: Davis Healthcare International Publishing; 2006:617–620.

    Google Scholar 

  140. Waligorski A, Doub WH, Adams WP, et al. Raman chemical imaging for drugs and excipients in aqueous suspension nasal spray formulations. In: Dalby RN, Byron PR, Suman JD, Pert J, Farr SJ, eds.Respiratory Drug Delivery X. 541–544.

  141. Doub WH, Adams WP, Spencer JA, Buhse LF, Nelson MP, Treado PJ. Raman chemical imaging for ingredient-specific particle size characterization of aqueous suspension nasal spray formulations: a progress report.Pharm Res. 2007;24:934–945.

    PubMed  CAS  Google Scholar 

  142. Vehring R. Red-excitation dispersive Raman spectroscopy is a suitable technique for solid-state analysis of respirable pharmaceutical powders.Appl Spectrosc. 2005;59:286–292.

    PubMed  CAS  Google Scholar 

  143. Chan H, Clark AR, Feeley J, et al. Physical stability of salmon calcitonin spray-dried powders for inhalation.J Pharm Sci. 2004;93:792–804.

    PubMed  CAS  Google Scholar 

  144. Vehring R. Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits.J Aerosol Sci. 1998;29:65–79.

    CAS  Google Scholar 

  145. Steele DF, Young PM, Price R, Smith T, Edge S, Lewis D. The potential use of Raman mapping to investigatein vitro deposition of combination pressurized metered-dose inhalers.AAPS J. 2004;6:E32.

    Google Scholar 

  146. Hickey AJ.Inhalation Aerosols: The Physiological Basis for Therapy. New York, NY: Informa Healthcare; 2007.

    Google Scholar 

  147. Theophilus A, Moore A, Prime D, Rossomanno S, Whitcher B, Chrystyn H. Co-deposition of salmeterol and fluticasone propionate by a combination inhaler.Int J Pharm. 2006;313:14–22.

    PubMed  CAS  Google Scholar 

  148. Michael Y, Snowden MJ, Chowdhry BZ, Ashurst IC, Davies-Cutting CJ, Riley T. Characterisation of the aggregation behaviour in a salmeterol and fluticasone propionate inhalation aerosol system.Int J Pharm. 2001;221:165–174.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Mansour.

Additional information

Published: November 30, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, H.M., Hickey, A.J. Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review. AAPS PharmSciTech 8, 99 (2007). https://doi.org/10.1208/pt0804099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0804099

Keywords

Navigation