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The bone marrow niche components are
adversely affected in sepsis
Fan Yin1, Han Qian1, Caiwen Duan2* and Botao Ning1*

Abstract

Multiple organ dysfunction is an important cause of death in patients with sepsis. Currently, few studies have
focused on the impact of sepsis on bone marrow (BM), especially on the cell components of BM niche. In this
study, we performed mouse sepsis models by intraperitoneal injection of LPS and cecal ligation and puncture (CLP).
The changes of niche major components in the mouse BM among vascular structures, mesenchymal stem cells and
Treg cells were observed and analyzed. The results showed that pathological changes in BM was earlier and more
prominent than in other organs, and various cell components of the BM niche changed significantly, of which
vascular endothelial cells increased transiently with vascular remodeling and the regulatory T cells decreased over a
long period of time. These results indicated that the components of the BM niche underwent series of adaptive
changes in sepsis.
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Introduction
Sepsis is life-threatening organ dysfunction due to a dys-
regulated host response to infection, and is the leading
cause of death in intensive care unit (ICU) [1, 2]. Septic
shock frequently cause multi-organ dysfunction [3].
Among these affected organs, it is not clear which was
affected initially and most significantly. Clinically, we
tend to focus on the conditions of infection, sepsis-
induced cardiomyopathy, disseminated intravascular co-
agulation, and the injury to respiratory system, liver and
kidney, while ignored alterations of bone marrow (BM)
during sepsis, especially the changes in BM niche.
Previous studies have suggested that key organs such as

kidney and gut are vulnerable during sepsis [4, 5], interac-
tions between organs during sepsis play a pivotal role in
sepsis pathogenesis [3]. Notably, BM plays an equally im-
portant part in sepsis [6], which contains hematopoietic

progenitor cells and supporting niche cells. Sepsis-
mediated BM suppression often leads to myeloid cell dif-
ferentiation disorders, and myeloid cell dysfunction is as-
sociated with acquired immunodeficiency in sepsis [7].
Niche components of BM do not participate in
hematopoiesis, but support hematopoiesis and maintain
niche homeostasis. About sepsis, there has been so far
much research focused on the regulation of the BM
hematopoiesis by the niche component [8, 9], but few
dealt with the changes of endothelial cells (ECs), mesen-
chymal stem cells (MSCs) and immune cells in BM niche.
To illustrate the sepsis induced changes in BM niche,

and reveal whether BM is more susceptible to sepsis
compared with other organs, we performed sepsis
models by lipopolysaccharide (LPS) intraperitoneal injec-
tion and cecal ligation and puncture (CLP) to map the
changes of niche major components during sepsis.

Results
BM is earlier and more prominent in sepsis-mediated
multiple organs pathological changes
To illustrate multiple organ damage in LPS treated mice,
we observed the pathological changes of the main organs
including BM, lung, kidney, liver, intestine and heart. In
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LPS treated mice, except for BM congestion, no obvious
macroscopic changes were seen in these organs (Fig. 1a).
We further studied the pathological changes of major
organs in LPS treated mice from the histological level.
LPS induced pathological changes in BM mainly oc-
curred in vasculature. Compared with the PBS treated
mice, LPS treated mice show obvious hyperemia at 12 h
and BM vascular congestion peaked at 24 h and began
to subside after 72 h (Fig. 1b). While the lung injury in-
duced by intraperitoneal injection of LPS was relatively
mild, and histopathological alterations mainly included
pulmonary edema, pulmonary interstitial exudation,
neutrophil infiltration (Fig. 1c). Next, we studied the
histopathological alterations of the kidney, liver, intestine
and heart of mice after LPS challenge and found that
there were no obvious pathological changes in these or-
gans (Fig. 1d-g). Taken together, BM was more suscep-
tible to inflammation and exhibited histopathological
alterations, which were different from other organs in
early sepsis. Concomitantly, the histopathological
changes of the main organs in mice after CLP were simi-
lar with those after LPS stimulation (Fig. 2a-d).

Sepsis induces transient BM vasculature remodeling and
BM EC proliferation
BM vasculature changed drastically in previous histo-
logical analysis. To further monitor the structure of the
BM vasculature, we specifically labeled the BM vessels
by immunostaining. After 24 h, compared with PBS-
treated mice, BM vasculature increased significantly in
diaphysis regions of LPS and CLP treated mice as intui-
tively showed in anti-Endomucin staining of frozen BM
sections (Fig. 3a). To quantify the LPS and CLP medi-
ated BM vessel remodeling, we evaluated the BM vessel
fluorescent area labeled by endomucin and the lumen
area of the BM vessel. We found an increased fluores-
cence area and enlarged vasculature emerged 24 h fol-
lowing related treatment (Fig. 3b, c), a finding that
correlated well with an increased branch in BM vascula-
ture patterns of LPS treated mice (Fig. 3d, e). These sup-
port the obvious structural remodeling of BM vessels
within a short time after LPS and CLP stimulation.
ECs are important cell types involved in vascular re-

modeling [10]. FACS analysis was used to determine the
status of BM vascular ECs after LPS injection. We ob-
served a rise in proliferating Ki67+ BM ECs 24 h after
LPS injection (Fig. 3f, g), indicating that cells in S-phase

increased. Consistent with this, there was a significant
increase in frequency and absolute number of BM
CD45−Ter119−CD31+ ECs of LPS treated mice in com-
parison to mice treated with PBS at 24 h (Fig. 3h, i).
When mice were given sufficient time to recover after
treatment, upregulation of BM ECs returned to homeo-
static levels after 96 h (Fig. 3j). This indicated that the
response of ECs to LPS treatment is transient. We fur-
ther found even low dose (1 mg/kg) of LPS exposure
could still activate BM ECs (Fig. 3k). This indicates that
LPS stimulation activates ECs in a dose-independent
manner and that BM ECs were activated even in re-
sponse to low doses of treatment. Taken together, prolif-
eration of BM ECs is one of the main causes of LPS-
mediated BM vascular remodeling.

Sepsis did not significantly affect the frequency and
location of BM MSCs
To illustrate the effects of sepsis on BM perivascular
stromal cells enriched in MSCs (MSC) activity, we
used mice expressing GFP under the direction of
nestin promoter (Nestin-GFP) [11]. Compared with
mice treated with PBS, the femur vertical sections in
mice treated with LPS revealed that the intensity
and density of GFP fluorescence in both the epiphy-
sis and diaphysis regions showed no obvious changes
(Fig. 4a), which was consistent with the femur cross
section slides in LPS treated mice (Fig. 4b). To
quantify the LPS mediated MSCs changes, we evalu-
ated the GFP fluorescent area and MSC spots counts
of the BM cross section slides, and we founded there
was no significant increase in both GFP fluorescent
area and MSC spots counts after LPS treatment (Fig.
4c, d). Meanwhile, we also analyzed the spatial rela-
tionship between MSCs and vessels in BM and
founded that the spatial distribution of MSCs was
not affected by LPS stimulation, which mainly dis-
tributed around BM vessels (Fig. 4e). We next ana-
lyzed the frequency of MSCs using FACS and
observed no significant increase in
CD45−Ter119−CD31−GFP+ MSCs 24 h after LPS
treatment (Fig. 4f, g), which is consistent with the
visualization of BM frozen sections. Taken together,
BM MSCs did not respond to LPS stimulation at the
cellular and tissue level. In addition, the MSCs still
mainly distributed around the vessels, close to the
BM ECs.

(See figure on previous page.)
Fig. 1 BM undergoes significant histological changes after LPS challenge. a Macroscopic images of BM, lung, liver and kidney from 8-week-old
control (day 1 after PBS treatment) and LPS D1 (day 1 after LPS treatment) mice. b, c, d, e, f, g Histological analysis by H&E staining in the BM
(BM) (b), lung (c), kidney (d), liver (e), intestine (f) and heart (g) of mice sepsis model prepared by intraperitoneal injection of LPS at 12 h, 24 h and
72 h after treatment. All representative pictures are verified by independent experiments (n = 3), both control and LPS-treated mice have
biological replicates (n>5)
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Sepsis-mediated BM immune changes have a different
immunophenotype than the periphery
In our research, we focused on the changes of BM T lym-
phocytes subsets, especially regulatory T cell. After 24 h,
LPS treated mice had a higher level of CD3+CD4+ T cells
and CD3+CD8+ T cells in BM compared with PBS treated
mice, meanwhile the absolute numbers of these two cells
also increased significantly in LPS treated mice (Fig. 5a, b).
On the contrary, CD3+CD4+ T cells in spleen of LPS
treated mice show a significant increase while CD3+CD8+

T cells showed no obvious changes. Taken together per-
ipheral lymphocytes subsets reveal a different pattern of
immune response from BM (Fig. 5a, c).

We further analyzed the changes of Treg cells, an import-
ant inhibitory component of CD4 lymphocytes subsets in
spleen and BM after LPS treatment. It is worth noting that
BM Treg cells and spleen Treg cells also showed different re-
sponse patterns after LPS stimulation. The percentage of
BM FOXP3+ Treg cells decreased significantly in LPS treated
mice compared with PBS treated mice (Fig. 5d, f). Inversely,
FOXP3+ Treg cells showed an increase in spleen of mice
treated with LPS (Fig. 5e, g). Notably, unlike the transient
changes of BM ECs, the LPS induced Treg cells changes in
BM and spleen are more durable. These results collectively
suggest that the BM immune niche has a different response
pattern from the peripheral immune organ in sepsis.

Fig. 2 BM in CLP model exhibits similar changes with LPS stimulation. a, b, c, d Pictures of H&E staining in the BM (a), lung (b), liver (c) and
kidney (d) of mice sepsis model prepared by cecal ligation and puncture (CLP) at 12 h and 24 h after operation. All representative pictures are
verified by independent experiments (n = 3), both sham-treated and CLP-treated mice have biological replicates (n>5)
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Discussion
Sepsis-mediated changes in BM niche components could
have a profound effect on hematopoiesis, and may also
be one of the pathogenesis of sepsis. In this study. We
describe the significant changes of major components in
BM niche during early stage of sepsis.
One of the challenges in research related to sepsis is

the limitations and variability of existing models of sep-
sis in simulating human pathophysiologic conditions
[12]. CLP is the preferred approach for modeling sepsis,
reflecting progression of sepsis characterized with sys-
temic inflammatory response and the compensatory
anti-inflammatory response [13]. LPS is the main glyco-
lipid present in the outer leaflet of the outer membrane
of Gram-negative bacteria which can induce a strong in-
flammatory response. We found that organic patho-
logical changes in mice were similar between the two
models, and major pro-inflammatory factors up-
regulated significantly. In addition, lethal dose of LPS in-
jection usually induces severe inflammatory response
and aggravates organ damage, allowing better observa-
tion of phenotypes in early stage of sepsis. In this study,
sepsis model was mainly performed by lethal does LPS
intraperitoneal injection. Because it is worth noting that
LPS-induced sepsis model fit the early stage of sepsis
and the surviving mice gradually recovered from LPS
challenge in the later period (several weeks).
BM ECs are the gateway against infection, so under-

standing the impact of inflammation on the BM vascula-
ture is essential. Some evidence suggests that the BM
vasculature undergoes significant remodeling under LPS
stimulation [14]. We found for the first time that after
LPS stimulation, BM ECs responded quickly, with a
transient increase, and this change did not depend on
the dose of LPS administered. The rapid and transient
activation of BM ECs may be an emergency response to
inflammatory signals from the hematopoietic system,
and this effect may in turn promote the maintenance of
BM homeostasis. In addition, this transient change in
ECs may also have temporal and spatial consistency with
certain physiological processes during inflammation. For
example, neutrophils migrate from the BM to the

periphery during inflammation [15]. Platelet activation
and VEGF signaling are the basic mediators of EC activa-
tion during inflammation [16, 17]. However, in our study,
VEGF expression in ECs was not up-regulated with LPS
stimulation. This may indicate that endothelial-derived
VEGF is not a major factor in the remodeling of the vas-
culature during inflammation. This regulation may come
from other cells in the BM and platelets.
MSCs are major components of the BM niche, which

contain multiple and overlapping populations depending
on different markers and genetic reporters [18]. Nestin-
GFP as one of the genetic reporters is used to label and
trace MSCs [11]. In our study, we used nestin-GFP
transgenic mice to assess the effect of sepsis on MSCs in
niche. Unlike hematopoietic stem cells, MSCs cannot be
mobilized into the peripheral circulation which respond
to inflammatory signals generated locally or systemically
in situ [19]. MSC senses inflammation stress through pat-
tern recognition receptor (PRR) modifying the cytokine
and chemokine profile in BM stroma, which result in a
series of adaptive effect including hematopoietic changes
[20], mobilization of HSCs [21], monocyte release [9] and
inhibition of neutrophil apoptosis [22]. The importance of
MSCs as a component of the niche under inflammation
condition on stroma remodeling and hematopoietic sup-
port is self-evident. However, little is known about the ef-
fects of inflammation on MSCs. We report no significant
increase in frequency and absolute number with un-
changed spatial localization of MSCs during sepsis. MSCs
appear to be in a resting state of morphology, which is not
consistent with their functional activation during inflam-
mation. In addition, our study failed to address the
changes in MSCs throughout sepsis.
Immunosuppression is one of the most important

causes of mortality in sepsis [23], which is related to the
inappropriate increase of Treg cells and the enhanced
function [24, 25]. BM Tregs are an important niche
component [26–29] and represent a unique T-cell
lineage that the frequency of BM Tregs is significantly
increased compared to the periphery [30, 31], and ex-
hibits high inhibitory activity. TIGHT and CD44 and
CXCR4 were highly expressed in BM Tregs [30]. BM

(See figure on previous page.)
Fig. 3 Sepsis alter the BM Vasculature remodeling. a Representative images of the femur diaphysis stained with anti-endomucin (Emcn) antibody
and 4′,6-diamidino-2-phenylindole (DAPI). Control (day 1 after PBS treatment), LPS D1(day 1 after LPS treatment), Sham (day 1 after sham
operation), CLP D1 (day 1 after CLP procedure). Diaphysis (dp), compact bone (cb), central vein (cv). b, c Quantification of BM vessels on confocal
images of the femur diaphysis showed in (a). Ten mice each group, 3 sections per mouse. d Visualization of femur vessels junctions (yellow dot)
in histological images. e Quantitative analysis of junction count of BM vessels showed in (d) between control (n = 10) and LPS-treated (n = 10)
mice. Three sections per mouse. f Ki67 staining for detecting proliferation rates of BM ECs. g Percentage of Ki67+ BM ECs in controls (n = 6) and
treated mice 1 day after LPS injection (n = 6). h Representative figures shown the percentage of CD45− Ter119− CD31+ ECs in BM. i Percentage of
CD45− Ter119− CD31+ BM ECs in controls (n = 7) and treated mice 1 day after LPS injection (n = 9). j Changes of percentage in BM ECs at
different concentrations of LPS administration. Three mice in each treatment. Control (Ctrl, PBS treatment). k Changes of percentage in BM ECs at
different time after 10 mg/kg LPS administration. Three mice in oh and 24 h, 4 mice in 48 h, 72 h, 96 h. All data represent as means±s.d. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001, as determined by Student’s t-test. NS, not significant
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Treg has been considered to be involved in the patho-
physiological processes of various diseases, such as
GVHD and prostate cancer [31, 32]. Whether BM Tregs
functions in sepsis remain unclear. We observed a sig-
nificantly decreased frequency of BM Tregs and an in-
creased proportion of CD4+CD8+ effector T cells in BM
during sepsis. Notably, the peripheral T cell subsets
changed completely opposite to BM. Tregs are known to
be regulated by various chemokine regulatory axes, MSC
in BM produce high levels of CXCL12 [30, 31], activated
Tregs can migrate through their enhanced CXCR4 expres-
sion [33] and eventually reside in the BM. The up-
regulated expression of G-CSF in sepsis will reduce the
concentration of BM CXCL12, which may cause the un-
stable of CXCL12/CXCR4 axis [34]. The disruption of this
pathway mobilizes Tregs into the periphery, which ac-
count for the reduction of BM Tregs and the differenti-
ation and expansion of effector CD4+ and CD8+ T cells. It
should be noted that sepsis-induced BM Treg changes
may lead to the destruction of the HSC immune privilege
status [35], resulting in a series of hematopoietic problems
in the BM under the inflammatory state.
Our findings map the response of major BM niche

components to sepsis, which reflects in the earlier and
more prominent histological changers than other organs
and urgent mobilization of non-hematopoietic cells,
such as ECs and Tregs, in the BM under sepsis. We put
forward a hypothesis that BM may be the initiating or
accelerating organ during sepsis. Future studies will
delve into the cellular changes of niche components and
study the relationships among BM niche components
and peripheral organic microenvironment under the in-
flammatory state, which may reveal the critical mechan-
ism of septic onset and progress.

Materials and methods
Animals
Sepsis models were performed in several mouse
strains: adult C57BL/6 mice (Shanghai SLAC La-
boratory Animal Co., Ltd., Shanghai, China);
Nestin-GFP and Sca1-GFP transgenic mice (The
Jackson Laboratory, Bar Harbor, ME, USA). Sex-
matched mice of both sexes between the ages of 8
and 14 weeks were used.

Sepsis model
Sepsis model was performed by LPS intraperitoneal in-
jection [36] and cecal ligation puncture (CLP) according
to the methods described in previous studies [8, 13].
Briefly, for CLP model, cecum was ligated at half the dis-
tance between distal pole and the base of the cecum
with 18 G needle to induce abdominal infection, result-
ing in a mortality of 60% on the seventh day. The con-
trol group underwent exactly the same procedures
except for the CLP. For LPS intraperitoneal injection
model, mice were subjected to intraperitoneal injection
of 10 mg/kg of E. coli serotype O111:B4 lipopolysacchar-
ide (LPS) purchased from Sigma (L 4130). Mice in con-
trol group was injected with PBS which was used to
dissolve LPS. The survival curves of both models were
highly matched.

Hematoxylin-eosin staining
For histology, dissected femurs were fixed in 10% neutral
buffered formalin overnight, followed by decalcification
in 10% EDTA for 2 weeks. Femurs were embedded in
and then sectioned at 6 μm thickness. Hematoxylin and
eosin (H&E) staining was performed according to a
standard procedure [37].

Immunostaining
Immunostaining was performed according to a pub-
lished procedure [38]. Briefly, dissected femurs were
fixed with 4% paraformaldehyde (PFA) at 4°C over-
night and decalcified in 0.5 M EDTA for 24 h with
constantly shaking. The femurs were dehydrated with
20% sucrose at 4°C for 24 h then embedded and
stored at − 80°C overnight before section. Femurs
were sectioned horizontally and longitudinally at
40 μm thickness using Leica cryostat (Leica, CM1950).
For immunostaining, femur sections were stained with
Endomucin (anti-rat, sc-65,495, Santa Cruz Biotech.).
The primary antibodies were bound by secondary
antibodies (AF555 goat anti-rat, 2,018,295, Life tech-
nologies). Nuclei were stained with DAPI (62,248, Life
Technologies). Images were acquired with a confocal
microscope (Leica SP8) and analyzed with ImageJ and
Angio Tool software.

(See figure on previous page.)
Fig. 4 BM MSCs show no significant changes during sepsis. a, b Longitudinally (a) and transverse-shaved (b) confocal images of femur
metaphysis and diaphysis stained with anti-Emcn antibody and DAPI in control (PBS treatment) and LPS-treated Nestin-GFP transgenic mice.
Diaphysis (dp), metaphysis (mp), central vein (cv), growth plate (gp). c, d Quantification of BM GFP+ MSCs on enlarged view showed in (b). Eight
mice each group, 3 sections per mouse. e Quantification of distance between MSCs and BM vessels from femur transverse-shaved sections of
control (PBS treatment) and LPS-treated Nestin-GFP mice 1 day after intervention. f Representative FACS figures showed the percentage of BM
MSCs in control (PBS injection) and LPS-treated Nestin-GFP transgenic mice 1 day after intervention. g Percentage of CD45−Ter119−CD31−GFP+

MSCs in control (n = 6) and LPS treated (n = 6) mice 1 day after intervention. All data represent as means±s.d. NS, not significant
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Flow cytometry
For flow cytometry of ECs and MSCs, bones (Tibia,
femur, sacrum) were crushed and digested with 1mg/
mL collagenase IV and 2mg/mL dispase in phosphate
buffer saline (PBS) containing 1% BSA at 37°C for 1 h.
For immune cells, bones were flushed with pre-chilled
PBS. For Single-cell suspensions of peripheral immune
organs, lymph nodes and spleens were crushed gently on
filter. Collected cells were incubated with Fc blocker
anti-CD16/32 antibody (93, 14–0161-82) for 15 min on
ice, followed by staining with fluorochrome-conjugated
antibody on ice for 45 min. The antibody used in this
study included FITC/APC anti-CD45 (30-F11, 11–0451-
85/17–0451-82); FITC/APC anti-Ter119 (Ter-119, 11–
5921-82/17–5921-82); APC/PE anti-CD31 (390, 12–
0311-82/17–0311-82) (all from ebioscience); DAPI (4′,6-
diamino-2-phenylindole) (62,248, Life Technologies) was
used to exclude dead cells. BD FACS Canto II flow cyt-
ometer equipped with the FACS Diva 6.1 software (BD
Biosciences) were used to collect samples information.
Data were analyzed with FlowJo version 10.

Statistical analysis
All data are measurement data and represented as
mean ± s.e.m. Normality analysis (Kolmogorov–Smirnov
tests) and homogeneity test of variance (Levene tests)
were done between different samples, Comparisons be-
tween two samples were done using the unpaired Stu-
dent’s t tests. One-way ANOVA analyses followed by
Student-Newman-Keuls multiple comparison tests were
used for multiple group comparisons. Wilcoxon tests
and Kruskal-Wallis tests were used for samples with in-
consistent distributions and variances. Statistical ana-
lyses were performed with GraphPad Prism 6 and
Statistical Product and Service Solutions (SPSS) version
20 software. *p < 0.05, **p < 0.01, ***p < 0.001.

Abbreviations
FACS: Fluorescence activated cell sorting; BM: Bone marrow;
LPS: Lipopolysaccharide; CLP: Cecal ligation and puncture; ECs: Endothelial
cells; GFP: Green fluorescent protein; MSCs: Mesenchymal stem cells;
Tregs: Regulatory T cells; FOXP3: Forkhead box protein 3
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