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Introduction
At a power generating station, the load demand is not sufficed by a single generating 
entity. Rather, a conglomerate of such entities fulfils the total demand. Moreover, to pro-
duce the same amount of power, each unit is incurred with its own cost function (price 
bid). Economic load dispatch (ELD) works on the fact that not all generating units incur 
the same amount of cost to suffice same amount of load; rather, same are relatively more 
costly than others for equal amount of production. So aptly allocating a certain share of 
the entire demand could actually lower the fuel cost. The total load demand is distributed 
among various generators which in turn affects the estimation, invoicing, unit commit-
ment and numerous related functions [1]. The total generation of power has to comply 
with the total current demand. To address this, the ELD could be further categorized 
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into two variations depending upon the nature of load demand. The constant load, clas-
sical static economic load dispatch (SELD) ignores practical constraints because every 
load-consuming area does not have a constant all day load demand characteristics, but 
its nature depends upon the prevalent climatic factors, location and attributes of job 
undertaken by the inhabitants [2, 3]. In opposition to this, a dynamic economic load 
dispatch (DELD) efficiently handles the practical constraint [4]. In DELD, we forecast 
the demand for the upcoming hours and accordingly distribute the load among different 
generations to optimize the production. Energy management strategy (EMS) of micro-
grids falls in DELD category of cost minimization, but is more complicated than SELD. 
To begin with, microgrid can be imagined as a collection of distributed energy resources 
(DERs) and loads within a confined geographical area. DERs include fossil-fuelled gen-
erators and various renewable energy sources (RES) depending upon the availability of 
the microgrid location, microturbines, fuel cells, energy storage systems (ESSs) such as 
battery and flywheel [5]. It is because of the individual modelling and constraints associ-
ated with these DERs that economic dispatch of microgrid becomes a complex and cum-
bersome process for power engineers. Microgrid basically operates in two modes: either 
islanded or utility-connected [6]. Figure 1a, b depicts the two different working modes 
of a microgrid system. It is quite obvious that the utility-connected mode is more reli-
able and efficient as the microgrid can sell/buy power from the utility depending upon 
the surplus/deficit production of power from its DERs. Also utility-connected microgrid 
can rely on the grid in case one of its DERs fails, thus preventing from an unwanted and 
major shutdown of the network.

Literature review
The last decade has witnessed a lot of research in the microgrid energy management 
area. Matrix real-coded GA (MRCGA) and imperialist competitive algorithm (ICA) 
were used by the authors in [7] and [8] to minimize the generation cost of a grid-
connected microgrid wherein various cases were studied to analyse the capability 
of algorithms in handling tight operating ranges of DERs, variable loads and fluctuat-
ing electricity price. Cuckoo search algorithm (CuSA) yielded better results than PSO 
and DE when both SELD and DELD were performed by the authors in [9]. An islanded 
microgrid system was considered for DELD which consisted of 2 wind turbines (WT) 
to be separately modelled based on wind speed. The authors performed pareto-optimal 
front-based economic emission dispatch on a utility-connected microgrid system using 
adaptive modified PSO (AMPSO) in [10] and GAMS in [11]. Optimization results were 
reported giving maximum weightage to economic and emission dispatch separately, and 
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thereafter, a compromised solution emphasizing both the objectives with approximately 
equal weightage was studied where the proposed algorithms outperformed other opti-
mized techniques studied. The authors in [12] used interior search algorithm (ISA) to 
perform ELD and price penalty-based combined economic emission dispatch (CEED) 
on an islanded microgrid powered by three fossil-fuelled generators, a PV and a wind 
system. These results were again outperformed by modified harmony search algorithm 
(MHSA) implemented by the author in [13] for the same microgrid system. But the 
major drawback in these two articles was that the formulation of different types of price 
penalty factors was not done. Neither any valid reason was mentioned about which type 
of price penalty factor was chosen to perform CEED. This demerit was attended by the 
authors in [14] where the various price penalty factors were formulated and calculated, 
and the least (min–max) penalty factor was chosen to perform CEED. Further, whale 
optimization algorithm (WOA) provided better quality solutions than other optimiza-
tion techniques used to evaluate CEED.

The uncertainty study of stochastic behaviour of RES and load demands may be quali-
tative or quantitative. Various methods exist in the studies to achieve reasonable meas-
ure of uncertainty. The system parameters may be uncertain of renewable energies, so 
neglecting the effect of uncertainty may affect the economic operation or scheduling. 
Recently, an ample amount of researches which aim to minimize the generation cost or 
loss of load probability of renewable integrated microgrid systems are seen to conduct 
probabilistic or uncertainty study on the forecasted load and RES. The authors in [15] 
have done operation management for interconnected microgrids with proposed hierar-
chical stochastic energy management system. They confined uncertainty of microgrids 
and minimized unscheduled power exchange with the main grid considering cost. Opti-
mal sizing of islanded microgrid with demand side management has been done in [16] 
with developed bi-level algorithm. Battery storage system capacity, lifetime of generators, 
mixed-integer linear programming unit commitment problem including demand side 
management and chance constrained have been considered for optimal operation. Fre-
quency may change in microgrid due to the non-smooth character of renewable sources. 
Optimal solution for battery energy storage system considering uncertainties of wind 
energy in a microgrid with proposed multi-agent solution has been done in [17], and 
14-bus, 30-BESS systems are considered to justify the effectiveness. In [18], two-stage 
stochastic structure for day ahead scheduling for microgrid has been demonstrated con-
sidering real-time electricity price, and uncertainties of wind energy and load demand 
are considered where price and wind uncertainties are characterized with autoregressive 
moving-average method. The structure is based on the mixed-integer linear program-
ming, and five case studies have been carried out to validate it. The authors in [19] have 
implemented proposed expert energy management system (EEMS) for microgrid with 
wind turbines and other distributed energy resources for optimal operation. Minimiza-
tion of operation cost and net emission has been minimized. An artificial neural network 
(ANN) has been used to forecast wind behaviour. Improved bacterial foraging-based 
fuzzy satisfactory optimization has been used by EEMS for multi-objective problem. 
In [20], stochastic weight trade-off particle swarm optimization is used to minimize of 
the operational cost with possibility and probabilistic uncertainties in renewable energy 
and load demand. To validate the effectiveness, CIGRE LV benchmark microgrid is used 
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with fuel cell, diesel generator, wind and solar energy. In [21], simultaneous allocation 
of distributed energy resources with shunt capacitors considering uncertainty and vari-
ability is done under load demand and power generation for distribution system. The 
authors in [22] optimized the economic operation of small-scale energy zones. Hence, 
imperialist competitive algorithm is used applied to solve the problem under uncer-
tainties of load and renewable power generation. Electric vehicles are used to serve the 
load at pick time as demand curve modification in [23]. Responsive load is used to serve 
required grid reserve for compensate wind and PV uncertainties. The authors in [24] 
used a novel probability-weighted robust optimization (PRO) for the allocation of DG 
units with wind turbines in microgrid systems to maximize total profit. The uncertain-
ties have been modelled in probability-weighted uncertainty sets to take the uncertain-
ties into account and developed modified column-and-constraint generation (C&CG) 
algorithm to solve the PRO problem. Optimal scheduling of island microgrid under the 
high penetration of wind and PV has been done in [25] by a two-stage robust model pre-
dictive control (RMPC)-based optimization approach. All uncertainties (wind, PV, load 
demand, water demand) have been considered and obtained. In [26], wind speed fore-
casting is applied to monitor wind speed. Afterwards, by applying this control method 
on wind turbine, harvested energy from ultra-capacitor energy storage and wind turbine 
is increased, and apart from this, the condition of microgrid is improved.

Metaheuristic swarm intelligence algorithms have always been prioritized over clas-
sical optimization techniques for solving dynamic EED and EMS problems. This is pri-
marily due to the fact that such problems have exponential and trigonometric terms in 
their equations which make the problem multimodal and not feasible to be solved by the 
classical optimization tools. Hybrid and modified metaheuristic algorithms are impro-
vised with logical alterations or exhibit the nature of the various algorithms involved to 
amalgamate and form the hybrid. This is the reason that hybrid and/or modified optimi-
zation techniques yield better quality solutions than the original one. Extensive literature 
review shows less implementation of hybrid algorithms to solve EED or EMS problems. 
Recently developed algorithms like GWO, SCA and CSA have already established their 
superiority in solving optimization problems in various fields. Some of the modification 
and hybridization done with these three algorithms are listed below along with their year 
of publication.

Name of the modified/hybridized 
algorithm

Strategy of modification/hybridization Year References

Modified grey wolf optimization Exploration capability of GWO increased by 
involving all classes of wolves

2018 [27]

Memory-based grey wolf optimizer Search mechanism of the wolves is modified 
based on the personal best history of each 
individual wolves, crossover and greedy 
selection

2020 [28]

Random walk grey wolf optimizer Random walk is incorporated in which step 
size is drawn from a Cauchy distribution 
helpful for the leading wolves to explore 
the search space for finding prey

2019 [29]
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Name of the modified/hybridized 
algorithm

Strategy of modification/hybridization Year References

Modified sine–cosine algorithm with novel 
transition parameter and mutation opera-
tor

Nonlinear transition rule is introduced to 
provide comparatively better transition 
from the exploration to exploitation, and 
search equation of the SCA is modified by 
introducing the leading guidance based 
on the elite candidate solution

2020 [30]

Sine–cosine grey wolf optimizer Exploration ability of the SCA is improved 
by integrating the social and cognitive 
component, and the balance between 
exploration and exploitation is maintained 
through GWO

2020 [31]

Hybrid crow search algorithm The merits of the CSA and rough searching 
scheme intensify the search in the promis-
ing region where the global solution 
resides

2018 [32]

Chaotic crow search algorithm Chaotic theory is introduced to tune the 
parameters of the standard CSA

2018 [33]

Multi-objective orthogonal opposition-
based crow search algorithm

Multi-orthogonal opposition strategy is 
employed to mitigate the conflicts among 
the convergence and distribution of solu-
tions. First, two individuals are randomly 
chosen to undergo the crossover stage 
and then orthogonal array is presented 
to obtain nine individuals. Then individu-
als are used in the opposition stage to 
improve the diversity of solutions

2020 [34]

Hybrid sine–cosine algorithm with multi-
orthogonal search strategy (MOSS)

Integrates the advantages of the SCA and 
MOSS to eliminate SCA’s disadvantages, 
like unbalanced exploitation and the trap-
ping in local optima

2018 [35]

Improved sine–cosine algorithm based on 
orthogonal parallel information

Multiple-orthogonal parallel information 
is introduced to exhibit effectively two 
advantages: the orthogonal aspect of 
information enables the algorithm to 
maintain the diversity and enhances the 
exploration search, while the parallelized 
scheme enables the algorithm to achieve 
the promising solutions and empha-
sizes the exploitation search. Further, an 
experience-based opposition direction 
strategy is presented to preserve the 
exploration ability

2019 [36]

Hybrid harmony search/random search 
algorithm

Randomization in HS to drive the system 
further to explore various diverse solutions 
so as to attain the global optimality

2016 [37]

Hybrid DE–random search approach Randomization in DE to drive the system 
further to explore various diverse solutions 
so as to attain the global optimality and 
get rid of demerits such as getting stuck in 
local minima

2017 [38]

Hybrid HS–random search algorithm consid-
ering ensemble and pitch violation

Randomization in HS to drive the system 
further to explore various diverse solutions 
so as to attain the global optimality

2017 [39]

Hybrid PSO–GWO approach Best_Position from PSO acts as search agent 
current position and updates the position 
of alpha, beta and gamma wolves using 
grey wolf optimizer algorithm. Further 
alpha position is considered as final posi-
tion of swarms and alpha score as the best 
fitness

2016 [40]

HGWO–RES algorithm Coordinates the behaviour of grey wolves 
based on random exploratory search

2019 [41]
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Name of the modified/hybridized 
algorithm

Strategy of modification/hybridization Year References

Hybrid modified grey wolf optimization–
crow search algorithm

Position updating strategy of GWO modified 
based on CSA

2019 [42]

Hybrid algorithm based on grey wolf optimi-
zation and crow search algorithm

Position updating strategy of GWO modified 
based on CSA

2020 [43]

Hybrid modified grey wolf optimization–
sine–cosine algorithm

Hunting strategy of GWO modified incorpo-
rating sine and cosine functions

2019 [44]

Modified crow search algorithm Development of crow search algorithm with 
an adaptive chaotic awareness probability

2020 [45]

Ameliorated grey wolf optimization Coordinates the behaviour of grey wolves 
based on random exploratory search, local 
random search and opposition learning 
heuristics

2019 [46]

Improved grey wolf optimizer based on 
differential evolution and elimination 
mechanism

Wolf pack is updated according to the sur-
vival of fittest principle so as to make the 
algorithm not fall into the local optimum

2019 [47]

Hybrid grey wolf optimizer with mutation 
operator

GWO has been hybridized with differential 
evolution (DE) mutation

2019 [48]

Improved sine–cosine algorithm with crosso-
ver scheme

Improves the SCA using crossover and 
personal best memory of agents

2019 [49]

Hybrid self-adaptive sine–cosine algorithm 
with opposition-based learning

Self-adaptive component is added to exploit 
all the promising search regions which are 
previsited, and opposition-based learning 
is incorporated to increase convergence 
speed

2019 [50]

A memory-guided sine–cosine algorithm The number of memory guides decreased 
with the increase in the number of 
iterations to provide a sufficient balance 
between exploration and exploitation

2020 [51]

Opposition-based grey wolf optimization Opposition-based learning is incorporated 
to increase convergence speed of GWO

2018 [52]

Contribution and motivation

 (i) Why choose GWO, SCA and CSA With the aim of performing energy management 
strategy (EMS) or as in this article EED on microgrid systems, the choice of an 
efficient and least time-consuming optimization technique was a matter of concern 
to deal with. Extensive literature survey clearly shows that the use of hybrid opti-
mization techniques is not that prominently used to perform EMS on microgrid 
systems. Some recently developed algorithms like GWO, sine–cosine algorithm 
(SCA) and crow search algorithm (CSA) have already proved their superiority and 
strength in handling engineering problems of larger dimension and complex con-
straints for optimization. Where GWO is known for a rigorous search within its 
large search space, SCA is expert in switching between sine and cosine functions 
to maintain a proper balance between exploration and exploitation. CSA can han-
dle large population size and delivers better results faster than many other algo-
rithms without getting lost in local minima. Summing up these benevolent prop-
erties of the three above-mentioned optimization tools, the major contribution of 
this article can be pictorially demonstrated as shown in Fig. 1. Furthermore, GWO, 
in order maintain its extensive depth of exploration within its search space, has 
many stages and equations to follow within every iteration. So to make an efficient 
hybrid, we would need some algorithms with least amount of governing equations 
and tuning parameters. Both SCA and CSA have only one conditional governing 
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equation and have proved their superiority in solving many engineering optimiza-
tion problems as seen in the literature. Hence, this paper amalgamates a modified 
GWO (MGWO) with SCA and CSA to form one hybrid MGWOSCACSA to per-
form economic and emission dispatch.

 (ii) The uncertainty approach Recent trend of all sorts of power system problems 
such as microgrid energy management problems, optimal power flow problems 
and reactive power planning problems have witnessed the compelled usage of 
renewable energy sources. This is primarily due to the depletion of fossil fuels. No 
matter how available and abundant the renewables may be, they come with the 
harshest demerit of not being able to controlled or harnessed. Due to their sto-
chastic nature, the day ahead forecasting of power to be gathered from any renew-
able energy source is just a probabilistic value. In a nutshell, any kind of evaluation 
and speculation done considering the power output from a renewable source are 
incomplete without considering the uncertainty approach. This approach gives a 
valid, though probabilistic range, within which the evaluated and calculated value 
may lie if and when renewables are considered. Among many such complex simu-
lations available to calculate the uncertainty, this paper proposes a simple way to 
calculate the uncertainty in the forecasted values of load demand, wind and PV 
output.

The major contributions of this paper are listed as follows:

(a) Dynamic EED is performed on a three-unit test system using novel hybrid 
MGWOSCACSA

(b) Three cases are studied while performing dynamic EED, viz. without wind, with 
wind and with wind and UC of generation units

(c) Generation cost is evaluated considering both forecasted and uncertainty in load 
and wind profile for the cases.

(d) Proposed MGWOSCACSA was compared with other hybrid algorithms available 
in the literature, and statistical analysis is carried out.

Paper organization

Section II formulates the fitness function to be minimized including the equality and 
inequality constraint. The optimization algorithms used are elaborated in Section III. 
Section IV deals with the case studies of the subject microgrid test system and performs 
the statistical analysis and solution quality check of the results obtained. Section V con-
cludes the paper.

Objective function formulation
The economic emission cost function includes the carbon tax and fuel cost incurred on 
the fossil fuel generators throughout the day and is represented mathematically as:

(1)F(Pg) =

24
∑

t=1

ng
∑

g=1

(

Cct
g + C

f
g

)

∗ Pt
g; ∀g = 1, 2, 3, . . . , ng
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where g = 1, 2, 3,… ngs and t = 1, 2, 3,… 24 are the total number of DERs and hours of 
operation, respectively. Pt is the power output of the DER at tth hour. Cct and Cf are the 
penalized emission cost and fuel cost of the gth generator, respectively.

where Cct
g  is the penalized emission cost, CO2W  is the carbon weight in ton, CO2T is the 

carbon tax ($/kg), Pg is the generation, cc is the carbon content (kg/kWh) and PTRC is 
the price of the tradable renewable energy certificate ($/kWh) [53, 54].

Uncertainty modelling

Uncertainty modelling is a probabilistic and futuristic predictive study to evaluate the 
maximum deviation that can be realized by forecasted data especially considering the 
stochastic and uncontrollable nature of renewable energy sources and load demands. 
In this paper, the uncertainty modelling of forecasted values of load demand and wind 
power is done as follows [54, 55]:

where dLun is the deviation of the load, Ltun is the load demand considering the uncer-
tainty, n1 is defined by a standard normal distribution function and Ltfc is forecasted load 
demand.

where Wt
un is uncertainty of wind, dPw is deviation of wind power and n2 is standard nor-

mal distribution function.

Wind deviation and penetration

Wmean is the hourly mean values of wind obtained from the different scenarios of hourly 
wind output gathered from a particular location. It is normally close to the values of Wfc.

Wind power deviation (%) measures the amount of hourly deviation (or the difference) 
of both the mean and uncertainty values of wind from the forecasted value.

(2)Where Pg = ag ∗ P
2
g + bg ∗ Pg + cg

(3)

Cct
g = CO2W ∗ CO2T

CO2W =
cc ∗ Pg

1016.04

CO2T =
PTRC

cc
∗ 1016.04

(4)
Ltun = dLun ∗ n1 + Ltfc

dLun = 0.6 ∗

√

Ltfc

(5)
Wt

un = dPw ∗ n2 +Wt
fc

dPw = 0.8 ∗

√

Wt
fc

(6)Wt
mean =

∑D
d=1W

t
d

D
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Wind penetration (%) is the ratio of amount of load demand shared by the wind power 
to the total load demand throughout the day.

Division of load

Many case studies are dependent on the division of load. Here, in this paper we consider 
two types of load, viz. gross load and net load (Lnet). Gross load is the forecasted load 
of the system, whereas net load is the load to be shared among the conventional fossil-
fuelled generators.

Utilization percentage (UP)

UP marks the participation of the DERs in the sharing of load throughout the day [56]. It 
is calculated using the formula below:

Constraints

The economic emission evaluation function in Eq.  (1) is bounded by some constraints 
mentioned below:

where Ig is the ON/OFF status of the generator and PD the load demand during tth hour.

where XON?OFF are the ON/OFF time and TON?OFF are the minimum ON/OFF time of the 
generators

(7)Deviation % =
Wt

fc −Wt
mean/un

Wt
fc

∗ 100

(8)Penetration % =

∑24
t=1W

t
fc/d/mean

∑24
t=1 L

t
fc

∗ 100; ∀d = 1, 2, . . . ,D

(9)Lnet =



















Lfc

Lfc −Wfc

Lfc −Wmean

Lun −Wun

(10)UP =

∑24
t=1 P

t
g

24 ∗ Pmax
g

(11)
24
∑

t=1

Pt
g ∗ I

t
g + Pt

w = Pt
D

(12)
[

Xon(t−1)
g − T on

g

]

∗
[

I (t−1)
g − I tg

]

≥ 0

(13)
[

Xoff(t−1)
g − T off

g

]

∗
[

I tg − I (t−1)
g

]

≥ 0
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Hybrid grey wolf optimizers
This paper implements GWO and hybrid MGWOSCACSA for performing EMS on micro-
grid systems. The mathematical modelling of this hybrid algorithm is established below.

Grey wolf optimizer (GWO)

GWO [57] mimics the hunting behaviour of the wolves while devouring its prey. A pack 
of 10–12 wolves maintains a hierarchy among themselves. The leader wolf is said to be 
alpha (α). It guides the pack, but might not be the strongest in the pack. Next in rank is 
beta (β) whose prime duty is maintaining discipline in the pack and assisting alpha to 
reach the prey. Delta (δ) comes third in rank and may be considered as a scapegoat. Rest 
of all the wolves fall in the omega (Ω) category and comes last in the pack. In the GWO 
algorithm, the best three solutions are α, β and δ. Rest of the solutions are Ω. The hunt-
ing procedure of the wolves can be mathematically represented as:

And the position updating procedure of the wolves is given as:

The value of vectors A and C can be calculated as:

Wolves move away from the current prey if absolute value of vector A is more than 1 
and is forcefully pulled towards the prey when absolute value of vector A is more than 1. 
‘a’ decreases linearly from 2 to 0 iteration-wise using the formula

Modified GWO

To eliminate the possibility of the solution getting trapped within the position of the Ω 
wolves, the authors in [27] proposed that a few number of Ω wolves also take part in the 

(14)Pg ,min ∗ I
t
g ≤ Pt

g ≤ Pg ,max ∗ I
t
g

(15)

�Dα =
�

�

�

�C1. �Xα − �X
�

�

�

�Dβ =
�

�

�

�C2. �Xβ − �X
�

�

�

�Dδ =
�

�

�

�C3. �Xδ − �X
�

�

�























(16)

�X1 = �Xα − �A1.( �Dα)

�X2 = �Xβ − �A2.( �Dβ)

�X3 = �Xδ − �A3.( �Dδ)











(17)�X(iter+1) =
�X1 + �X2 + �X3

3

(18)
�A = 2.�a.�r1 − �a

�C = 2.�r2

(19)a = 2 ∗

(

1−
iter

Max_iter

)
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hunting procedure along with the δ wolves. The hunting equation will therefore differ 
from earlier GWO algorithm by:

The position updating procedure will be performed including the δ in the family of 
wolves as:

Hereafter, the hybridization will be done with GWO and not GWO as the results of 
MGWO were obviously found better and promising than GWO.

Sine–cosine algorithm

The entire process of a stochastic population-based optimization algorithm can be 
divided into two phases. The first phase is the exploration phase where the random solu-
tions of the fitness function involves very high rate of randomness to broaden the search 
space and locate the promising region of a superior solution. On the other hand, in the 
second phase, also called the exploitation phase, the degree of randomness decreases 
and slow and gradual changes are implemented in the solutions to proceed towards a 
better quality solution.

The sine–cosine algorithm (SCA) [58] employs these two stages in its governing equa-
tion which is:

where d is the dimension, X is the solution and P is the position of solution from des-
tination point. The random numbers  rand1,  rand2,  rand3 and  rand4 have their own 
importance. The direction of the next position whether it lies in between solution 
and destination or away from both is governed by rand1, whereas rand2 implies how 
lengthy should be the displacement, be it away from or towards the destination. While 

(20)

�Dα =
�

�

�

�C1. �Xα − �X
�

�

�

�Dβ =
�

�

�

�C2. �Xβ − �X
�

�

�

�Dδ =
�

�

�

�C3. �Xδ − �X
�

�

�

�DΩ =
�

�

�

�C4. �XΩ − �X
�

�
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(21)

�X1 = �Xα − �A1.( �Dα)

�X2 = �Xβ − �A2.( �Dβ)

�X3 = �Xδ − �A3.( �Dδ)

�X4 = �XΩ − �A4.( �DΩ)























(22)
�X ′′
3 =

�X3 + �X4

2

�X(iter+1) =
�X1 + �X2 + �X ′′

3

3















(23)

X iter+1
dim =











X iter
dim + rand1 ∗ sin(rand2) ∗

�

�

�
rand3 ∗ Pos

iter
dim − Xiter

dim

�

�

�
, rand4 < 0.5

X iter
dim + rand1 ∗ cos(rand2) ∗

�

�

�
rand3 ∗ Pos

iter
dim − Xiter

dim

�

�

�
, rand4 ≥ 0.5
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rand3 acts as a weightage factor for the destination, the random number rand4 switches 
between the sine and cosine function.

Crow search algorithm

Crows possess the habit of observing and follow other birds in order to determine their 
food storage locations and take their food in their absence. Moreover, if the crow does 
steal food from another bird, it becomes extra cautious and keeps shifting its own hiding 
place to avoid becoming a victim of robbery in future. Not only this, it also uses its own 
knowledge to prevents its food from the robbers. The CSA [59] is based on these behav-
iours of a crow.

Supposedly at iteration ‘iter’ crow ‘j’ wants to visit its hiding place memj,iter . And in the 
same iteration, say crow ‘i’ plans to follow crow ‘j’. At this instant, two cases may happen:

Case 1: Crow ‘j’ is totally unaware of the fact that it is followed by crow ‘i’, and as a 
result, crow ‘i’ will know the hiding place of crow ‘j’.
Case 2: Crow ‘j’ knows that it is being followed by crow ‘i’ and hence fools crow ‘i’ by 
diverting it to a different random location within the search space.

These two cases can be mathematically represented with a set of equations as:

where randi and randj are random numbers with uniform distribution between 0 and 1 
and fli is the flight length of the ith crow. If ‘Case 1’ occurs, the updating of the memory 
of crow ‘i’ will occur based on the formula below:

f(.) denotes the value of the fitness function.

Modified GWO–SCA–CSA

Hybrid MGWOSCACSA is the amalgamation of MGWO, SCA and CSA in which the 
mathematical implications of SCA are done in the hunting method of grey wolves and 
the strategy of CSA is used to modify the position updating procedure of MGWO as 
follows:

(24)Xi,iter+1 =

{

Xi,iter + randi × fli × (memj,iter − Xi,iter) randj ≥ APj

any random position otherwise

(25)memi,iter+1 =

{

Xi,iter+1 if f (Xi,iter+1) is better than f (memi,iter)

memi,iter otherwise

(26)
�Dα = rand ∗ sin(rand) ∗

�

�

�

�Cα . �Xα − �X
�

�

�
if rand > 0.5

�Dα = rand ∗ cos(rand) ∗
�

�

�

�Cα . �Xα − �X
�

�

�
otherwise











(27)
�Dβ = rand ∗ sin(rand) ∗

�

�

�

�Cβ . �Xβ − �X
�

�

�
if rand > 0.5

�Dβ = rand ∗ cos(rand) ∗
�

�

�

�Cβ . �Xβ − �X
�

�

�
otherwise
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Thereafter, X1, X2, X3 and X4 are calculated as shown in Eq.  (21). The position 
updating step of MGWOSCACSA is:

AP decides whether to consider all the alpha, beta, delta and omega wolves for 
updation process or to rely on the alpha (leader) wolf only. To reduce the cumber-
some task of tuning a parameter, AP which is a probabilistic value changes in every 
using the formula:

The pseudocode for proposed hybrid MGWOSCACSA is given below:

(28)
�Dδ = rand ∗ sin(rand) ∗

�

�

�

�Cδ . �Xδ − �X
�

�

�
if rand > 0.5

�Dδ = rand ∗ cos(rand) ∗
�

�

�

�Cδ . �Xδ − �X
�

�

�
otherwise











(29)
�DΩ = rand ∗ sin(rand) ∗

�

�

�

�CΩ . �XΩ − �X
�

�

�
if rand > 0.5

�DΩ = rand ∗ cos(rand) ∗
�

�

�

�CΩ . �XΩ − �X
�

�

�
otherwise











(30)

�X(iter+1) = �X + fl ∗ rand ∗
�

( �X1 − �X)+ ( �X2 − �X)+ ( �X ′′
3 − �X)

�

/3 if AP > rand

�X(iter+1) = �X + fl ∗ rand ∗ ( �X1 − �X) otherwise







(31)AP = 1−

(

1.01 ∗ iter3

Max_iter3

)
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Implementation of hybrid MGWOSCACSA for the microgrid economic emission dispatch 

problem

The below-mentioned steps are the guidelines to implement the four algorithms for 
solving the concerned residential microgrid problem:

Step 1 For T hours of optimal scheduling, D numbers of DERs and N particles of 
the population, initialize the population matrix as stated in Eq. (32). Each particle 
of the population consists of D DERs for T hours of scheduling. Hence, the size of 
every particle is (D*T) which is also the dimension of the problem. It is to be noted 
that every particle of the population must abide by the constraints mentioned in 
Eq. (11) to (14). 

Step 2 Calculate the fitness function for every particle of the population.
Step 3 Initialize the parameters a, A and C using Eq. (18) and (19).
Step 4 Sort the population from best to worst. The best, second best, third best 
and fourth best particles of the population are ranked as Xα, Xβ, Xδ and XΩ.
Step 5 Evaluate the parameters Dα, Dβ, Dδ and DΩ using Eqs. (26–29).
Step 6 Update the position of the particles using Eqs. (30).
Step 7 Check whether all the particles abide by the constraints listed in Eq. (11) to 
(14).
Step 8 Go to Step 2 until the maximum number of iterations is reached.

Case studies
Description of the system A six-bus microgrid system was considered for the day ahead 
economic and emission dispatch study using proposed hybrid MGWOSCACSA. The 
system is connected with 3 generators and a wind farm as shown in Fig. 2. The opti-
mal scheduling of these DERs is the bottleneck of the concerned economic emission 
dispatch of the system. Table 1 displays the operating ranges and the uptime of the 
conventional generators, whereas Table  2 shows the quadratic fuel cost parameters 
and fuel prices of the conventional fossil-fuelled generators. The hourly load varia-
tion and the forecasted value of hourly wind power are mentioned in Table  3. The 
forecasted values of wind are inferred to have taken from a single unit and follow a 
normal distribution with a standard deviation of 10% [60]. In total, 3000 individual 
samples of 24-h period wind power were generated using Latin hypercube sampling 
method, and from there, 10 scenarios were chosen for study [60] (Fig. 3). These sce-
narios are plotted in Fig.  2. Uncertainty of wind power w.r.t. its forecasted value is 
calculated, and the mean of the 10 scenarios is calculated using formula mentioned in 

(32)
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Sect. 2. Forecasted value, mean value and uncertainty value of 24 h period of wind are 
plotted in Fig. 4a. Figure 4b shows the hourly percentage deviation of the mean values 
and uncertainty values of wind from the forecasted values. The penetration percent-
age of various wind scenarios including forecasted, mean and uncertainty is evalu-
ated, and a bar diagram is used to represent these in Fig. 5. Uncertainty of load w.r.t. 
its forecasted value is calculated and plotted in Fig.  6. The penalized emission cost 
is taken as $0.05/kW for all the generation units. Parameter ‘fl’ of proposed hybrid 
MGWOCSA and MGWOSCACSA is taken as 2.

With these evaluated and predefined data on wind, load and generators, economic 
emission dispatch was percolated for three different cases and is discussed below:

Case 1: without wind support

Initially economic and emission dispatch was performed using the proposed MGWO-
SCACSA and the generation costs were recorded for the forecasted load profile and 
the uncertainty load profile. The generation cost considering the forecasted load was 

Fig. 2 Six-bus system

Table 1 Generator data

Unit Pmax (kW) Pmin (kW) Min 
uptime 
(h)

G1 220 90 10

G2 100 10 10

G3 20 10 10

Table 2 Generator fuel consumption data

Unit Fuel consumption function Fuel price ($/kg)

a (kg/kW2h) b (kg/kWh) c (kg)

G1 0.0004 13.5 176.9 1.2469

G2 0.001 32.6 129.9 1.2461

G3 0.005 17.6 137.4 1.2462
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found to be $152,314 and that considering the uncertainty load was $157,460. The 
rise in the generation cost was due to the rise in uncertainty load demand. Figure 7a, 
b shows the load sharing between the generators when generation cost was evaluated 
for forecasted load and uncertainty load, respectively.

Case 2: with wind support

This case is again analysed in two different scenarios. First the forecasted wind profile 
is subtracted from the forecasted load and the net load thus obtained is to be shared 
among the three generators. Optimal scheduling was performed, and the generation 
cost obtained in this aspect was $110,381. Thereafter, for the second scenario, the 
uncertainty load profile and uncertainty wind profile were considered. The net load 

Table 3 Hourly load and forecasted wind power

H PD PWind H PD P-Wind

1 219.19 44 13 326.18 84

2 235.35 70.2 14 323.60 80

3 234.67 76 15 326.86 78

4 236.73 82 16 287.79 32

5 239.06 84 17 260.00 4

6 244.48 84 18 246.74 8

7 273.39 100 19 255.97 10

8 290.40 100 20 237.35 5

9 283.56 78 21 243.31 6

10 281.20 64 22 283.14 56

11 328.61 100 23 283.05 82

12 328.10 92 24 248.75 52

Fig. 3 Wind scenarios
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left after subtracting the former from the latter was to be optimally scheduled among 
the three generators to attain the least generation cost using proposed MGWO-
SCACSA. The generation cost was affected with the rise in uncertainty profile as com-
pared to the previous scenario and rose up to $112,402. Figure 8a, b shows the load 
sharing among the generators for both the scenarios, respectively. When compared 
to the previous case, the dip in the generator outputs in Case 2 marks the penetration 
of wind power to support the conventional generators in meeting the load demands.

Case 3: with wind support and unit commitment

Unit commitment (UC) is basically assigning a minimum operating period (also known 
as uptime) to the generating units. A generating unit must operate for the assigned 
period of time. Beyond the operating period, the generating unit ‘can’ shut down or stay 

Fig. 4 a Wind profiles of forecasted, mean and uncertainty values. b Percentage deviation of mean and 
uncertainty wind profiles from the forecasted value
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in a standby mode if and only if the required load demand would be met in its absence. 
UC helps in minimizing the generation cost and pollutant emission and increase the 
longevity of the generating units.

Fig. 5 Wind penetration

Fig. 6 Load uncertainty profile

Fig. 7 Load sharing among DGs without wind support for a forecasted load profile. b Uncertainty load 
profile
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Like Case 2, two scenarios were studied for this case too. MGWOSCACSA yielded 
a minimum generation cost of $106,554 for scenario 1 with forecasted load cum wind 
profile and $108,613 for scenario 2 with uncertainty in load and wind profile. Figure 9a, 
b shows the load sharing among the generators for both the scenarios, respectively. It 
can be seen from the figure that generators G2 and G3 do not operate in the early hours, 
whereas G1 delivers power throughout the day. This is because of the increasing trend 
of the load demands during those hours. G2 and G3 consume higher amount of fuel as 
compared to G1 and are thus not operated during those hours to minimize the genera-
tion cost. The up/down status of the generators is given in Table 4 where status 1 means 
the generator is ON and 0 means OFF.

Since this is the complex case among the three cases studied, various other hybrid 
and modifications of GWO such as MGWO, PSOGWO, DEGWO, MGWOSCA and 
MGWOCSA were also implemented to perform EED on both forecasted and uncer-
tainty values of wind and load profile. The best value obtained using various algorithms 
for 30 trials each is displayed in Table 4 along with the elapsed time to reach 500 itera-
tions. Figures 10 and 11 show the convergence curve characteristics of all the algorithms 
implemented to perform EED on Case 3 for forecasted and uncertainty values of load 
profile, respectively.

Fig. 8 Load sharing among DGs with wind support for a forecasted load profile. b Uncertainty load profile

Fig. 9 Load sharing among DGs with wind support considering UC for a forecasted load profile. b 
Uncertainty load profile
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Analysis of results

When the two scenarios of the three cases were tallied among themselves, it is seen 
in Fig. 12 that 30% savings were attained in the generation cost when the microgrid 
system was powered with wind support and committed generating units compared to 
the case when the microgrid system was powered with generators only. Less wear and 
tear of rotating machines occur when they are at rest. Owing to this reason, Case 3 
operating strategy is a much preferable one compared to the other two cases.

UP is the ratio of total power supplied by a DG source throughout its working hours 
to the maximum rated power that can be actually delivered by that DG source. Fig-
ure 13 shows the utilization percentage of the generators for the three different cases. 
The fuel consumption trend of the generators are G2 > G3 > G1, and hence, the uti-
lization percentage of the generators follows the opposite trend. Furthermore, if we 
consider the utilization percentage of the generators w.r.t. the cases studied, then 
Fig. 10 shows that the UP of the generators was maximum in Case 1 and least in Case 
3.

Both GWO and novel hybrid MGWOSCACSA were implemented to perform eco-
nomic emission dispatch with and without unit commitment for all the ten differ-
ent wind scenarios including forecasted, mean and uncertainty values of wind profile. 

Table 4 Cost comparative analysis for EED during Case 3 using various algorithms

Algorithms Forecasted load and wind profile Uncertainty load and wind profile

EED ($) Elapsed time (s/
iter)

EED ($) Elapsed 
time (s/
iter)

GWO 106,611.7784 1.25 108,655.5612 1.16

MGWO 106,609.1476 1.66 108,645.8306 1.08

PSOGWO 106,608.7025 0.73 108,644.0896 0.99

DEGWO 106,605.6591 1.23 108,643.2715 1.38

MGWOSCA 106,604.8609 0.70 108,642.7836 1.21

MGWOCSA 106,561.5118 1.09 108,640.3877 1.05

MGWOSCACSA 106,554.1652 0.65 108,613.9796 1.05

Fig. 10 a Convergence curve characteristics for EED in Case 3 with forecasted wind and load profile. b 
Magnified to differentiate the proposed algorithm
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Figure 14a, b plots the various minimized generation costs obtained with and with-
out unit commitment, respectively. It can be seen that the costs obtained in Fig. 14b 
maintains a lower profile than Fig. 14a. This is solely because of the potential effect 
of UC to bring down the generation cost up to 30% as mentioned earlier. Among the 
various scenarios for both the cases (with and without UC), uncertainty wind scenario 
incurred the maximum generation cost due to the increase in load demand. This was 
followed by wind scenario 7 due to the least penetration percentage and contribution 
in sharing the load demand.

Analysis of the optimization techniques involved

The economic emission dispatch for all the three cases using GWO and proposed 
MGWOSCACSA was pulled off in a MATLAB 2013 software installed in a desktop PC 
with Intel core i3 processor and 4 GB RAM. Both the algorithms were executed for 30 
individual times for all the cases studied with population size 100 and 500 iterations. It 
can be already seen from the previous results that MGWOSCACSA consistently yielded 
better and minimized generation cost. A statistical study, viz. Wilcoxon’s signed-rank 
test [61], was performed for the proposed hybrid optimization technique. Let H0 be the 

Fig. 11 a Convergence curve characteristics for EED in Case 3 with uncertainty in wind and load profile. b 
Magnified to differentiate the proposed algorithm

Fig. 12 Cost comparison for various load and wind profiles using proposed MGWOSCACSA
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hypothesis that there is no significance difference between the methods used to evaluate 
the generation cost and all the results discussed so far are obtained using one technique. 
And let H1 be the reverse hypothesis that contradicts H0. As per Wilcoxon’s signed-rank 
test, if p value of the superior algorithm is less than 0.05, the hypothesis H0 stands obso-
lete. Table 5 shows that the p value for all the cases and scenarios studied is much less 
than 0.05. This means that there are two methods involved to minimize the generation 
costs out of which proposed MGWOSCACSA is the superior one. Minimum value of 
standard deviation and maximum hits (83–96%) to the best solution also claim the con-
sistency and robustness of the proposed approach.

Conclusion
Economic emission dispatch was performed on a stand-alone microgrid system consist-
ing of 3 fossil-fuelled generators and a wind turbine using GWO and proposed MGWO-
SCACSA. The following conclusions were reached after the study:

Fig. 13 Utilization percentage of generators for various load and wind profiles using proposed 
MGWOSCACSA

Fig. 14 EED comparison for various wind profiles a without unit commitment. b With unit commitment
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a. The generation cost of the system without wind power was much higher than the 
generation cost calculated considering the wind power.

b. Relaxation in the amount of power supplied by the generators was observed upon 
the involvement of wind power.

c. Unit commitment-based economic emission dispatch not only decreased the genera-
tion cost to a great extent, but also helps in maintaining longevity of the generators 
allowing them to be at rest for 10–12 h per day. This in turn increases the reliability 
of the system and also decreases pollutant emitted to atmosphere.

d. For Cases 2 and 3 studied, it was seen that the generation cost considering uncer-
tainty was about 1.9% more than the forecasted ones. Except in Case 1 when the gen-
eration cost with uncertainty load was 3% more than the forecasted load, this again 
establishes the significance for involving the wind power.

e. Proposed MGWOSCACSA proved to be a superior, efficient and robust algorithm in 
performing economic emission dispatch problems and can be implemented for solv-
ing different power system optimization problems. High amount of elapsed time to 
attain the stopping criteria could be the only demerit of the proposed algorithm. This 
would happen when there are a large number of complex constraints to be satisfied 
for the decision variables or a tight range of upper and lower bounds.

As a scope to expand the future horizon of this research, test systems considering 
RES such as PV system and energy storage systems like battery could be included to 
conduct an uncertainty-based EED. Furthermore, multi-objective CEED can also be 
performed in larger test systems using proposed MGWOSCACSA.
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Table 5 Statistical analysis of MGWOSCACSA

F forecasted; U uncertainty; STD standard deviation

Cases S Min. cost ($) Max. cost ($) Avg. cost ($) Hits STD p value (e−07)

1 F 152,314 152,319 152,314.8333 25 1.89 2.5721

U 157,460 157,462 157,460.2000 27 0.61 1.4403

2 F 110,381 110,382 110,381.0667 28 0.25 1.0135

U 112,402 112,405 112,402.5000 25 1.14 2.5721

3 F 106,554 106,556 106,555.0666 28 0.25 1.0135

U 108,613 108,614 108,613.2333 29 1.28 0.6798
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