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A fish oil-rich diet leads to lower adiposity
and serum triglycerides but increases liver
lipid peroxidation in fructose-fed rats
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Abstract

Background: Consumption of refined carbohydrates has risen in recent years alongside chronic diseases such as
type 2 diabetes mellitus, dyslipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD). Fructose is a
monosaccharide made widely available in industrialized products, capable of inducing excessive weight gain and
liver steatosis in animal models, while omega-3 fatty acids, present in foods such as fatty fish and fish oil, have
shown to inhibit genes related to lipogenesis and decrease cardiovascular risk. Therefore, our objective was to
evaluate the impact of a high-fructose diet on weight gain, biochemical and oxidative stress parameters, and liver
histology and investigate fish oil’s potential protective role. Thirty male Wistar rats were divided into 3 groups:
regular chow diet (CT), regular chow diet plus 20% fructose in drinking water (Fr), and a diet containing 10% fish oil
plus 20% fructose in drinking water (FOFr). After 12 weeks, tissues of interest were collected for biochemical and
histological analyses.

Results: Although fructose consumption did not lead to increased hepatic fat, it caused a significant increase in
weight gain, white adipose tissue, and serum triglycerides in the Fr group, while fish oil promoted normalized
serum triglycerides and even reduced adiposity in the FOFr group. Additionally, the inclusion of fish oil in the FOFr
diet led to increased liver lipid peroxidation in the form of increased hepatic MDA.

Conclusions: It is concluded that fish oil can prevent important metabolic alterations caused by fructose
consumption, but its dosage must be taken into account to prevent oxidative stress and potential liver damage.
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Background
The alarming increase in obesity prevalence around the
world is a public health concern [1]. This pathological
expansion of adipose tissue is accompanied by an in-
flammatory state and many comorbidities, such as type
2 diabetes (T2D), dyslipidemia, cardiovascular diseases
(CVD), and non-alcoholic fatty liver disease (NAFLD)
[2]. The latter is currently considered the most prevalent
liver disease in the world, characterized by a higher than

5% fat deposition in the liver of individuals with no
history of excessive alcohol intake. It is believed NAFLD
progression occurs initially through increased lipid
accumulation in the liver (the first “hit”), followed by
oxidative stress and an increase in lipid peroxidation
(the second “hit”) [3] leading to its inflammatory form,
non-alcoholic steatohepatitis (NASH), and possibly more
serious liver diseases such as cirrhosis and hepatocellular
carcinoma [4].
Oxidative stress is a condition in which unstable mole-

cules known as reactive oxygen species (ROS) overwhelm
antioxidant defenses, leading to potential damage of cellu-
lar constituents such as proteins, lipids, and DNA. ROS are
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endogenously produced by the mitochondrial respira-
tory chain [5], as such, an increase in presence and
oxidation of glucose and free fatty acids (FFA) can lead
to increased generation of electron donors, resulting in
ROS overproduction [6]. Furthermore, oxidative stress
has been recognized as a contributor to the develop-
ment of hypertension, inflammation, insulin resistance,
and other chronic diseases [7].
A sedentary lifestyle and excessive energy intake,

favored by the consumption of simple carbohydrates and
energy-dense foods are major causes of obesity and
NAFLD [8]. More specifically, fructose is a monosacchar-
ide naturally present in fruits but made excessively
available in industrialized products, and its role in the de-
velopment of obesity and related comorbidities has been
highly studied. After its intestinal absorption, fructose is
rapidly transported into the liver via hepatic GLUT2 and is
able to bypass important rate-limiting steps of glycolysis,
therefore leading to an increase in triose phosphate inter-
mediates at a faster rate than glucose, which can then be
utilized in different pathways, including lipogenesis [9].
Additionally, fructose is able to interact with transcription
factors such as SREBP1c and ChREBP, which are respon-
sible for the expression of enzymes related to fatty acid
synthesis and glycolysis [10, 11].
Fatty acids, another component of human diets, have

been shown to interact with transcription factors and
modulate lipogenesis [12]. Fish oil, a compost rich in
marine omega-3 (n-3) polyunsaturated fatty acids
(PUFAs), is known to have anti-inflammatory properties,
as well as being able to reduce hepatic triglycerides
(TG), fatty acid synthesis, and adipose cell size [3, 13].
On the other hand, excessive incorporation of n-3 fatty
acids into cell membranes raises its peroxidizability
index due to an increase in sites susceptible to lipid
peroxidation, which can result in membrane glycolipid,
phospholipid, and cholesterol peroxidation [14, 15].
Therefore, considering the important increase in the

consumption of industrialized products and in the
prevalence of obesity and its related comorbidities, the
aim of this study was to evaluate the effects of a marine
n-3 fatty acid-rich diet in fructose-fed rats in terms of
liver, biochemical, and oxidative stress parameters.

Methods
Animals and diet
All procedures were approved by the Ribeirão Preto
Medical School’s Ethics Committee of Animal Experi-
mentation (protocol number 185/2017). Thirty male
Wistar rats were obtained from the Central Animal
House of Ribeirão Preto Campus, University of São
Paulo, Brazil, and kept in a 12-h light/12-h dark cycle, at
an average temperature of 22 °C. Animals weighed an
average of 200 g upon arrival and were randomly assigned

to 3 groups (n = 10). The control group (CT) was fed a
regular chow diet (Nuvilab Cr-1®, Nuvital Nutrientes S/A,
Table 1) and tap water. The fructose (Fr) group was fed a
regular chow diet and water containing 20% fructose. The
fish oil-fructose group (FOFr) also received water contain-
ing 20% fructose but had its diet altered to contain 10%
fish oil. Fish oil was acquired from Campestre Industry
and Trade of Vegetable Oils (São Bernardo do Campo,
Brazil).
Animals were weighed 3 times a week while also

receiving fresh chow and water. Diet and water intake
were also recorded every 2 days. After 12 weeks, animals
were euthanized through decapitation following a 12-h
fast. Blood was immediately collected and then centri-
fuged at 4 °C, and serum was stored at − 80 °C. Liver
tissue was removed, weighed, and sampled for histological,
oxidative stress, and total fat analyses and later stored at
− 80 °C. Retroperitoneal and epididymal fat tissues were
also collected and weighed.

Hepatic histology
For histological analysis, hepatic tissues were dissected, fixed
in 10% neutral buffered formalin, and embedded in paraffin
according to standard procedures. Tissue sections of 5 μm
thickness were stained with hematoxylin and eosin (H&E).
Histological images were captured using the Scanscope
(Olympus BX61VS).

Biochemical analyses
Fish oil’s fatty acids were determined using gas chroma-
tography (Shimadzu, Europe, Duisburg, Germany), fitted
with an SP2560 column (100 m, 0.25 mm, 0.20 μm).
Helium was used as the carrier gas (1.6 ml/min flux),
and a mix of methyl esters fatty acids were utilized as a
standard (Supelco 37 Component FAME Mix).
Total fat was quantified through Bligh and Dyer’s [16]

method utilizing 500 mg samples of hepatic tissue. Lipid
peroxidation was assessed through the quantification of
serum and hepatic malondialdehyde (MDA) following
Gérard-Monnier et al.’s proposed method [17]. Reduced
glutathione (GSH) was determined though Sedlak and
Lindsay’s [18] method. Hepatic α-tocopherol concentra-
tion was measured according to the method proposed by

Table 1 Nutritional composition of used standard chow diet
and modified fish oil diet

Nutritional composition
(100 g)

Standard chow diet
(CT)1

Modified fish oil diet
(FOFr)

Energy content 336 Kcal 392.4 Kcal

Carbohydrates 53 g (63%) 47.7 g (49%)

Proteins 22 g (26%) 19.8 g (21%)

Lipids 4 g (11%) 13.6 g (30%)
1Nutritional information was obtained from Nuvilab Cr-1® (Nuvital Nutrientes
S/A) product label
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Arnaud et al. [19] utilizing a high-performance liquid chro-
matograph (Shimadzu Europe, Duisburg, Germany)
equipped with a C-18 column (Shimpack CLC-ODS 4.6 ×
25 cm) and a 4mm × 1 cm precolumn. The mobile phase
was made by acetonitrile/dichloromethane/methanol (70/
20/10) solution. Transaminases alanine aminotransferase
(ALT) and aspartate aminotransferase (AST), total serum
cholesterol, and serum TG were determined through
commercial kits (Labtest Diagnóstica S.A., Brazil). Free fatty
acids (FFAs) were determined through a quantitative colori-
metric assay (BioAssay Systems, Hayward, CA, USA).

Statistical analysis
Data was subjected to ANOVA variance analysis with
Tukey’s post hoc test (GraphPad Software, San Diego,
CA, USA), with a significance level set at p < 0.05. Data
is presented as means ± standard deviation.

Results
Table 2 shows the fatty acid composition of the fish oil
utilized in the experiment, presenting a higher amount of
n-3 fatty acids compared to n-6 fatty acids, and a signifi-
cant amount of EPA and DHA, therefore demonstrating

the FOFr diet indeed had an increased marine n-3 fatty
acid content.
Table 3 shows consumption data regarding food, fluid

(and therefore, fructose), and calorie intake. Food intake
was similarly reduced in groups consuming fructose (Fr
and FOFr). While fluid intake remained the same between
CT and Fr, it was reduced in the FOFr group, leading to a
subtle, albeit significant reduction in fructose intake
compared to the Fr group. Curiously, total calorie intake
was the same between experimental groups.
Figure 1 shows the initial and final body weight.

Initially, body weight was the same between experimen-
tal groups. After 12 weeks, animals from the Fr showed
significantly increased body weight, and FOFr had a
similar weight to CT.
Figure 2 presents data regarding body composition.

Retroperitoneal fat was significantly increased in the Fr
group, and similar between CT and FOFr, while epididy-
mal fat was reduced only in the FOFr group. When
combined, total body fat was significantly lower in the
FOFr group and higher in the Fr group. Additionally,
liver weight corrected according to animal weight did
not differ between animals.
As for biochemical parameters (Fig. 3), serum TG was

found to be elevated in the Fr group and normalized in
the FOFr group. Additionally, total serum cholesterol
was lower in the group consuming fish oil. No signifi-
cant differences were seen in total hepatic fat, free fatty
acids, or in the hepatic enzymes AST and ALT.
Figure 4 shows data regarding oxidative stress parame-

ters. While serum MDA and GSH were not significantly
different between groups, there was an important in-
crease in hepatic MDA in the FOFr group. Hepatic GSH
was also found to be significantly increased, but only in
the Fr group. Additionally, hepatic α-tocopherol was
found to be significantly reduced in FOFr animals.
Finally, Fig. 5 displays H&E staining of liver samples,
showing no significant difference between groups.

Discussion
In the present study, fructose consumption in water led
to lower diet intake, causing caloric intake to be very
similar between experimental groups. Indeed, previous
research has shown that animals are capable of altering

Table 2 Percentage of fatty acids in utilized fish oil

Structure %

14:0 6.3

16:0 23.6

16:1 6.7

17:0 0.9

17:1 0.9

18:0 5.3

18:1n9c 12.1

18:2n6c 14.3

18:3n3 2.2

20:1n9 ND

20:2 0.6

20:3n6 0.2

21:0 0.2

20:3n3 0.1

20:4n6 1.4

20:5n3 (EPA) 9.6

22:1n9 0.3

24:0 1.2

22:6n3 (DHA) 12.6

Others 12.6

n-6 15.9

n-3 24.5

ND not detected, n-6 polyunsaturated omega-6 fatty acids, n-3
polyunsaturated omega-3 fatty acids

Table 3 Food, fluid, fructose, and calorie intake

Variables CT Fr FOFr

Food intake (g/day) 35 ± 2.3 21 ± 2.3a 19 ± 3.3a

Fluid intake (ml/day) 67 ± 5.1 66 ± 8.1 54 ± 3.2ab

Fructose intake (g/day) - 13.1 ± 1.5 10.9 ± 0.53b

Total calorie intake (kcal/day) 124 ± 8.1 124 ± 10.2 122 ± 8.5

Values are mean ± SD. Superscript letters are significantly different
aA significant difference when compared to the CT group
bA significant difference when compared to the Fr group
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Fig. 1 Body weight. a Initial body weight and b final body weight. Values are mean ± SD. Asterisk indicates a significant difference between
groups (P < 0.05)

Fig. 2 Body composition. a Retroperitoneal fat, b epididymal fat, c sum of adipose tissues, and d liver weight corrected by animal weight. Values
are mean ± SD. Asterisk indicates a significant difference when compared to CT and FOFr. Double asterisk indicates a significant difference when
compared to CT and Fr (P < 0.05)
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their food intake to maintain similar energy intake when
consuming fructose in water [20, 21], although not
always being sufficient to compensate for the additional
calories from fructose [22, 23]. Equal energy ingestion
may suggest that differences in weight gain and biochemical
parameters seen in this study were due to fructose and fish
oil’s significant effects on lipid metabolism and not due to a
more energy-dense diet. Also, water intake remained the
same between CT and Fr groups, and decreased slightly in
the FOFr group, leading to marginally smaller fructose

intake. In similar studies, animals receiving water in fruc-
tose tend to have increased water intake, which in turn
leads to a higher daily fructose intake [20, 21]. It is unclear
why water intake did not increase in our experiment; how-
ever, that may have protected animals from developing
more serious metabolic complications, such as liver steato-
sis. Decreased fructose intake in the FOFr group presents a
limitation of our study; however, since this decrease was
subtle, fish oil can still be partially implicated in the positive
changes seen in FOFr animals, such as normalized serum

Fig. 3 Biochemical parameters. a Serum triglycerides, b serum total cholesterol, c total hepatic fat, d free fatty acids, and e serum ALT and f AST.
Values are mean ± SD. Asterisk indicates a significant difference when compared to CT and FOFr. Double asterisk indicates a significant difference
when compared to CT and Fr (P < 0.05)
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TGs and reduced adiposity. It may be the case that diets
that are rich in lipids, such as the FOFr, lead to higher
satiety and therefore reduced water intake, as seen in exper-
iments offering high-fat diets to animals [24].
Fructose ingestion led to increased weight gain, mainly

in terms of retroperitoneal fat, while fish oil prevented
these changes and further reduced serum cholesterol
and epididymal fat. Although fat deposition stems
mainly from positive energy balance, fructose is known
to have an important impact on lipid synthesis. Since
fructose bypasses rate-limiting steps of glycolysis, it is
rapidly metabolized in the liver into substrates that can
be used for acetyl-CoA production and eventually for
lipogenesis. Fructose-derived substrates also activate
ChREBP, which further increases metabolic pathways
such as glycolysis and fructolysis. Additionally, by indu-
cing hyperinsulinemia [25], fructose promotes SREBP1-c
activation [26], leading to increased expression of lipo-
genic enzymes such as fatty acid synthase and acetyl-
CoA carboxylase [27]. Since intrahepatic lipids increase
when their production surpasses hepatic lipid output [9],
perhaps fructose ingested by rats in our experiment did

not promote lipid accumulation in the liver but led to
increased TG synthesis and its storage in fat tissue. In
contrast, fish oil and marine n-3 fatty acids have been
shown to reduce fatty acid synthesis by suppressing
SREBP-1c expression and preventing LXRα activation
[28, 29] and increase lipolysis by upregulating hepatic
PPAR-α [30], therefore hindering TG synthesis and fat
storage. In a similar experiment, the addition of fish oil
in the animal diet failed to attenuate an increase in
serum TGs due to fructose consumption 30 days after
fructose ingestion in water was initiated [21]. It would
seem therefore that fish oil is more efficient at prevent-
ing the development of elevated serum TGs rather than
treating it, since in the aforementioned experiment fish
oil ingestion started alongside fructose addition in water.
Although fructose is implicated in hepatic lipogenesis,

no liver alterations were seen in our experiment, such as
liver steatosis, fibrosis, increased liver weight, or increased
hepatic enzymes. Indeed, multiple protocols are employed
to study NAFLD in the literature [31–35], differing in terms
of fructose concentration, experiment length, and animal
model, making the comparison between heterogeneous

Fig. 4 Oxidative stress parameters. a Serum MDA, b serum GSH, c hepatic MDA, d hepatic GSH, and e hepatic α-tocopherol. Values are mean ±
SD. Asterisk indicates a significant difference when compared to CT and FOFr. Double asterisk indicates a significant difference when compared
to CT and Fr (P < 0.05)
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data a difficult task. In similar experiments that utilized
Wistar rats receiving fructose in drinking water, increased
hepatic lipid accumulation was seen after 8 weeks of
fructose consumption [35], and liver injury consisting of
hepatocyte degeneration and hyperemia were seen after 24
weeks [34]. Even though water intake data was not available
in these previous studies, it can be hypothesized that the
extent to which fructose can lead to hepatic injury and lipid
accumulation depends heavily on the experiment’s duration
and water intake, which directly impacts fructose intake. As
discussed previously, since water intake was not increased
in the Fr group, as opposed to what is seen in similar exper-
iments [20, 21], fructose intake was limited. Other methods
that circumvent this limitation can be used to induce
NAFLD and obesity in animals, such as including fructose
in the actual diet alongside saturated fat [36–38], leading to
an increased fructose intake and a stronger stimulus to
provoke metabolic alterations, given the effects of saturated
fats on the onset of inflammation and weight gain in animal
models [39, 40].
Fish oil also led to increased hepatic MDA and re-

duced hepatic α-tocopherol in the FOFr group, suggest-
ing there was a significant increase in lipid peroxidation
in the liver and that hepatic α-tocopherol, a fat-soluble
antioxidant which acts as a hydrogen donor, was signifi-
cantly depleted. It has been described that the suscepti-
bility for free radical damage increases alongside the
number of double bonds in fatty acids present in tissues
[15]. As such, the incorporation of a significant amount
of n-3 fatty acids such as EPA and DHA in the liver,
which are available in fish oil and abundant in double
bonds, can potentially lead to increased lipid peroxida-
tion, and thus pose a threat to overall hepatic health.
Oxidative stress is now recognized as a significant part
in the development of many metabolic conditions such
as chronic inflammation and hypertension [7], and in
the liver, it is directly implicated in alcoholic hepatic

diseases [41]. Therefore, these findings raise concerns
regarding the safety of fish oil when ingested at such
high dosages.
Experiments in which a fructose-rich diet containing

10% fish oil was given to rats also saw an increase in
lipid peroxidation in the form of increased liver and
serum TBARS, leading to significant DNA damage [42].
Later, the same group showed that a 5% dosage of fish
oil could still ameliorate metabolic alterations of a
fructose-enriched diet without increasing lipid peroxida-
tion [43]. It would seem, therefore, that as the diet’s fish
oil content rises, so does hepatic lipid peroxidation, but
at a given proportion, fish oil retains its therapeutic
properties without favoring oxidative stress. Curiously,
hepatic GSH was increased in the Fr group, a result that
is not seen in other experiments [42, 43]. This change
may have protected these animals from oxidative stress,
given that MDA levels were normal in the Fr group. The
ratio of reduced glutathione to oxidized glutathione
(GSH/GSSG) is an effective method to assess the redox
state of glutathione in tissues, which unfortunately was
not present in our experiment. It would be important to
utilize this analysis in future experiments, possibly shed-
ding more light on this specific alteration found in ani-
mals consuming fructose.

Conclusions
Obesity and its comorbidities affect an ever-growing
number of patients around the world. As such, it is
fundamental to study its causes and different therapeutic
options. In our experiment, we found that fructose
ingestion through water led to increased weight gain and
increased adiposity and serum triglycerides, without
causing liver injury or steatosis. The inclusion of fish oil
in the diet prevented such alterations and further
decreased serum cholesterol and fat tissue. However, at
such a dosage, it also led to increased hepatic lipid

Fig. 5 Histological analysis from liver samples of rats consuming regular chow, fructose, or fructose and fish oil. a Liver histology of CT group. b
Liver histology of Fr group. c Liver histology of FOFr group

Esteves et al. Egyptian Liver Journal           (2020) 10:35 Page 7 of 9



peroxidation. Considering fish oil is a widely available
pharmaceutical agent, the present study raises concerns
regarding its unadvised use by patients. Therefore, we
propose that fish oil and its PUFAs may be suitable
agents to prevent the metabolic effects of fructose inges-
tion, but an adequate dosage must be tested in further
studies and clinical trials with the aim of avoiding dele-
terious changes while still retaining a therapeutic effect.
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