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Abstract

Background: Comparing four-dimensional flow against two-dimensional flow measurements in patients with
complex flow pattern is still lacking. This study aimed to compare four-dimensional against the two-dimensional
flow measurement in patients with bicuspid aortic valve and to test potentials of four-dimensional operator-
dependent sources of error.

Results: The two- and four-dimensional flow data sets of sixteen patients with bicuspid aortic valve and eighteen
healthy subjects were studied. Flow analyses were performed by two observers blindly. Patients with bicuspid aortic
valve mean differences between the two- and four-dimensional measurements in both observers were — 8 and —

4 ml, respectively. Four-dimensional measurements resulted in systematically higher flow values than the two-
dimensional flow in bicuspid aortic valve patients. The upper and lower limits of agreement between the two- and
four-dimensional measurements by both observers were + 12/— 28 ml and + 14/— 21 ml, respectively. In the healthy
volunteers, mean differences between the two- and four-dimensional measurements in both observers were + 0 and +
1 ml, respectively. The upper and lower limits of agreement between the two- and four-dimensional measurements by
both observers were + 21/— 18 ml and + 12/— 13 m|, respectively. Inter-observer variability in four-dimensional flow
measurement was 4% mean net forward flow in bicuspid aortic valve patients and 8% in healthy volunteers.

Conclusion: Inter-observer variability in four-dimensional flow assessment is 8% or less which is acceptable for clinical
cardiac MRI routine. There is close agreement of two- and four-dimensional flow tools in normal and complex flow
pattern. In complex flow pattern, however, four-dimensional flow measurement picks up 4-9% higher flow values. It
seems, therefore, that four-dimensional flow is closer to real flow values than two-dimensional flow, which is however
to be proven by further studies.
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Background

Two-dimensional velocity-encoded cine magnetic res-
onance imaging flow analysis is an established tech-
nique for assessing hemodynamics in cardiovascular
magnetic resonance (MRI) [1-3] in congenital heart
diseases (CHD) [2].

Intraindividual validation of the quantification of four-
dimensional flow tool against two-dimensional flow tool
was previously performed mostly in normal subjects [4].
Visualization of abnormal flow patterns by four-
dimensional flow tool following surgery for complex
CHD [5-8] was previously published as well.

However, the estimation of the four-dimensional
operator-dependent source of error during segmentation
and post processing is scarcely discussed. Moreover,
comparing four-dimensional flow against two-dimensional
flow measurements in patients with complex flow pattern
is still lacking.

Therefore, the purpose of this study was as follows:

1. To test the four-dimensional operator-dependent
sources of error.

2. To test the agreement of four-dimensional against
two-dimensional flow measurements in the ascending
aorta of patients with bicuspid aortic valve, who
present with abnormal helical flow pattern and
normal subjects.

Methods

Retrospectively (2012-2013) the quantitative flow in the
ascending aorta was analyzed in 16 patients (6 females)
with bicuspid aortic valve (BAV) disease and in 18 (7
females) healthy volunteers (HV).

Patients > 7years, no past congenital heart defect
other than BAV, no arterial hypertension, no thorax de-
formations, a diameter of the ascending aorta < 4.5cm
in adults and < 2.2 cm/m? in children, no significant aor-
tic valve regurgitation, and a flow velocity through the
aortic valve of < 250 cm/s by echocardiography no abso-
lute contraindications to CMR imaging were included.
Healthy volunteers were matched to the BAV group by
sex and age (+ 2 years) to serve as a control group. Indi-
viduals who did not meet the aforementioned criteria
were excluded.

All subjects were studied on a standard cardiac 1.5
Tesla MRI-scanner, and a standard cardiac 12-
channel coil was used for all patients (MAGNETOM
Avanto, Siemens Healthcare, Erlangen, Germany). A
written informed consent was obtained from all pa-
tients. At the beginning of the study, localizers were
obtained in three orthogonal slices for registration of
the thoracic anatomy in order to plan the following
sequences.
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Through plane two-dimensional phase contrast velocity
encoding flow measurement

Standard through plane two-dimensional phase contrast
velocity encoding imaging of the ascending aorta was
performed, as previously described [9, 10]. Parameters in
the 2D phase contrast velocity encoding imaging were
free breathing (typical acquisition times: around 3 min),
retrospective ECG gating, and the velocity encoding set
to 200 cm/s.

Slice thickness was 5 mm, repetition time 36.7 ms, echo
time 3.09 ms, flip angle 30°, averages 3, segmentation 3,
rectangular field of view 260 to 330 x 330 mm, matrix 256
x 256. Data were reconstructed to provide 30 magnitude
and phase (velocity-mapped) images per cardiac cycle.

The imaged vessel’s region of interest was always posi-
tioned at iso-center of the magnet to maximize gradient
fidelity. Furthermore, the ECG was continuously ob-
served during acquisition. The running acquisition was
always aborted when more than three extra systoles were
noted [9, 10].

Flow measurement of the ascending aorta was per-
formed at the level of the pulmonary artery bifurcation.
Post processing was done by manual contour delineation
using the Argus software tool (Siemens®) by cardiac MRI
experts. In all results depicted, aortic flow was defined as
net forward aortic flow.

Four-dimensional flow measurement

Quantitative flow measurement of the ascending aorta
by the four-dimensional flow sequence was performed
using a time-resolved three-dimensional phase-contrast
sequence with three-directional velocity encoding as pre-
viously described [11]. No contrast agent was used, and
respiratory gating was achieved by a respiratory naviga-
tor. All data were measured in a sagittal-oblique volume
that included the entire thoracic aorta. Velocity encod-
ing Vx, Vy, and Vz set to 200 cm/s similar to the 2D
phase contrast velocity encoding.

Assessment of flow was performed using the Fraunhofer-
MEVIS flow software (Fraunhofer MEVIS—Institute for
Medical Image Computing). Once ROI was fully defined
for each time step throughout the cardiac cycle, the ac-
quired data were fully processed for final quantification
(Figs. 1 and 2). In all results depicted, aortic flow was de-
fined as net forward aortic flow. Flow measurement of the
ascending aorta was performed at the level of the pulmon-
ary artery bifurcation (Fig. 1).

Interobserver variability

A second investigator, blinded to the first assessment,
using the same software tools, performed a second as-
sessment of the flow. Contour drawing in the ascending
aorta was performed by two experienced members of
the cardiac MRI team (A.K. and K.B.) who were familiar



Kharabish et al. Egyptian Journal of Radiology and Nuclear Medicine

(2020) 51:222

Page 3 of 8

Fig. 1 Assessment of aortic 4D-flow, iso-surface images of the aorta (green) are produced. The post processing manual contour delineation was
performed at the level of the pulmonary artery bifurcation (cross lines)
A

with the Mevis software flow tool. In the four-
dimensional flow measurement of the ascending aorta,
iso-surface images of the aorta are produced. The post-
processing manual contour delineation was performed at
the level of the pulmonary artery bifurcation (Fig. 1).

Statistical analysis

Linear regression plots (Fig. 3) were used to describe the
correlation (Pearson correlation and coefficient of deter-
mination) of net flow within the different techniques
(two-dimensional versus four-dimensional phase con-
trast velocity encoding).

Bland—Altman plots (Fig. 4) were used to describe the
agreement of ascending aorta net flow within the differ-
ent techniques (two- versus four-dimensional phase con-
trast velocity encoding) as well as the interobserver
variability of the four-dimensional net flow.

The individual percentage difference was defined as
the individual difference between two measurements di-
vided by their mean and multiplied by 100.

Differences between two- and four-dimensional flow
analyses by each observer and interobserver differences
were tested by Student’s ¢ test for paired variables. Statis-
tical significance was set at p < 0.05.

Results

Bicuspid aortic valve group data

A tendency of higher four-dimensional flow values com-
pared to two-dimensional flow values was found by both

observers (Fig. 3), which reached statistical significance
in observer one (p = 0.007).

The 16 patients with BAV had a median age of 26
years (range 18-44years) and a regurgitation fraction
through the aortic valve median (min-max) of 2% (range
0-7%) using two-dimensional flow analysis and of 1%
(range 0—6%) using four-dimensional flow analysis with
observer one. In observer two, median regurgitation was
0% (range 0—8%) using four-dimensional flow.

Observer one (Figs. 3 and 4) Significant difference was
found between two- and four-dimensional measure-
ments (p = 0.007). The upper and lower limits of agree-
ment in the bicuspid aortic valve group were 12 ml and
— 28 ml, respectively with a mean difference of — 8 ml
corresponding to 8% mean net flow.

Observer two (Figs. 3 and 4) No significant difference
was found between two- and four-dimensional measure-
ments (p = 0.102). The upper and lower limits of agree-
ment in the bicuspid aortic valve group were 14 ml and
— 21 ml, respectively with a mean difference of — 4 ml
corresponding to mean percentage difference of 4%.

Healthy volunteers’ data

One of the healthy subjects was accidently found to have
a helical flow pattern despite having a tricuspid aortic
valve and no clinical symptoms. He was excluded from
further analysis. The remaining 17 subjects had a
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cycle, the acquired data were fully processed for final quantification

Fig. 2 Assessment of flow was performed using the 4D-flow software. Once ROI was fully defined for each time step throughout the cardiac

median age of 25 years (range 8—42 years) and a regurgi-
tation fraction through the aortic valve median (min-
max) of 0% (0—-3%) using two-dimensional flow analysis
and of 0% (0-2%) using four-dimensional flow analysis
as recorded by both observers.

Observer one (Figs. 3 and 4) No significant difference
between two- and four-dimensional measurements was
found (p = 0.55). The upper and lower limits of agree-
ment between two- and four-dimensional measurements
in the healthy volunteers group were 21 ml and — 18 ml
respectively with a mean difference of 1 ml correspond-
ing to mean percentage difference of 9%.

Observer two (Figs. 3 and 4) No significant difference
between two- and four-dimensional measurements was
found (p = 0.93). The upper and lower limits of agree-
ment in the health volunteer’s group were 12 ml and -

13 ml respectively with a mean difference of 0 ml, corre-
sponding to mean percentage difference of 5%.

Interobserver variability and effect of post processing the
four-dimensional net flow (Fig. 4)

No significant difference was found in the four-
dimensional measurements between both observers in
the healthy volunteers’ group (p = 0.49) as well as in the
bicuspid aortic valve group (p = 0.541)

Observer one tended to have bigger four-dimensional
values; the upper and lower limits of agreement in
healthy volunteers’ group were 14ml and — 17 ml, re-
spectively, with a mean difference of — 1 ml correspond-
ing 8%. The upper and lower limits of agreement in
bicuspid aortic valve group were 19 ml and — 11 ml, re-
spectively, with a mean difference of — 4 ml correspond-
ing to 4% mean net flow.
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Fig. 3 Linear regression correlation: net flow values (ml) in the ascending aorta of both techniques by the two observers are plotted on both X-
axis and Y-axis. The X-axis represents the four-dimensional (4D) method of flow analysis while the Y-axis represents the two-dimensional (2D)
method of flow analysis in all four graphs. Graphs a and ¢ represent healthy volunteers, b and d represent patients with bicuspid aortic valve
(BAV). A line of identity (dashed) y = x is added. The regression line (solid) indicates the offset between the two methods
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Discussion

The study showed close agreement between the flow as-
sessment using standard two-dimensional phase contrast
velocity encoding through plane flow analysis and four-
dimensional flow measurements both in healthy volun-
teers and in bicuspid aortic valve patients with helical
blood flow. In Bland Altman analysis, mean differences
between both methods were maximally 9% of the mean
net aortic flow. However, there was a tendency for four-
dimensional measurements to have slightly higher flow
values in complex flow pattern. This tendency reached
even statistical significance for bicuspid aortic valve pa-
tients by one of the observers.

A similar finding was described by Nordmeyer and
colleagues [12], who described higher peak velocities in
four-dimensional values in the aortic segment when
compared to the corresponding two-dimensional segment,
assessed in patients with semilunar valve stenosis. Theor-
etically, four-dimensional flow tool should be closer to

reality than two-dimensional flow measurements because
it measures blood flow in all three vectors [13, 14], which
should be especially important in the presence of helical
flow pattern.

Important factors, which are able to cause differences
between two- and four-dimensional flow measurements,
and beyond those, the previously mentioned study by
Nordmeyer and colleagues [12], are the different iso-
centering. We think that iso-centering plays a major role
in the assessment of the four-dimensional flow measure-
ments [13]. This effect, however, is not dominant in this
study, as both in two- and four-dimensional flow mea-
surements the iso-center was placed in the ascending
aorta. It may, however, become more important, when
flow measurements from the four-dimensional data set
are performed in segments remote from the iso-center.

Many sources of errors of the four-dimensional flow may
occur in patients with complex flow pattern [15]. Most of
the previous studies had discussed those errors related to
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Fig. 4 Bland Altman plots: the Y-axis represents the individual differences of the ascending aorta net flow (ml) measurements by the two
methods; two-dimensional (2D) and four-dimensional (4D) flow analysis by the two observers (upper two rows). In the lower row Y-axis
represents the individual differences of the interobserver variability of the ascending aorta net flow measurements by the 4D method. X-axis
represents the mean. Graphs a, ¢, and e represent healthy volunteers, and graphs b, d, and f represent patients with bicuspid aortic valve (BAV)

the data acquisition during the scanning itself [15]. One of
the advantages of four-dimensional flow cardiac MRI is the
potentiality of analyzing different planes at any location
(Fig. 5) within the acquisition volume retrospectively [14].
However, the variations in segmentation and contouring
are additional sources of variance because they are operator
dependent during the post processing in the four-
dimensional measurements. In clinical practice this may
cause variability in the results even in the same institute.
The interobserver variability during the post processing of
four-dimensional flow in the current study was small and
can be neglected in clinical routine. It reached maximally
8% in healthy volunteers and 4% in complex flow by bicus-
pid aortic valve.

It is therefore paramount within the same institute to
standardize the level of contouring and segmentation of
the aorta during the post processing of the four-
dimensional flow. In the current study, the measure-
ments of the aortic flow were located at the level of the
main pulmonary artery.

Previous validation studies in healthy volunteers and
in patients with complex vascular pattern showed close
correlation between four-dimensional and two-dimensional
flow measurements [12, 16]. For instance, the study of
Nordmeyer and colleagues [12], however, used a dif-
ferent acquisition and the flow tool software yet did
not study interobserver variability in four dimensional
measurements.
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Fig. 5 Four-dimensional flow cardiac MRI analyzing different planes
within the acquisition volume retrospectively

A very recent study by Ebel et al. [17] compared the
4D flow in the BAV and HV. They studied the stability
of the 4D flow across different strength magnetic fields
(1.5 Tesla versus 3 Tesla). They found a stable perform-
ance of 4D flow MRI at 1.5T and 3 T regarding flow as-
sessment. Our study compared 2D versus 4D flows as
well as tested the source of error in the 4D flow
assessment.

Our data support, that four-dimensional flow meas-
urement, which offers a wide spectrum of new applica-
tions in congenital heart disease, produces reliable flow
measurements. Therefore, it was paramount to discuss
other potential sources of error which may occur during
post processing and/or data quantification after the scan.
This study showed that the operator-dependent error
during four-dimensional post-processing is not signifi-
cant when describing its limitations or when comparing
four-dimensional flow to the recently developing com-
puted flow dynamics.

Our study agree with the conclusion of Lewandowski
et al. [18]; efforts are required to standardize not only
the four-dimensional flow as regard the scanning param-
eters but also the post processing’s tools and reporting
the data after the scan to increase the capacity to suc-
cessfully convert from theoretical use to clinical practice.

Limitations

The limitation of the study is the small number of in-
cluded individuals. However, we have put a strict inclu-
sion criterion in order to collect a homogeneous
population with only BAV. The inclusion criteria were
chosen by cutoff values for BAV and the diameter of the
ascending aorta according to the published guidelines
[19].
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Conclusion

Inter-observer variability in four-dimensional flow as-
sessment is 8% or less which is acceptable for clinical
cardiac MRI routine. There is close agreement of two-
and four-dimensional flow tools in normal and complex
flow pattern. In complex flow pattern, however, four-
dimensional flow measurement picks up 4-9% higher
flow values. It seems, therefore, that four-dimensional
flow is closer to real flow values than two-dimensional
flow, which is however to be proven by further studies.
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