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Mianyang, China mode of secondary instability, respectively. Although the characteristics of second

Mack mode eventually lose in the downstream due to the synchronization with the
continuous spectrum, second Mack mode is found to be able to trigger a sequence of
mode resonations which in turn give birth to highly unstable secondary instabilities. In
contrast, first Mack mode does not involve in any mode synchronization. Nevertheless,
it can still jump" to a sinuous mode of secondary instability with a much larger growth
rate than that of the first Mack mode. Therefore, secondary instabilities of Gortler
vortices are highly receptive to the primary instabilities in the upstream, so that one
should consider the primary instability in the upstream and the secondary instability in
the downstream as a whole in order to get an accurate prediction of the boundary
layer transition.
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1 Introduction

Gortler instability, manifesting itself as counter-rotating streamwise vortices, is frequently
encountered in boundary layer flows over concave walls and other near-wall flows having
curved streamlines. After extensive studies on this subject, especially in incompressible
flows, the linear evolution of Gortler vortices have become well known [1-3] while recep-
tivity and breakdown mechanisms are far from being completely understood. Gortler
vortices can be excited by freestream disturbances [4—6] or wall inhomogeneities
(e.g., roughness, blowing and suction)[7-9]. With controlled inlet forcing, investigators
usually obtained a clean flow where Gortler vortices possess only a single dominant wave-
length, and almost all the stability analyses have been performed for such flows [10, 11].
In some cases, however, vortex generators can trigger the first harmonic with a com-
parable amplitude with the primary vortex. If the harmonic turns out to be linearly
unstable, then the harmonic can grow and form secondary streaks between the primary
streaks induced by the primary vortex. Secondary streaks have been reported in both
experimental and numerical studies [9, 12—-15], but the corresponding stability charac-
teristics remain unknown until quite recently. [16] have utilized blowing and suction to
numerically excite Gortler vortices in a Mach 6.5 concave boundary layer. They found
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that large-wavelength blowing and suction tends to trigger secondary streaks in addition
to primary streaks. With DNS and detailed stability analyses, they have found that the
boundary layers with secondary streaks are subject to more kinds of secondary-instability
modes with generally larger growth rates, and hence easier to transition.

At the initial stage when Gortler vortices are still small, the boundary layer is gov-
erned by primary instabilities which are somewhat modulated by Gortler vortices. Farther
downstream as the Gortler vortices develop mushroom structures, secondary instability
would be dominant. Two distinguished types of secondary-instability modes, i.e., varicose
and sinuous modes, are frequently encountered [17], and are thus of most interest. The
varicose mode possesses a symmetrical streamwise velocity distribution while the sinu-
ous mode has a antisymmetrical one. The sinuous mode was usually believed to dominate
the transition in hypersonic boundary layers [11, 18]. However, the varicose mode might
be more dangerous if considering the presence of secondary streaks and the possibilities
of the transformation of primary instabilities to secondary instabilities as revealed by [16].

Primary-secondary instability transformation, or the receptivity process of secondary
instabilities to the primary instabilities, is not only present on the concave wall. Rather,
it appears to be a common process during the boundary layer transition. Previous stud-
ies [19-21] indicate that the primary-secondary instability transfer could have at least
two routes. The first route is through continuous modulation where the mode identity
remains unchanged in the sense of local stability analysis during the transformation. In
this case, the secondary-instability mode can be traced back to one of the unstable modes
of the discrete spectrum for the otherwise laminar boundary layer in the upstream. The
subharmonic sinuous mode originating from the first Mack mode in the supersonic streak
flow identified by [19, 20] corresponds to this type. For the second route, the secondary-
instability mode originates from one of the continuous spectra of the otherwise laminar
boundary layer, but at the same time has a part of frequency region merging with the
frequency region of the primary instability in the upstream. Then due to the nonparallel
effect, the primary-instability mode might “jump” to the secondary-instability mode with
a much larger growth rate than that of the primary one. The transformation of Gortler
vortices to the secondary-instability mode of the second Mack mode in a Mach 6 flared-
cone boundary layer studied by [21] belongs to this case. In this paper, we find another
route where the primary instability could translate to the secondary instability through
mode synchronization.

Although [16] have indicated that the primary instabilities can turn into secondary
instabilities in Gortler vortex flow, the details of the transformation are unclear yet, since
they have only performed local stability analysis at a few of streamwise locations. In
this paper, extensive local stability analyses based on a spatial approach are performed
for a much larger number of streamwise locations. Plane-marching parabolized stability
equations (PSE3D), are also utilized to trace the downstream evolution of the fixed-
frequency disturbances. Moreover, DNS with a controlled forcing are also performed to
verify the results of stability theory.

2 Numerical settings and linear stability theory

2.1 Direct numerical simulations

In this subsection we briefly introduce the model and numerical settings of DNS. The
model consists of a sharp flat plate and a concave afterbody generated by a circular arc,
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as sketched in Fig. 1. The inlet of the simulation is at x = 10 mm from the leading edge,
where a similarity solution is forced. The leading-edge shock is weak (since the edge is
sharp) and far away from the boundary layer in the downstream, hence is not considered
here. No-slip and adiabatic conditions are prescribed at the wall. The wall-normal velocity
component at the wall is specified in the primary blowing-suction strip region as follows:

Vps(%,0,2,£) = Agsin® (7 (x — x1)/(x — 2)) cos(Bz), x1 <x < x3,

x1 = 56.5mm, x; = 62.6mm, (1)

where Ay is set to be 15% of the freestream velocity, B the spanwise wavenumber of the
blowing and suction. Note that large-amplitude blowing and suction is used in order to
obtain an earlier saturation state of Gortler vortices. In this paper a single blowing-suction
spanwise wavelength, i.e., 6 mm, is considered. High-frequency disturbances are forced
in the secondary blowing-suction region located between 75 mm and 78 mm if needed.

The software OPENCEFD, developed by [22], was used for the DNS. Viscous terms are
discretized with an eighth-order centred finite-difference scheme. Convection terms are
discretized with a seventh-order weighted essentially non-oscillatory (WENO) scheme
for transition simulation and with a seventh-order upwind scheme for laminar simula-
tion where Gortler vortices do not break down. The transitional simulation is focused
on the breakdown process of Gortler vortices, whereas the laminar simulation is per-
formed to provide the base flow for stability analyses and validation of stability theory
(see the Appendix A). The detailed simulation setting can be found in Table 1. A
third-order total variation diminishing-type Runge—Kutta method is used for the time
stepping. The physical domain is resolved by 1000 x 201 x 150 grid points in the
streamwise, wall-normal and spanwise directions, respectively, giving a total of 30 mil-
lion points. The grid resolution is found to be sufficient for subsequent stability
analyses.
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Fig. 1 Sketch of the concave wall and coordinates. Also shown are the nonlinear evolutions of Gortler
vortices in the laminar simulation (0< z <12 mm) and in the transitional simulation (12< z <24 mm)
through a sequence of cross sections ranging from x = 65 mm to x = 320 mm with a step of 28 mm. The
contours are coloured by the streamwise velocity
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Table 1 Certain numerical settings for the transitional simulation and the laminar simulation

cases scheme primary secondary

for convection terms blowing-suction strip blowing-suction strip
Transitional simulation 7th WENO 15% U,, steady 2%, random
Laminar simulation 7th upwind 15% U, steady 0.002%, single frequency

2.2 Local stability analysis: BiGlobal method
We consider the stability characteristics in a cross-section by decomposing the flow field
as follows

q&,n,z,t) = g, 2) + q(n, 2) exp (i — iwt) + c.c., (2)

where g = (u,v,p, T,w), q the basic states, g the shape function of the disturbances. «
represents the streamwise wavenumber.  is the angular frequency with the correspond-
ing dimensional frequency denoted by f. After substituting the above decompositions into
the Navier—Stokes equations, subtracting the basic states and neglecting the non-parallel

and nonlinear terms, one obtains the eigenvalue problems as

0 1 q 1 0 q
— 3
(—A(n,Z) —B(n,Z)) (aé) ¢ (0 C(w)) <a31) ©

for the spatial approach where « is to be solved with w given. The growth rate is -¢; (the
imaginary part of ). Dirichlet boundary conditions are forced for all the variables at wall
and infinity, except for the temperature disturbances at wall where Neumann boundary
condition is used in consistence of DNS. A, B3 and C are linear operators, of which the
wall-normal differentials are discretized using the fourth order finite difference scheme.
Thanks to the symmetry of the base flow and eigenfunctions, we only need to consider
half of the spanwise wavelength, and apply Fourier cosine and sine collocation schemes
[23] for symmetrical and antisymmetrical eigenfunctions, respectively. The eigenvalues
are then determined by using Arnoldi’s method.

2.3 Marching stability analysis: PSE3D method

In contrast to the local stability analysis introduced above, PSE3D incorporate initial con-
ditions and nonparallel effects. In the PSE3D formulation, the disturbance is decomposed
into a rapidly varying wave-like part and a slowly varying shape function as follows

q(,n,z,t) = q(&,n,2) +q(&,n,2) exp (ifsadé - iwt) +cc., (4)

where §(&, 7, z) is assumed to vary slowly with & so that 324/9&2 <« 1. Substituting (4)
into Navier-Stokes equations, and negecting nonlinear terms as well as higher derivatives
of g with respect to «, yields linear PSE3D equations as
95

9 _,

0

Where £ and M are linear operators discretized by the same schemes as used in

Lq+ M (5)

BiGlobal. Equations (5) are solved using backward Euler method with the initial profiles
provided by BiGlobal. To avoid the ambiguity in the &-dependence between g and «, the
wavenumber at each station was updated as

1 dir .00 ., 0%
OlnewZOlOld—i*//ﬁ ﬁ*l+v*l+w*l dndz, (6)
EJ, ). 0§ i3 3
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where

E= [ [ 50a? + 152 + 1) dnds )
zJn

and the asterisk denotes the complex conjugate. This iteration continued until the latest

change was less than 107°. Note that the streamwise curvature has been included in the

linear operators of both BiGlobal and PSE3D.

3 Results and analysis

Nonlinear evolutions of Gortler vortices in the laminar simulation and the transition
simulation are both shown in Fig. 1. It can be seen that the wave profiles initiated by
blowing and suction evolve into mushroom structures in the downstream. In addition to
the primary streaks developed right downstream of the blowing region (v5s > 0, see the
function 1), secondary streaks also emerge downstream of the suction region (v5s < 0).
According to the previous study by [16], the Gortler vortices would reach saturated at
around 250 mm. Further downstream, the mushroom structures persist in the laminar
simulation while break down in the transitional simulation, as illustrated in Fig. 1.

3.1 From the primary instability to the varicose mode of the secondary instability

At first, we examine how the primary instabilities evolve in the Gortler vortex flow with
PSE3D. The base flow is chosen to be the time-averaged flow field of the transitional simu-
lation so that the PSE3D results can be compared with the DNS results. Figure 2(a) shows
the streamwise variations of growth rates of varicose modes with various frequencies. For
simplicity, we denote the varicose modes originated from the first-mode instability and
the second-mode instability as first-varicose modes and second-varicose modes, respectively.
It is found that the second-varicose modes are dominant with the peak frequency of 135
kHz (the red line), while the most amplified component of the first-varicose modes is of
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Fig. 2 (a) Evolution of growth rates of varicose modes obtained by PSE3D for various frequencies ranged
from 35 kHz to 165 kHz with step of 10 kHz. The arrow indicates the increasing direction of frequency. The
solid lines represent the second-varicose modes, while the dashed lines represent the first-varicose modes.
The thick lines denote the largest components of the first- and second-varicose modes. (b) Comparison of
spectra obtained by DNS (the transitional simulation) and PSE3D at x = 289 mm. The spectrum of DNS is
obtained by Fourier analysis of the time series at the largest root-mean-square (rms) point in the center line
of the primary streak, which is believed to be contributed by only varicose modes. The peak value of the
PSE3D results is fixed to be equal to that of the DNS results. The spectrum obtained by the classical PSE (not
accounting for the spanwise variations of the mean flow) for the laminar boundary layer (i.e., in absence of
Gortler vortices) is also shown (black lines). The solid black line and dashed black line stand for the planar and
oblique results (with the spanwise wavelength of 6 mm), respectively. Note that the dashed-line results have
been magnified by ten
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95 kHz (the green line). After being at a moderate level for a long term, the growth rates
of second-varicose modes experience a rapid increase when the Gortler vortices become
saturated (250 mm). The rapid growth of the amplification rates indicates the appear-
ance of secondary instability. It is interesting to note that for second-varicose modes the
primary-instability growth rates (i.e., the growth rates before 250 mm) are more sensi-
tive to frequency than the secondary-instability growth rates. This observation indicates
that the second-mode instability in the upstream, rather than the secondary instability
in the downstream, determines the final spectrum of the second-varicose modes. This
statement is further supported by the fact that the spectrum at x = 289 mm for the
laminar boundary layer (black line) is close to that for the Gortler vortex flow, as shown
in Fig. 2(). The latter shifts to a slightly higher frequency region due to the secondary-
instability effects. In contrast, the growth rates of first-varicose modes vary remarkably
with frequency, implying that the secondary instability plays an important role in shaping
the spectrum of the first-varicose modes. This explains why the first-varicose spectrum
for the Gortler vortex flow is completely different with that for the laminar case (dashed
black line in Fig. 2()). The spectrum predicted by PSE3D is further compared with that
obtained by DNS. The agreement is excellent, considering that PSE3D has neglected the
receptivity process by assuming the same initial amplitude for each component.

In order to further understand the transformation process of primary-secondary insta-
bility, we consider the frequency component, 135 kHz, in detail, with spatial BiGlobal
method. The mode traces are shown in Fig. 3. The results are based on the laminar simu-
lation, hence the Gortler vortices do not break down and the secondary-instability growth
rates do not rapidly decrease at last as in the transition simulation. It can be seen that mul-
tiple unstable modes will emerge in the downstream and they are denoted as “V1, V2, ...,"
according to the order in which they appear. In particular, mode V1 is found to originate
from the planar second-mode instability, while others can be traced back to continuous
spectra.

The most interesting feature is that mode V1 would trigger a series of mode resonations
at synchronization regions (denoted as R1 through R5) where two modes have close phase
velocities. As suggested by [24], exact synchronization point (usually a complex Reynolds
number) can be determined by solving the equation below

(M, da) = f / $HG dndz = 0, ®)
nJz

where ¢ = (3,29), ¢, and H are the eigenfunction, the eigenfunction of the adjoint
problem and the linear operator of the right hand of Eq. (3), respectively. The upscript *
denotes the conjugate part. For real Reynolds numbers or real streamwise locations as in
our case, it is convenient to define “S factor" as follows to indicate the synchronization
degree,

o (Mo o

@6V @ar Pa)

Smaller § means higher degree of synchronization, or in other words that the mode is
closer to synchronization. Evolution of S factors for modes V1, V2, V3 and V6 are shown
in Fig. 3(c). It can be seen that the synchronization regions as labeled in Fig. 3(a,b) coin-
cide with the valleys of S factors. In particular, when two modes are synchronized, their
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Fig. 3 BiGlobal results showing traces of different varicose modes with frequency of 135 kHz, (a) phase
velocities, (b) growth rates and (c) S factor. The star, %, depicts the neutral location where the mode becomes
unstable. The solid line represents the PSE3D results initiated by mode V1. Mode synchronization regions are
indicated by dashed circles. The black line denotes the continuous spectrum and the grey region depicts the
nearby stable modes

S factors both nearly reach a minimum. This observation is consistent with the definition
of S factor which plays as an indicator of synchronization.

Mode resonations might lead to rapid changes of phase velocities, growth rates as well
as mode shapes (see also Fig. 4). For region R1, the evolution trends of growth rates of
modes V1 and V2 change to the opposite during the mode synchronization. Meanwhile,
mode V2 gradually possesses a notable distribution below the relative sonic line, a typical
characteristic of the second-mode instability which mode V1 eventually loses in contrast,
as shown in Fig. 4(a, b). In that sense, synchronization in R1 seems to lead to a mode
exchange. For the sake of continuous evolution, we still refer to the black symbols and red
symbols as mode V1 and mode V2, respectively. Further downstream, mode V2 meets a
continuous spectrum (which is likely the vortex/entropy spectrum modulated by Gortler
vortices) and soon departs with the second-mode characteristics lost. On the other hand,
mode V1 successively synchronizes with the secondary-streak mode V3 (whose mode
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Fig. 4 Normalized mode shapes (temperature eigenfunctions) variations during mode synchronization: (a)
mode V1 and (b) mode V2 in region R1, (€) mode V1 and (d) mode V3 in region R3, and (¢) mode V1 and

mode V2 in region R4. The Roman numbers denote the locations upstream from, right in and downstream

from the synchronization point. The streamwise locations (mm) are indicated in the title of the figures

shape mainly locates at the secondary streak) in region R3 and again with mode V2 in
region R4. Synchronization R3 notably enhances the instability of mode V3 while reduces
the growth rate of mode V1. Downstream from region R3, secondary instabilities manifest
themselves as indicated in PSE3D results. Mode resonation in R4 stabilizes mode V1,
but promotes mode V2. The abrupt changes of phase velocities and mode shapes (shown
in Fig. 4(e,f)) indicate that synchronization R4 also causes a mode exchange like R1. In
contrast, the mode shapes of modes V1 and V3 (Fig. 4(c, d)) remain essentially the same
after crossing region R3, indicating no mode exchange occurs there.

At last, modes V2 and V6 are in synchronization in region R5. Apart from perturba-
tions on the phase velocities and growth rates (especially for mode V6), synchronization
results in notable changes of eigenfunctions for both modes. As shown in Fig. 5(a, b),
mode V2 and mode V6 are both strengthened in the shoulder region of the primary mush-
room structure after synchronization. The real parts of the mode shapes (Fig. 5(c, d))
further reveal that isolated lobes emerge and form a nearly closed loop. Such multiple-
lobe structures resemble the shape functions of amplified eigenmodes of the Batchelor
vortex (i.e., trailing line vortices) (see, e.g., [25]). This similarity is not surprising, since
the Gortler vortices, with being continuously lifting up due to the self-induction of the
counter-rotating vortex rolls, would behave more like the free trailing line vortices in the
downstream. The change of mode shape can be further illustrated when considering the
streamwise periodicity of the mode, as shown in Fig. 5(e, f). It can be seen that after syn-
chronization the upper and lower parts of the shape function of mode V2 are strongly
stretched to form hairpin-like structures, while the backward inclined structures of mode
V6 are up elongated to form a helical structure.

In deed, helical structures seem to be one of dominant structures in the fully developed
Gortler vortices, as shown in Fig. 6. One can easily observe that the first four modes,
i.e.,, modes V7, V2, V6 and V5, all exhibit helical structures. Since helical structures often
emerge with the helical modes of instability identified in trailing vortices flows, these four
modes might be classified as helical modes. The other three modes either concentrate
in the inner part of the mushroom structure (modes V1 and V4) or in the top of the
secondary streak (mode V3), and hence can be referred to as inner modes and secondary-
streak mode, respectively.
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Fig. 5 The mode shapes of mode V2 (g, ¢,e) and mode V6 (b, d, f) in the upstream (i, x = 286 mm) and
downstream (ii, x = 299 mm) from region R5. The first row denotes the (normalized) absolute part of the
temperature eigenfunctions, the second row the real parts, the third row the spatial structures depicted by
temperature isosurfaces with value of £50% of the maximum

The PSE3D results initiated by mode V1 (or modulated second Mack mode) are also
shown in Fig. 3. It can be seen that the modulated second Mack mode initially follows
the evolution of mode V1, then takes the route of mode V3 after passing region R3, and
departs at around x = 270 mm due to effects of other unstable modes. In other words,
the disturbances in the upstream tend to take a most dangerous route so that they can
get the largest amplification. It needs to be noted that the disturbances in the secondary-
instability stage should be viewed as a combination of several unstable modes rather than

Fig. 6 The spatial structure (depicted by temperature isosurfaces with value of £50% of the maximum) of
unstable modes shown in the order of decreasing phase velocities at x = 319 mm: (@) mode V7, (b) mode V2,
(€) mode V6, (d) mode V5, (€) mode V1, (f) mode V3, (g) mode V4
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a single mode, since a few of unstable modes possess comparable growth rates in that
stage.

The traces of the first-varicose mode of 95 kHz have also been calculated (not shown
here), and the results are qualitatively similar with those of the second-varicose mode. In
particular, mode synchronization like R3 also occurs right before the saturation of Gortler
vortices. However, it appears too weak to cause a remarkable promotion of instability, as
is consistent with the growth rates evolution predicted by PSE3D shown in Fig. 2(b).

3.2 From the first-mode instability to the sinuous mode of the secondary instability

We further consider the transformation from the first Mack mode to the sinuous mode of
secondary instability. The frequency is chosen to be equal to 95 kHz, the components of
which are shown to be most amplified for the sinuous-mode instability by [16]. In contrast
to the varicose-mode case above, only two significantly unstable modes, i.e., mode S1
and mode S2, exist in this case and no prominent mode synchronization is observed, as
shown in Fig. 7. Mode S1 traces back to the first Mack mode, whereas mode S2 emerges
atx ~ 220 mm with lower phase velocities and higher growth rates than mode S1. PSE3D
results show that the disturbances forced by mode S1 at inlet initially follow the route of
mode S1, then quickly deviate towards the route of mode S2 when mode S2 appears, and
roughly remain in that route after x > 270 mm. Therefore, the disturbances also tend to
take the route with largest amplification rates as in the above case.

4 Discussion

Indeed, mode synchronization also exists in laminar hypersonic boundary layers (in
absence of Gortler vortices), and is shown to play a key role in the receptivity of primary
instabilities [24, 26]. According to the theory of [24], the normal mode decomposition
is not valid near the synchronization region and local method like the multiple-mode
method should be used to reveal the details of modal interactions (nonparallel effects
in nature). In our case, mode synchronization generally involves two two-dimensional
unstable modes rather than two one-dimensional stable (or one stable and the other
unstable) modes in the laminar case. Nevertheless, the local behaviors of mode synchro-
nization in both cases are similar and are likely described by the same mechanism.
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Fig. 7 PSE3D results showing the evolution of phase velocity (@) and growth rate (b) for the first-sinuous
mode with frequency of 95 kHz. The BiGlobal results are indicated by the symbols
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Here, we only present results on Goértler vortices with secondary streaks. Although
secondary streaks are frequently encountered in practically triggering Gortler vortices
as introduced in the Introduction, whether such primary-secondary instability trans-
formation exists in Gortler vortices without secondary streaks still requires further
investigation. Here we could make several notes about this issue. Firstly, mode synchro-
nization is sensitive to the changes of base flow as shown in [24]. Therefore, secondary
streaks would surely play an important role in the primary-secondary instability trans-
formation especially for the second-varicose case. In that case, mode V3 no longer exists
if the secondary streaks are eliminated, and consequently synchronization R3 as well as
the following ones might also disappear. On the other hand, synchronization R1 might
not be qualitatively affected since it is between the planar and oblique components of
second-mode instability. As a result, the planar second-mode components might still
merge with a continuous spectrum, while the oblique second-mode components would
be moderately enhanced like the case studied by [27] as it travels downstream.

5 Conclusions

In this paper, we have shown that the second Mack mode can trigger secondary instability
through a sequence of mode synchronization, while the first Mack mode can “jump” to a
new type of secondary-instability mode with a much larger growth rate. Our results con-
firm the speculation of [16] that the second Mack mode can “continuously” develop into
the varicose mode of secondary instability while the first Mack mode would transfer to
the sinuous mode of secondary instability through a phase velocity jump. As a byproduct,
we also show that hairpin structures can develop from varicose modes through mode
synchronization without sorting nonlinear effects for help.

Appendix A

Cross validation of PSE3D and DNS results

In the laminar simulation, two-dimensional blowing and suction with frequency of 135
kHz and three dimensional blowing and suction with frequency of 95 kHz are utilized
to excite the varicose mode and the sinuous mode in the downstream, respectively. The
evolution of the mode amplitude, defined as the maximum amplitude of temperature

(a)10° (B) 10°
8 107 107
2

2

£

<

S
N

100 150 200 250 300 350 100 150 200 250 300 350
x (mm) x (mm)
Fig. 8 Comparison of amplitude evolutions from DNS and PSE3D results for (a) the varicose mode of 135 kHz

and (b) the sinuous mode of 95 kHz. The amplitude is defined as the maximum of the temperature
disturbances




Chen et al. Advances in Aerodynamics (2019) 1:19 Page 12 0f 13
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Fig. 9 Isolines of normalized temperature disturbances of the varicose mode of 135 kHz (g, b) and the
sinuous mode of 95 kHz (¢, d) at various streamwise locations obtained by DNS (g, ¢) and PSE3D (b, d),
together with the base flow (dashed lines). Critical layer (dashed red) and relative sonic line (dash-doted
black) are also plotted in the row (b). The Roman numbers denote the streamwise locations (i) 136 mm, (i)
167 mm, (i) 197 mm, (iv) 228 mm, (v) 258 mm, (vi) 289 mm, (vii) 319 mm

disturbances, are shown in Fig. 8, together with the PSE3D results. For both cases, PSE3D
results and DNS results are in excelent agreement.

The downstream evolutions of the mode shapes obtained from PSE3D and DNS results
are shown in Fig. 9. Again, good agreement can be observed. The varicose mode shape
initially exhibits a notable distribution below the relative sonic line, which is a prominent
feature of the second Mack mode. Due to the increasing modulation of Gortler vortices,
the near-wall components gradually disappear and the temperature disturbances concen-
trate in the vicinity of critical layer. This is different with the cross-flow case where second
Mack mode seems to persist in its characteristic in the secondary-instability stage of the
crossflow vortices as shown in [28].
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