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Abstract

Ensuring confidentiality of sensitive data is of paramount importance, since data leakage may not only endanger data
owners’ privacy, but also ruin reputation of businesses as well as violate various regulations like HIPPA and
Sarbanes-Oxley Act. To provide confidentiality guarantee, the data should be protected when they are preserved in
the personal computing devices (i.e., confidentiality during their lifetime); and also, they should be rendered irrecoverable
after they are removed from the devices (i.e., confidentiality after their lifetime). Encryption and secure deletion are used
to ensure data confidentiality during and after their lifetime, respectively.
This work aims to perform a thorough literature review on the techniques being used to protect confidentiality of the
data in personal computing devices, including both encryption and secure deletion. Especially for encryption, we
mainly focus on the novel plausibly deniable encryption (PDE), which can ensure data confidentiality against both a
coercive (i.e., the attacker can coerce the data owner for the decryption key) and a non-coercive attacker.
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Introduction
Modern computing devices (e.g., desktops, laptops, smart
phones, tablets, wearable devices) are increasingly used
to process sensitive or even mission critical data. Protect-
ing confidentiality of those sensitive data is of paramount
importance because: First, data leakage will endanger data
owners’ privacy. For example, the data leakage of iCloud
in 2014 disclosed almost 500 private pictures of various
celebrities (Cbsnews: Apple’s celebrity icloud leak proba-
bly has mundane causes 2014). Second, it will ruin repu-
tation of businesses. For example, Equifax data breach in
July 2017 caused a leak of 145,500,000 consumer records; a
few local governments like cities of Chicago and San Fran-
cisco, as well as the Commonwealth of Massachusetts,
have filed enforcement actions against Equifax (Ballard
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Spahr LLP: State and local governments move swiftly to
sue equifax 2017); Third, it will directly violate regulations
like HIPAA (Congress 1996), Gramm-Leach-Bliley Act
(Congress 1999), and Sarbanes-Oxley Act (Sarbanes and
Oxley 2002). The data confidentiality should be ensured
not only during their lifetime (i.e., the data are preserved
in the devices), but also after their lifetime (i.e., the data
have been removed from the devices). This is because,
by recovering sensitive data which have been deleted, the
attacker can achieve a similar gain compared to success-
fully attacking the confidentiality of the data being pre-
served in the devices. For example, by recovering a naked
picture deleted by a victim, the adversary can still use it to
embarrass the victim or ask the victim for ransom money.
Correspondingly, the research efforts for protecting

data confidentiality can be divided into two categories:
encryption and secure deletion. Encryption can protect
confidentiality of the data stored at rest by transform-
ing them into another format using some secrets (e.g.,
keys), such that the adversary is not able to correlate
the transformed format to the original format without
obtaining the secrets. All types of existing encryption
mechanisms like symmetric encryption and asymmetric
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encryption can achieve the aforementioned security prop-
erty. Secure deletion is to ensure that once the sensitive
data are deleted, the probability of recovering them is
negligibly small. This requires special techniques to com-
pletely destroy data, eliminating any traces whichmay lead
to a full/partial data recovery.
To protect confidentiality of the data stored in a com-

puting device, conventional encryption may not work
when both the computing device and the device’s owner
are captured by an attacker, since the attacker can coerce
the owner to disclose the secret (i.e., a coercive adver-
sary). Once the secret is disclosed, the transformed format
created by encryption will be reversed, and the sensitive
data will be leaked. A novel encryption technique, plau-
sibly deniable encryption (PDE) (Canetti et al. 1997), has
been designed to complement the traditional encryption
to handle such a coercive attack. The high-level idea of
PDE is, the original sensitive message is encrypted into
ciphertexts in a special way, such that during decryption,
if a true key is used, the original sensitive message can
be recovered, but if a decoy key is used, a plausible mes-
sage will be generated. Therefore, upon being coerced,
the owner can simply disclose the decoy key to protect
confidentiality of the original sensitive message.
To protect confidentiality of the data deleted from

a computing device, the deleted data should be made
completely unrecoverable. Conventionally, this is ensured
by carefully over-writing the storage medium storing
the data using garbage information (Joukov and Zadok
2005; Wei et al. 2011; Garfinkel and Shelat 2003; Sun
et al. 2008; Gutmann 1996) or deploying encryption
using ephemeral keys (Perlman 2005a, b, Geambasu
et al. 2009, Tang et al. 2012, Reardon et al. 2012, Zarras
et al. 2016). This unfortunately was shown to be insuf-
ficient, since past existence of the deleted data will cre-
ate impacts on both the data organization (Bajaj and
Sion 2013b) and the other data which have not been
deleted (Bajaj and Sion 2013a). Those impacts can then
be utilized by the adversary as an oracle to derive sen-
sitive information about the deleted data. In the worst
case, the adversary is able to completely recover the data
being deleted (Chen et al. 2016). Therefore, recent secure
deletion approaches focus on eliminating those impacts
(Bajaj and Sion 2013a, b, Chen and Sion 2015; Chen and
Sion 2016; Jia et al. 2016).
In this work, we aim to conduct a thorough literature

review on data confidentiality protection. We believe that
data confidentiality should be always ensured no mat-
ter the data are preserved in the computing device or
have been removed. Therefore, our survey covers tech-
niques being used to protect data confidentiality for both
cases: 1) data are stored in the devices; 2) data have been
removed from the devices. For the first case, we mainly
focus on PDE which can provide confidentiality guarantee

against both the coercive adversaries and the non-coercive
adversaries. We summarize the research for PDE the-
ory and systems (including both the desktop systems and
the mobile systems). For the second case, we summa-
rize secure deletion approaches in various storage media
including hard disk drives (HDDs) and NAND flash mem-
ory. We also outline the new direction of secure deletion
approaches by eliminating impacts of operation history.

Organization. In “Background” section, we introduce
the background knowledge of flash memory, the architec-
ture of a storage system, PDE as well as secure deletion.
In “Models and assumptions” section, we unify the adver-
sarial model for both PDE and secure deletion, and also
summarize the assumptions required by PDE. We then
summarize the literature for PDE in “Protecting data con-
fidentiality against coercive adversaries via PDE” section
and for secure deletion in “Ensuring confidentiality of
the deleted data via secure deletion” section, respectively.
In “Future directions” section, we discuss a few future
directions of PDE and secure deletion. We conclude in
“Conclusion” section.

Background
Flash memory
Flash memory is a solid-state non-volatile computer stor-
age medium that can be electrically erased and repro-
grammed. It can eliminate mechanical limitations and
latency of hard drives, achieving a much higher I/O
throughput with a much lower power consumption.
Therefore, it gains popularity in main-stream mobile
devices like smart phones, tablets, wearable devices. In
addition, a lot of high-end laptops like AppleMacBook use
flash memory as external storage. Even cloud providers
allow their users to choose solid state drives (SSDs) as
the underlying storage media (Amazon: New SSD-Backed
Elastic Block Storage 2016). The flash memory being used
as the storage medium is mainly NAND flash. NAND
flash stores data using an array of memory cells, which are
grouped into pages (each page can store 512-byte, 2KB,
or 4KB data), and multiple pages are further grouped into
blocks (can contain 32, 64, or 128 pages).
Compared to traditional mechanical disks, NAND flash

has several unique characteristics. First, NAND flash has
an erase-before-write design. Specifically, to overwrite
a flash page, the page needs to be erased before any
new data can be programmed to it. Second, the unit of
read/program of NAND flash is a page, but the unit of
erase is a block, which consists of multiple pages. The
first and the second special characteristics of NAND flash
make it expensive to perform an in-place update. There-
fore, flash memory usually prefers an out-of-place update.
Third, each flash block has a finite number of program-
erase (P/E) cycles. In other words, a flash block will be
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worn out if the number of programs/erasures performed
over it exceeds a certain threshold. Last, NAND flash is
vulnerable to read/program disturb (Cai et al. 2015). In
other words, frequently reading/writing the same flash
location may corrupt the data stored nearby. Due to
read/program disturb (Cai et al. 2015), NAND flash usu-
ally requires computing an error-correcting code (ECC)
for each page, and storing the parity in the “spare area” of
the corresponding page. In general, the raw flash can be
managed through either flash translation layer (FTL) or
flash-specific file system.

– Flash translation layer. To be compatible with
traditional block-based file systems (e.g., EXT4), flash
memory can be emulated as a block device by
exposing a block-based access interface, which is the
most popular form of flash-based products (e.g.,
SSDs, eMMCs, USB sticks). This is usually achieved
by introducing special firmware, flash translation
layer (FTL), between the file system and the raw flash.
FTL can translate the logical block addresses to the
underlying physical flash addresses, providing a block
access interface to upper layers.

– Flash file systems. Another alternative of using raw
flash is to directly build a flash-specific file system
over it. A flash file system is a file system optimized
specifically for flash memory. Popular flash file
systems include YAFFS (Robust Flash Storage:
YAFFS 2002), UBIFS (Memory Technology Devices:
UBIFS 2015), JFFS2 (Sourceware: Jffs2 2003), and
F2FS (Lee et al. 2015). Note that flash file systems
become less popular nowadays. Most of the recent
mobile devices are only designed to be compatible
with FTL-based flash devices, and usually do not
allow directly accessing the raw flash. For example,
the Google Nexus 6P Android phone uses eMMC
cards as storage media, and only the old Android
phones like Nexus One and Nexus S allow directly
accessing the raw flash.

Special internal management (being incorporating into
FTL or flash file systems) is usually required to han-
dle the characteristics of flash memory, which may easily
lead to deniability compromise or data leakage, making
it challenging to provide deniability/secure deletion on
flash-based storage systems.

The architecture of a storage system
The storage media like magnetic HDDs and NAND flash
are usually managed through a storage system, which is
organized into a few layers. The layers interact with each
other, and provide users a unified interface to access the
data being stored in the storage media. Figure 1 shows a
typical architecture for storage systems.

Fig. 1 The architecture of storage systems

The lowest layer is the physical medium layer, where
data are actually stored, e.g., HDDs or NAND flash. The
physical storage medium is always accessed through a
controller. The basic function of the controller is to trans-
late data format on the physical storage medium (e.g.,
electrical voltage) into another format (e.g., binary values)
understandable by upper layers. The controller offers a
standardized and well-defined hardware interface, e.g.,
ATA (Team work systems: Advanced technology attach-
ment 2017) and SCSI (Incits: Scsi storage interfaces 2016),
which allows data to be read from/written to the physical
storage medium. The HDD adopts in-place updates, and
hence its controller usually consistently maps a logical
block address to a certain storage location on the physical
storage medium. On the contrary, NAND flash prefers
out-of-place updates due to its special features, and is usu-
ally managed through FTL or a flash specific file system
(“Flash memory” section). Device drivers are to consol-
idate access to different types of hardware by exposing
a common simple interface in the form of software. The
block device driver interface allows reading and writing
of blocks in logical addresses. The block device driver can
be used on top of an HDD control or NAND flash being
encapsulated by FTL. The memory technology device
(MTD), another type of device driver, is used to access
raw NAND flash memory directly. MTD permits reading
and writing, but blocks must be erased before being
written, which occurs at a large granularity. Unsorted
block images (UBI) is another interface for accessing
flash memory, which builds on top of MTD interface and
simplifies some aspects of using raw flash memory.
File systems are responsible for organizing logical

sequences of data among the available blocks on the
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physical storage medium through the interface provided
by the device driver. These include: 1) block file systems
built on top of block device, e.g., FAT32, EXT4, and NTFS;
2) flash file systems built on top of MTD device, e.g.,
YAFFS (Robust Flash Storage: YAFFS 2002); 3) UBI file
system (Memory Technology Devices: UBIFS 2015) built
on top of UBI device.
The highest layer is the application layer, offering an

interface to the users.

Plausibly deniable encryption (PDE)
Conventional encryption is broadly used by individuals
and businesses to protect sensitive data. Major operat-
ing systems now increasingly support the use of full disk
encryption. For example, FileVault (Apple: Use filevault to
encrypt the startup disk on your mac 2017) in Mac OS
X 10.3 and later, BitLocker (Microsoft: Bitlocker 2017) in
Windows Vista and later, full-disk encryption in Android
4.4 and later, etc. However, traditional encryption may
not work when data owners are captured by the adver-
sary and coerced into disclosing their decryption keys. To
protect sensitive data against this type of coercive adver-
saries, plausibly deniable encryption (Canetti et al. 1997;
Dürmuth and Freeman 2011; Howlader and Basu 2009;
Ibrahim 2009; Klonowski et al. 2008; Meng and Wang
2009; 2010; O’Neill et al. 2011) (PDE) can be utilized to
hide the sensitive data by denying their very existence. Dif-
ferent from conventional encryption, PDE encrypts origi-
nal sensitive message into ciphertexts in such a way that,
upon decryption, if a true key is used, the original sensi-
tive message can be recovered, but if a decoy key is used, a
plausible message will be generated. When being coerced,
the victim can simply disclose the decoy key. Using the
decoy key, the adversary is able to decrypt the cipher-
text into the plausible message which is non-sensitive,
and is hence convinced that no sensitive information
is stored.

Secure deletion
Secure deletion is a technique designed to ensure com-
plete elimination of sensitive data once they become obso-
lete. It requires a guarantee that an adversary should
neither recover the deleted data, nor learn anything about
them. However, achieving such a guarantee in modern
computing systems is a challenging task due to the com-
plication of the storage systems (“The architecture of a
storage system” section). Amodern storage system usually
consists of multiple layers, and performing secure dele-
tion in one layer is usually not able to eliminate the data,
since data leakage may be observed in other layers. For
example, given a Microsoft Word document, removing
data from the document itself cannot guarantee that the
deleted data really become inaccessible. Upon receiving a
delete request issued by Microsoft Word (which belongs

to the application layer), the system may simply mod-
ify the metadata in the file system layer (e.g., changing
the block allocation table and invalidating the data being
deleted) to make the data appear to have been removed
in the application layer. However, the actual content is
still preserved in the physical storage medium layer and
may be recovered by the adversary through disk foren-
sics (Breeuwsma et al. 2007; Garfinkel and Shelat 2003).
Therefore, secure deletion requires ensuring that the con-
tent being deleted should become inaccessible at each
layer of the storage system.
In addition, the past existence of the deleted data may

leave artifacts in the data organization (Bajaj and Sion
2013b) or side effects on the other data (Bajaj and Sion
2013a). After the data have been deleted, those artifacts or
side effects may be utilized by the adversary to learn sen-
sitive information of the deleted data (Chen et al. 2016).
This also creates a barrier towards completely removing
sensitive information.

Models and assumptions
A unified adversarial model for PDE and secure deletion
We unify the adversarial model for both PDE and secure
deletion by considering a snapshot adversary who can
have access to the state of a victim device. The adversary
is assumed to be not able to control the code of the victim
system, i.e., no malicious code can be injected and hence
the code of the victim system is secure. Each access will
allow the adversary to obtain a full snapshot of both the
external storage and the memory. The adversary is com-
putationally bounded, and tries to illegitimately derive
sensitive information from the snapshots being captured.
We consider that the adversary can have access to the
victim device once (i.e., a single-snapshot adversary) and
multiple times (i.e., amulti-snapshot adversary).
The single-snapshot adversary captures a lot of real-

world scenarios. For example, an attacker steals a smart
phone (Yu et al. 2014; Chang et al. 2015) or a laptop, or
breaks into a data center obtaining a snapshot of a vic-
tim server. The multi-snapshot adversary also captures a
lot of real-world scenarios. For example, an attacker peri-
odically breaks into a hotel room, obtaining a “memory
dump” of a victim’s smart phone; a border checker period-
ically obtains snapshots from a victim’s smart device (Blass
et al. 2014; Peters et al. 2015).
The only unique attack behavior for PDE is the adver-

sary may coerce the data owner for the decryption keys.
This behavior is not applicable to secure deletion, because
no key for the deleted data will be preserved after the data
have been securely removed.

The assumptions required by PDE
Since PDE systems usually require a few common assump-
tions. We summarize these assumptions in the following.
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– The PDE software should be merged into the code
stream of the device (e.g., part of the Android
framework), such that its availability is widespread,
and an attacker cannot simply compromise
deniability based on the availability of software
support. In addition, PDE requires changing a few
system components (e.g., booting process). The
adversary who can perform reverse engineering or
dynamic analysis over those components will
unavoidably compromise deniability. The PDE
systems cannot defend against this type of adversary.

– The adversary will know the design of PDE. However,
he/she does not have any knowledge on secret
information (e.g., keys and passwords) being required
to open/operate the PDE mode.

– The adversary is rational and will stop coercing the
device’s owner once he/she is convinced that the
decryption keys have been revealed.

– The adversary can not capture a device working in
the PDE mode or after a crash of the PDE mode.
Otherwise, he/she can trivially retrieve sensitive
hidden data, compromising deniability.

– The operating system, bootloader, baseband OS,
firmware are all malware-free. In addition, the PDE
mode is malware-free.

Protecting data confidentiality against coercive
adversaries via PDE
Ensuring confidentiality of the data being preserved in
personal computing devices can be achieved by encryp-
tion. However, traditional encryption cannot defend
against coercive adversaries (“A unified adversarial model
for PDE and secure deletion” section). Therefore, we
mainly focus on plausibly deniable encryption (PDE),
which can protect confidentiality of the data present in
the computing devices against both coercive and non-
coercive adversaries.

PDE – from Theory to Practice
An ideal PDE would be a special encryption, which can
encrypt sensitive plaintexts into ciphertexts, such that the
ciphertexts can be decrypted into either original sensitive
plaintexts (using true key) or plausible non-sensitive
plaintexts (using decoy key). This is to ensure that one
key can be disclosed when the data owner is coerced.
However, such an ideal encryption is impractical for stor-
age systems because: First, the existing instantiation for
PDE results in a growing size of ciphertexts (Canetti et al.
1997), which itself could be an indication of the existence
of deniability. Second, a modern storage system is usually
complicate, consisting of multiple layers, e.g., applica-
tion layer, file system layer, physical storage medium
layer (“The architecture of a storage system” section).
Simply encrypting the data using PDE in the application

layer cannot ensure that traces of the sensitive data
will not be observed by the snapshot adversary in the
underlying file system and physical storage medium layer,
especially when the sensitive data need to be updated
over time and the adversary can obtain multiple snap-
shots (“A unified adversarial model for PDE and secure
deletion” section). Therefore, when being applied to stor-
age systems, rather than simply use encryption, two types
of PDE techniques, steganography and hidden volumes,
are used to provide deniability.
The first type of PDE technique is steganography

(Anderson et al. 1998). The basic idea of steganography is
to hide sensitive data within regular file data. For exam-
ple, the sensitive data can be computed by performing
an XOR operation over a few cover files (Anderson et al.
1998). A main concern of the steganography technique is
to avoid over-writing the hidden sensitive data, since they
are actually part of the regular data. This can be mitigated
by creating and storing (secretly) multiple copies of the
sensitive data, which in return will lead to inefficient use
of disk space.
The other type of PDE technique is hidden volumes

(TrueCrypt: Free open source on-the-fly disk encryption
software.version 7.1a 2012). The hidden volumes tech-
nique works as follows: There are two encrypted volumes
on the disk, a public volume and a hidden volume. The
public volume is encrypted using a decoy key and the hid-
den volume is encrypted using a hidden key (i.e., the true
key). The public volume is placed on the entire disk and
the hidden volume is usually placed from a secret offset
towards the end of the disk (i.e., the hidden volume is part
of the public volume, see Fig. 2). Note that initially the
entire disk is filled with random data and the data written
to the public volume should be placed sequentially from
the beginning of the disk to reduce probability of over-
writing the hidden volume. When the victim is coerced
into revealing the encryption key, he/she can disclose the
decoy key, and the attacker will use the decoy key to
decrypt the entire disk and cannot distinguish the hidden
volume from the random noise being filled initially, and is
thus convinced that no sensitive data are stored. The hid-
den volumes technique can be viewed as a special type of
steganography technique, which always hides the sensitive
data in a contiguous region being placed at the end of the
disk and remains undetected by the coercive adversaries.
Leveraging hidden volumes and steganography, vari-

ous PDE systems have been built to enable deniability on
computing devices. All those works can be divided into
two categories, PDE for desktop computers and PDE for
mobile devices.

PDE for desktop computers
The existing PDE systems for desktop computers mainly
rely on steganography and hidden volumes. In a few
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Fig. 2 The hidden volumes technique

recent works, researchers also incorporate Oblivious
RAM (ORAM) in order to defend against multi-snapshot
adversaries.

PDE using steganography. Steganographic file systems
have been initially proposed by Anderson et al. (1998),
with two alternative schemes. In their first scheme, the
system has a number of cover files originally consisting of
random bits and the user’s files can be computed using
a subset of cover files. This scheme uses a password and
the file name to determine which cover files are used. Its
drawback is requiring storing a large number of cover files.
Moreover, to accommodate files of arbitrary length, the
cover files must be relatively large. Their second scheme is
based on the computational security of block ciphers. The
system is initialized by filling the entire hard disk with ran-
dom data. A sensitive file is encrypted and stored at disk
location being derived from the file name and the pass-
word, and the encryption key is also derived in a similar
manner. In this way, the adversary is not be able to dis-
tinguish blocks containing hidden data from free blocks
being filled with random noise. However, when the disk
is increasingly filled by hidden files, collision of disk loca-
tions may increase, leading to significant over-writes. This
is mitigated by writing each block to several disk locations.
Inspired by the second scheme of Anderson et al. (1998),

McDonald et al. proposed StegFS (McDonald and Kuhn
2000), an EXT2-based file system which uses an exter-
nal block allocation table to record entries for disk blocks.
StegFS supports a few security levels, each with a sep-
arate password. To prevent overwriting the data from
a security level which is closed, StegFS writes data in
a redundant manner. When multiple security levels are
open, since hidden and regular files are present in the

same file system, data leakage may occur. A user of StegFS
cannot deny the existence of hidden files, due to exis-
tence of the modified EXT2 driver and the external block
table. However, the user can keep the number of security
levels secret.
To further improve efficiency and reliability, Pang et al.

designed another steganographic file system (Pang et al.
2003; 2004). They use a bitmap to mark the blocks being
used by the hidden files, and thus eliminate the need of
storing multiple copies of a file, alleviating the reliabil-
ity issues and I/O inefficiencies. However, the adversary
may be able to identify existence of hidden files, because
the hidden blocks, being marked as used, do not pos-
sess a directory record. Three approaches are used to
mitigate the aforementioned compromise. First, a few
blocks, which do not store hidden data, are abandoned
and marked as being used during initialization. Second,
when the system creates a new file, several additional
blocks are allocated and filled with random noise. Third,
to prevent adversaries from identifying whether a block
stores hidden data, the system maintains a few dummy
hidden files and periodically updates them in the back-
ground. These mitigation approaches however, increase
overhead of disk space usage.
Zhou et al. further improved Pang et al.’s work by adding

dummy transactions to obfuscate hidden files in cloud
storage (Zhou et al. 2004). Although the reliability and
I/O efficiency have been improved, disk space overhead
remains large. Troncoso et al. (2007) presented traffic
analysis attacks on the file update algorithm proposed by
Zhou et al. (2004). Their attacks can detect file updates
and reveal existence as well as location of files. Specif-
ically, they can detect files which occupy multiple data
blocks with only two updates. Moreover, their attacks
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can also reveal files which occupy only one data block
after a sufficient number of access operations. Han et al.
proposed a dummy-relocatable steganographic (DRSteg)
file system (Han et al. 2010) to provide deniability in a
multi-user environment. By sharing dummy data among
multiple users in the system, DRSteg is able to increase
the level of deniability being provided to individual users.
In DRSteg, in order to free dummy data without destroy-
ing user data, a novel dummy relocation mechanism is
used to allow individual users to distinguish dummy data
from other users’ data. It can also prevent adversaries from
distinguishing dummy and user data even after obtain-
ing multiple snapshots. There are also a few StegFS-based
implementations including RubberhoseFS (Assange et al.
2012) andMagikfs (Varun et al. 2017), which are no longer
maintained and the existing implementations may not be
compatible with modern Linux operating system.

PDE using hidden volumes. Disk encryption tools like
TrueCrypt (TrueCrypt: Free open source on-the-fly disk
encryption software.version 7.1a 2012) and FreeOTFE
(Sourceforge: FreeOTFE A free “on-the-fly” transparent
disk encryption program for PC and PDAs 2017) use hid-
den volumes to provide plausible deniability. TrueCrypt
supports user data encryption with several ciphers includ-
ing AES, TwoFish, Serpent, and a cascade of these ciphers
in the XTS mode. The header of each TrueCrypt volume
is filled with random data (e.g., salt) or encrypted with the
header key which is derived from the corresponding pass-
word using PBKDF2. Therefore, the entire volume appears
as being filled with randomness. When TrueCrypt loads
a volume, since it does not store the cipher specifica-
tion, all supported ciphers will be tried with a header key
(being derived from the user’s password using PBKDF2)
until it decrypts the volume and obtains the ASCII string
“TRUE” from a certain block in the header. Then True-
Crypt decrypts the encrypted master volume key using
the header key. Note that the master volume key is gener-
ated randomly upon creating the volume. If a TrueCrypt
hidden volume is created, there will be also a hidden
header, which contains offset of the hidden volume. The
hidden header is tested before the public header when
mounting a volume. TrueCrypt can also create a hidden
OS in a hidden volume by creating a new partition and
copying the current OS to the hidden volume. When the
system is booted into the hidden OS, all unencrypted vol-
umes and non-hidden encrypted volumes are mounted
in a read-only manner, ensuring that any OS/application-
specific leakage stays within the hidden volume.
Czeskis et al. (2008) analyzed TrueCrypt and proposed

three types of attacks against it. They consider three
types of leakage sources: 1) the operating system; and
2) the primary applications (i.e., an application that is
used to manage hidden data); and 3) the non-primary

applications. Modern operating systems are not designed
to preserve deniability andmay performmany unexpected
behaviors. As a result, even when the operating system
runs properly, information relevant to hidden data may be
leaked. For example, some operating systems (e.g., Win-
dows) automatically create shortcuts to hidden files when
they are used, and those shortcuts may be stored in reg-
ular non-hidden directories. The shortcuts may contain
information about the hidden file, e.g., file name, loca-
tion, length, access time, creation time and even volume
serial number of the file system on which the hidden file
is stored. If the adversary localizes those shortcuts, it may
suspect existence of the hidden data, compromising deni-
ability. Another possible leakage source is the primary
application. The primary applications are not necessarily
designed to preserve deniability, andmay leak information
about the hidden data. For example, primary applica-
tions may create redundant files to prevent data loss. If
those files are not properly deleted, the content of the
hidden data may be leaked. Finally, non-primary applica-
tions, such as desktop search applications, may access the
files being stored in the hidden volume. Those applica-
tions may cache snapshots of the hidden files and store
them for a later use. The adversary may also compromise
deniability from those cached data.

Other PDE systems for desktop computers. If the
adversary can capture multiple snapshots of hidden vol-
ume at different points of time, they can detect exis-
tence of the hidden volume, by simply comparing dif-
ferent snapshots and identifying whether “free” blocks
have been changed. Therefore, TrueCrypt cannot pro-
vide deniability when facing a multi-snapshot adversary.
Blass et al. proposed HIVE (Blass et al. 2014) to allow the
user to deny existence of the hidden volume when fac-
ing a multi-snapshot attack. This is achieved by hiding
every access of the disk using Oblivious RAM (ORAM)
(Goldreich and Ostrovsky 1996; Stefanov et al. 2013),
which was originally designed to hide patterns of access to
remote storage. However, ORAM is known as expensive
in terms of both computation and I/O. Although HIVE
uses a less expensive write-only ORAM that only supports
write operations, its performance is still far from being
practical.
To improve performance of HIVE, Chakraborti et al.

proposed DataLair (Chakraborti et al. 2016; 2017). Hav-
ing observed that revealing access patterns to the public
data is unnecessary, DataLair only protects operations
on the hidden data and ensures that they are indistin-
guishable from operations on the public data. In addition,
DataLair optimizes the oblivious access mechanism being
deployed for hidden data. Compared to HIVE, DataLair
is two orders of magnitude faster in terms of public data
access, and five times faster in terms of hidden data access.
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Roche et al. designed DetWoORAM (Roche et al. 2017),
an entirely new technique for write-only ORAM, which
uses a deterministic and sequential writing pattern, elim-
inating the need of any “stashing” of blocks in local state.
In DetWoORAM, since the write will always succeed and
occur in a free block, the notion of stash can be com-
pletely removed. They also pointed out that the construc-
tion of DataLair does not satisfy write-only obliviousness,
since the process of finding free blocks leaks information
about which blocks are free, and the adversary can tell
whether recent writes have been performed on the same
address or not.
Zuck et al. presented Ever-Changing Disk (ECD) (Zuck

et al. 2017) to achieve deniable storage system. Their
design follows three requirements: 1) resistance to multi-
snapshot adversaries; and 2) ensuring that hidden data will
not be destroyed when a user is writing the public volume;
and 3) using normal system operations on public data to
disguise writes to hidden data. In ECD, the storage space is
separated into two parts: a part containing the public data
volume and the other containing the hidden data volume.
The hidden volume is visible to the system when the user
enters the secret key. ECD uses a large volume of pseu-
dorandom data to hide the sensitive data. A portion of
data from the volume are periodically migrated using nor-
mal firmware operations to obfuscate writes to the hidden
data. Since hidden and pseudorandom data blocks are
constantly relocated and modified, the hidden data may
eventually be overwritten without knowing the secret key.
To mitigate the overwrite issue, the rate of internal data
migration is controlled by the user and the user should
enter the secret key periodically.
Zhao et al. proposed Gracewipe (Zhao and Mannan

2015), by which the victim can provably destroy/erase data
when being coerced, hoping that a reasonable adversary
will find no reason to keep holding him/her. Gracewipe
works as follows: During setup, the user selects three pass-
words, which can be used to derive the key for encrypting
the corresponding volume: 1) hidden password that only

derives the hidden volume key; and 2) decoy password
that derives only the decoy volume key; and 3) deletion
password that derives the decoy volume key and over-
writes the hidden volume key. When coerced, the victim
can fake compliance, and enter the deletion password, and
then can prove to the attacker that Gracewipe has been
executed and the real key is no longer available.
Table 1 summarizes the existing PDE systems for desk-

top computers, being incorporated into different lay-
ers of the storage systems. To defend against snapshot
adversaries, they may rely on hidden volumes, steganog-
raphy, or ORAM, and provide one or multiple denia-
bility levels with different overheads. Schemes based on
steganography (e.g., McDonald and Kuhn 2000; Pang
et al. 2003) suffer from high performance overhead since
they write multiple copies of files or dummy writes
for steganography. Hidden volume mechanism (True-
Crypt: Free open source on-the-fly disk encryption soft-
ware.version 7.1a 2012) introduces low overhead since the
hidden files are stored in the free space and the over-
write problem is mitigated by linear space allocation.
Since ORAM is known to be expensive, schemes based
on ORAM (e.g., Blass et al. 2014; Chakraborti et al. 2017;
Roche et al. 2017) unavoidably have high overheads.

PDE for mobile devices
Compared to desktop computers, mobile devices are usu-
ally different in two aspects: First, they are equipped with
less computational power. Second, they usually use flash
memory (“Flash memory” section) as storage. The exist-
ing PDE systems for mobile devices can be divided into
two categories: 1) The PDE systems built on top of block
devices. This type of PDE systems views flashmemory as a
black box, which exposes a block-access interface through
FTL (“The architecture of a storage system” section).
2) The PDE systems built on top of flash memory. This
type of PDE systems directly work on top of flash memory
to provide deniability while handling the special nature of
flash.

Table 1 Summary of PDE systems for desktop computers

Scheme Method Adversary Deniable level Layer

Scheme 1 (Anderson et al. 1998) Steganography Multi-snapshot Arbitrary File system

Scheme 2 (Anderson et al. 1998) Steganography Single-snapshot Arbitrary File system

StegFS (McDonald and Kuhn 2000) Steganography Single-snapshot Arbitrary File system

StegFS (Pang et al. 2003; 2004) Steganography Multi-snapshot Arbitrary File system

StegHide (Zhou et al. 2004) Steganography Multi-snapshot Arbitrary File system

TrueCrypt (2012) Hidden volume Single-snapshot One Block device

HIVE (Blass et al. 2014) ORAM Multi-snapshot Multiple Block device

DataLair (Chakraborti et al. 2017) ORAM Multi-snapshot Multiple Block device

DetWoORAM (Roche et al. 2017) ORAM Multi-snapshot Multiple Block device

ECD (Zuck et al. 2017) Hidden volume Multi-snapshot One Block device
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PDE systems on top of block devices. Skillen et al.
(Skillen and Mannan 2013, 2014; Skillen 2013) designed
Mobiflage, the first PDE scheme for mobile devices. They
provided two versions of implementations: one in external
storage for FAT32 file system (Skillen and Mannan 2013),
and the other in internal storage for modified EXT4 file
system (Skillen and Mannan 2014). The main contribu-
tion of Mobiflage lies in its first incorporation of hidden
volumes technique to the Android devices. It works as
follows: First, it fills the external storage with random
data. Second, it creates two volumes, a public volume for
storing public non-sensitive data, applications and set-
tings, and a hidden volume for storing sensitive data.
Correspondingly, there are two operation modes, a pub-
lic mode and a PDE mode. The public mode is used to
manage the public volume for daily use, providing stor-
age encryption without deniability. In this mode, the data
are encrypted with a decoy key, which is derived from a
decoy password. The user will be asked to provide the
decoy password during the booting in order to enter the
public mode. The PDE mode is used to manage the hid-
den volume which stores sensitive data whose existence
needs to be denied when being coerced. In this mode, the
data are encrypted with a true key, which is derived from
a true password. The user should provide the true pass-
word during system boot to activate the PDE mode. The
exact location of the hidden volume is derived from the
true password.
The FAT32 version of Mobiflage (Skillen and Mannan

2013) is specially designed for external storage formatted
using FAT32 file system, which requires the support of a
physical or an emulated FAT32 SD card. This is because,
the hidden volume is part of the public volume, and is
placed at the end of the disk. In other words, if an EXT-
like file system is deployed for the public volume, the data
stored in the hidden volume may be easily overwritten
by the public data due to the nature of EXT file sys-
tem’s random allocation. To eliminate the aforementioned
assumption, the EXT4 version of Mobiflage (Skillen and
Mannan 2014) modifies the EXT4 driver such that it can
support a sequential inode allocator and can be deployed
for the public volume to avoid overwriting the hidden vol-
ume. However, the modification of the EXT4 driver itself
may be an indication of the existence of PDE.
Yu et al. proposed MobiHydra (Yu et al. 2014) to

improved Mobiflage in three aspects: 1) It can mitigate
a novel booting-time attack being faced by Mobiflage;
2) It can support multiple levels of deniability. 3) It sup-
ports mode switching without rebooting. To mitigate
the booting-time attack, MobiHydra obfuscates the time
required for a wrong password (i.e., an arbitrary password
except the true and the decoy password) during booting
such that the adversary is not able to identify the existence
of PDE by simply entering a wrong password. To support

fast mode switching, MobiHydra introduces a special par-
tition called shelter volume on the external storage, which
is used as a temporary storage partition which can tem-
porarily store the sensitive data being created in the pub-
lic mode, without the need of entering the PDE mode
for storing hidden sensitive data. The data stored in the
shelter volume will be immediately synchronized to the
hidden volume when the hidden mode is entered, and
are then eliminated from the shelter volume. To avoid
deniability compromise, the sensitive data stored in the
shelter volume will be encrypted by a random key which
is encrypted by the public key and stored in the shelter
volume. In addition, some dummy files are maintained in
the shelter volume and updated periodically to obfuscate
the writes of hidden sensitive data to the shelter volume.
MobiHydra, however, cannot eliminate the assumption of
requiring a physical or an emulated FAT32 SD card.
To eliminate the limitations of Mobiflage and MobiHy-

dra, Chang et al. designed MobiPluto (Chang et al. 2015),
a file system friendly PDE design. The basic idea of Mobi-
Pluto is introducing an additional software layer between
the PDE and the file system. This software layer should
satisfy three requirements: 1) Its existence should not be
an indication of PDE; 2) It should provide virtual vol-
umes to file systems, and any block-based file systems
can be deployed on a virtual volume; 3) It should convert
non-sequential allocation from a file system to sequential
allocation in the underlying PDE. To build such a layer,
MobiPluto uses thin provisioning (Thornber), because:
First, thin provisioning has been implemented by dm-
thin-pool module, which has been a well-established tool
in Linux kernel; Second, thin provisioning can allow to
create thin volumes, each of which can be used to deploy
any block-based file systems. Third, thin provisioning can
transform non-sequential allocation on the thin volume to
sequential allocation on the underlying storage. By com-
bining thin provisioning and hidden volumes, MobiPluto
is able to achieve a “file system friendly” PDE design.
Chang et al. further improved the usability ofMobiPluto

in their extended work (Chang et al. 2018) by introduc-
ing a fast switching mechanism and using NFC cards to
store strong PDE passwords. For PDE systems on mobile
devices, fast switching is a desired feature. When a device
owner faces an emergency and wants to collect sensi-
tive information, he/she needs to instantly switch the
device to the hidden mode. However, it needs more than
1 min for the prior mobile PDE systems to switch modes,
because a full device rebooting is usually required. Fast
switching mechanism eliminates the need for rebooting
the device and the switching time is reduced to less than
10 s (Chang et al. 2018). Their idea is to restart only
the Android framework rather than the entire device,
significantly reducing the switching time. For the hidden
volume, a strong password is required to protect sensitive
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data. However, users tend to choose weak passwords, thus
security may not be ensured. To address this issue, they
proposed to use NFC cards to store strong passwords for
the user. Their observation is that most of the modern
mobile devices are equipped with NFC features.
MobiCeal (Chang et al. 2018) designed the first block-

based PDE system for mobile devices which can defend
against a multi-snapshot adversary. The fundamental idea
of MobiCeal is to use dummy writes to obfuscate writes
performed in hidden mode. In this way, even though the
adversary can have access to multiple snapshots of the
block image, it cannot tell whether a write is issued by
the hidden mode or not. In addition, MobiCeal can sup-
port multiple deniability levels. Finally, it identifies various
side channel leakage present in prior PDE schemes for
mobile device and eliminates them.

PDE systems on top of flash memory. Flash memory
has significantly different nature compared to mechanical
disks, e.g., flash memory is update unfriendly and vulner-
able to wear (“Flash memory” section). All the aforemen-
tioned block-based PDEs unfortunately may suffer from
deniability compromises in the underlying flash storage
due to the handling of the unique nature of flash memory.
This is because: The unique characteristics of flash mem-
ory require a special internal management, which creates
a different view of data in flash memory, independent of
the view on the block layer. By having access to the raw
flash, the adversary can obtain this different view, which
may allow it to observe those unexpected “traces” of sensi-
tive data, whose existence needs to be denied. To eliminate
the aforementioned deniability compromise, a few PDE
systems directly incorporate PDE into flash memory.
Peters et al. (2015) introduced DEFY, a deniable

encrypted file system based on flash file system YAFFS2
(Robust Flash Storage: YAFFS 2002). In DEFY, operations
on a higher security level are indistinguishable from the
operations on a lower security level. In addition, DEFY
canmitigate over-writes of hidden data in the higher secu-
rity level by taking advantage of special properties offered
by a log-structured file system. DEFY however, suffers
from a few limitations. First, it strongly relies on system

properties in YAFFS2 to provide deniability. Therefore, it
is incompatible with the flash-based block devices using
FTL, the most popular form of flash storage being used
in mobile devices nowadays. Second, it suffers from deni-
ability compromises (Jia et al. 2017). This is because, to
prevent data at lower security levels from overwriting the
data at higher security levels, it disables garbage collection
at the lower security levels. The adversary can easily iden-
tify this abnormal behavior and suspect existence of PDE
(Jia et al. 2017).
DEFTL (Jia et al. 2017) incorporated PDE into FTL.

DEFTL also has two modes, a public and a hidden mode.
The deniability of DEFTL is achieved by using the data
(and their behavior) in the public mode to deny the
data (and their behavior) in the hidden mode. Most
importantly, to prevent the data written in the public
mode from over-writing the data written in the hidden
mode, DEFTL carefully modifies the block allocation and
garbage collection strategies in the FTL such that the two
modes can be “stealthily” isolated without being known
by the adversary. Specifically, the public volume will allo-
cate flash blocks from the head of the block pool and the
hidden volume will allocate flash blocks from the tail of
the pool. In addition, garbage collection in the two modes
will be modified as: In the public mode, garbage collec-
tion will be performed actively to fill the head of the pool;
in the hidden mode, garbage collection will be performed
actively to fill the tail of the pool. This can avoid that
the public mode has used all the blocks in the head and
starts to use the blocks in the tail, over-writing the hidden
sensitive data. DEFTL also provides a few attacks on the
existing PDE systems for mobile devices.
Table 2 summarizes the existing PDE systems for mobile

devices. They either use hidden volumes or steganogra-
phy, and provide one or multiple deniability levels when
facing single-snapshot or multi-snapshot adversaries.
Schemes based on hidden volumes (Skillen and Mannan
2013, 2014; Yu et al. 2014; Chang et al. 2015, 2018)
usually have low performance overhead, but they can
only defend against single-snapshot adversaries. DEFY
(Peters et al. 2015) relies on steganography to defend
against multi-snapshot adversaries, but the performance

Table 2 Comparison of PDE systems for mobile devices

Scheme Method Adversary Deniability level Layer

Mobiflage-FAT32 (Skillen and Mannan 2013) Hidden volume Single-snapshot One Block device

Mobiflage-EXT4 (Skillen and Mannan 2014) Hidden volume Single-snapshot One Block device

MobiHydra (Yu et al. 2014) Hidden volume Single-snapshot Multiple Block device

MobiPluto Chang et al. (2015, 2018) Hidden volume Single-snapshot Multiple Block device

MobiCeal (Chang et al. 2018) Steganography Multi-snapshot Multiple Block device

DEFY (Peters et al. 2015) Steganography Multi-snapshot Arbitrary File system

DEFTL (Jia et al. 2017) Hidden volume Single-snapshot One Controller (FTL)
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overhead is high. MobiCeal (Chang et al. 2018) uses a
lightweight “dummy write” mechanism to defend against
multi-snapshot with acceptable performance overhead.

Discussions
About randomness being used in hidden volumes
technique. The idea of hidden volumes technique is to
hide the encrypted hidden volume among the random-
ness being filled initially. Tomake sure that the ciphertexts
being generated are indistinguishable from random bits,
the random bits can be drawn from the same distribution
as the ciphertext space by using the encryption function
itself as the PRNG (Skillen and Mannan 2014). This can
ensure that the ciphertexts and the randomness are from
the same source. In addition, the encryption being used
in the hidden volumes technique is full disk encryption
(FDE), which treats each disk sector as an autonomous
unit and assigns sector-specific IVs for chaining modes
such as CBC and XTS (Skillen and Mannan 2014). This
can help eliminate the correlations among ciphertexts due
to similarities in files (e.g., file heads).

Transferring data between desktop computers and
mobile devices. Since PDE can be deployed in either
desktop computers or mobile devices, there is a possibility
that the data owner would like to exchange data (e.g., files)
between these two different platforms. The data exchange
should be conducted in such a way that deniability should
not be compromised. When the file is non-sensitive, it
can be simply transferred from a desktop computer to a
mobile device (or vice versa) without any deniability con-
cern. This can be done by simply using Internet or direct
copying via cable, when both the source device and the
destination device are working in the public mode. When
the file is sensitive whose existence needs to be denied, to
transfer it from a desktop computer to a mobile device (or
vice versa), there are two known options: 1) If the file is
transferred via Internet, to allow the data owner to deny
the transferring of this file (the attacker can collude with
Internet ISPs and identify this event), covert communica-
tions approaches (Frèche et al. 2017; Hu et al. 2017) can be
used. 2) If the file is transferred via direct copying, the file
can be read from the source device and written to the des-
tination device, when both devices are working the hidden
mode. Since the attacker cannot capture the device work-
ing in the hidden mode (“The assumptions required by
PDE” section), the deniability will not be compromised.
Once the file is successfully transferred, it will be pro-
tected by the PDE system in the destination device.

Ensuring confidentiality of the deleted data via
secure deletion
PDE is used to ensure confidentiality of sensitive data
which are preserved in the personal computing devices.

However, once sensitive data are discarded, the data
owner may want to permanently remove them. Protec-
tion of data confidentiality requires securely disposing
those data to prevent the adversary from recovering all or
portion of them. This is achieved by using secure deletion.
Hard disk drives (HDDs) and NAND flash mem-

ory dominate the storage media of personal computing
devices. However, they are completely different in nature,
and hence different secure deletion approaches should be
used to eliminate data from them. In the following, we
summarize secure deletion approaches for HDDs-based
and flash memory-based storage systems, respectively.
We also summarize the recent works which complement
conventional secure deletion approaches by taking care of
the impacts created by past existence of the deleted data.

Secure deletion for HDDs-based storage systems
An HDD is a magnetic medium which supports in-
place updates. Therefore, in HDDs-based storage sys-
tems, when a file block is updated (or deleted), its old
version can be simply replaced by its new version (or
random noise) in the storage medium to achieve secure
deletion.
Physical medium layer. Due to lack of semantics of file

system, single-file sanitization is not feasible at the phys-
ical medium layer. To delete the data, a naivest way is to
overwrite/destroy all the data on the physical medium.
Tools such as degaussers can be used to sanitize data on
HDDs (Kissel et al. 2006).
Controller layer. At the controller layer, there are sev-

eral standardized interfaces that permit reading/writing
of fixed-sized blocks. Similarly, there are no semantics of
file system in this layer, thus the controller must sani-
tize every block to achieve secure deletion. To delete the
data, sanitize commands and overwrite techniques are
widely used in HDDs, e.g., secure erase commands offered
by both SCSI (Incits: Scsi storage interfaces 2016) and
ATA (Team work systems: Advanced technology attach-
ment 2017). These sanitization commands work like a
button that erases all data on the device by exhaustively
overwriting every block with zeros or ones.
Block device layer. Reardon et al. (2013) proposed a

secure deletion approach targeting persistent storage.
Their approach relies on encryption and key wrapping.
They use a key disclosure graph to model the adversarial
knowledge about key generation and wrapping history. In
addition, a small securely-deleting key-value map is used
to discard encryption key of the data, achieving secure
deletion.
File system layer.When deleting files in the EXT2, there

is a sensitive attribute for files and directories to indicate
that secure deletion should be used. (Bauer and Priyantha
2001) provided a patch that implements this attribute. By
marking a block as free, the patch passes the free block
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to a kernel daemon, which maintains a list of blocks that
must be sanitized. If the free block stores data from a
sensitive file, instead of returning it to the file system
as an empty block, this free block will be added to the
work queue. When the system is idle, the sanitization dae-
mon runs asynchronously to perform sanitization over the
work queue, allowing the user to achieve immediate file
deletion.
(Joukov and Zadok 2005) proposed a file system

extension, purgefs, which uses block-based overwrit-
ing when blocks are returned to the file system’s free
blocks list. It supports overwriting file data and metadata
for all files or just files marked as sensitive. (Joukov
and Zadok 2006) also proposed three secure deletion
approaches for EXT3. The first approach is called EXT3
basic, which securely deletes data (but not metadata)
once by overwriting it. The second approach is called
EXT3 comprehensive, which overwrites file data and
metadata by a configurable overwriting scheme. Both
the aforementioned two overwriting-based approaches
can securely delete all the data or just files whose
extended attributes include a sensitive flag. The third
approach is based on intercepting files deletion events,
i.e., unlinking and truncating a file. The file to be deleted
is moved into a special secure deletion directory, and
a background user-level tool shred (Plumb 2010) will
delete the files in the secure deletion directory at regular
intervals.
Peterson et al. (2005) optimized secure deletion for

versioning file systems using an all-or-nothing transform
(AONT). Using AONT, each data block is extended into
an encrypted data block along with a small stub. If any part
of the ciphertext is deleted, the entire message can not be
decrypted any more. In this way, a specific version of a file
can be quickly deleted by simply overwriting all the stubs.
In addition, to delete a large log file to which data have
been appended only, securely deleting all the blocks in its
most recent version will achieve secure deletion on all its
past versions.
Application layer. The application layer can only inter-

act with file system through a POSIX-compliant interface.
A user-level application can securely erase all the data
on the storage medium by invoking a secure erase com-
mand (Incits: Scsi storage interfaces 2016; Team work
systems: Advanced technology attachment 2017) in the
hardware controller’ interface. A few files overwriting
tools, e.g, srm (Jagdmann 2015) and wipe (Durak 2006),
can be used to securely remove files. Gracewipe (Zhao
and Mannan 2015), as has been discussed in “PDE for
desktop computers” section, can achieve secure and veri-
fiable deletion of encryption keys through a special dele-
tion password by taking advantage of TPM and Intel
TXT, thus making the encrypted data permanently inac-
cessible. In the case of database, there is also a secure

deletion interface, which can be used to overwrite data
with zeros in the underlying file system. For MySQL,
(Stahlberg et al. 2007) proposed an approach to delete
entries by overwriting them with zeros, and the trans-
action log is encrypted and can be securely disposed by
deleting the encryption key. For SQLite (SQLite: Pragma
statements 2017), there is a compile-time option to enable
a secure deletion feature that overwrites deleted records
with zeros.
Table 3 summarizes the existing secure deletion

approaches for HDDs-based storage systems. Those
approaches are incorporated into different layers of a stor-
age system and rely on either overwriting or encryption
for secure deletion. They may also have different dele-
tion granularity. Generally, the encryption-based secure
deletion approaches for HDDs-based storage systems
(Reardon et al. 2013; Peterson et al. 2005; Zhao and
Mannan 2015) have relatively low performance overheads
since only keys need to be deleted to achieve secure
deletion.

Secure deletion for flash memory-based storage systems
The aforementioned secure deletion approaches for
HDDs-based storage systems rely on properties of hard
disks: magnetism-based and supporting in-place updates.
However, flash memory does not possess these proper-
ties. Wei et al. (2011) performed a series of experiments
to show that the deletion techniques that work well for
HDDs may not work properly for NAND flash. As NAND
flash is not magnetism-based, the degaussingmethodmay
damage NAND flash chips and render data unreadable,
but all the data may still remain intact (Wei et al. 2011).
Wei et al. (2011) created 1000 small files on an SSD,
then dismantled the drive, and searched for the content
of those files. They found that the SSD contained up to
16 stale copies of the tested files. This is because the
FTL creates redundant file copies during garbage collec-
tion and out-of-place updates, which unfortunately will
complicate the secure deletion design for flash memory.
They also tested 13 single-file overwriting-based saniti-
zation tools (LSoft Technologies Inc: Active@ KillDisk
2017; GEEP EDS LLC: Darik’s Boot and Nuke 2017), to
find out whether they work correctly for flash memory.
Unfortunately, all those tools were not able to sanitize data
from flash memory: between 4 and 75% of the files’ con-
tent remained in the SATA SSDs, and between 0.57 and
84.9% of the data remained in USB drives. All the afore-
mentioned results indicate that securely deleting data
from NAND flash is much more challenging compared
to HDDs, due to the special nature of NAND flash. In
the following, we summarize the existing works aiming to
securely remove data from flash-based storage systems,
which are divided into two categories: overwriting-based
and encryption-based.
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Table 3 Comparison of features offered by different secure deletion approaches for HDDs-based storage systems

Scheme Method Layer Deletion granularity

Degaussers (Kissel et al. 2006) Degaussing Physical medium The entire
storage medium

Secure erase commands (2016, 2017) Overwriting-based Controller The entire
storage medium

Reardon et al. (Reardon et al. 2013) Encryption-based Block device Single file

Bauer et al. (Bauer and Priyantha 2001) Overwriting-based File system (EXT2) Single file

Purgefs (Joukov and Zadok 2005) Overwriting-based File system (EXT2) Single file

Joukov et al. (Joukov et al. 2006) Overwriting-based File system (EXT3) Single file

Peterson et al. (Peterson et al. 2005) Encryption-based File system Single file

File overwriting tools (Jagdmann 2015; Durak 2006) Overwriting-based Application Single file

Gracewipe (Zhao and Mannan 2015) Encryption-based Application The entire
storage medium

Stahlberg et al. (Stahlberg et al. 2007) Based on overwriting Application (for database) Single entry/record
and SQLite (SQLite: Pragma statements 2017) and encryption

Overwriting-based secure deletion for NAND flash.
A common idea for the overwriting-based secure deletion
approaches is to replace the deleted data with meaningless
information, e.g., noisy random data.
Physical medium layer. Similar to the physical medium

layer in the HDDs-based storage systems (“Secure dele-
tion for HDDs-based storage systems” section), data can
not be deleted in this layer due to lack of semantics of
the file system. To realize secure deletion in this layer, the
entire flash chip should be destroyed.
Controller layer. A main type of flash controller is using

FTL to handle the special nature of NAND flash and to
provide a block access interface to upper layers (“The
architecture of a storage system” section). To securely
delete data, the simplest way is to erase the correspond-
ing flash blocks in the FTL (i.e., block erasure). However,
erasures can only be performed in terms of flash blocks
(“Flash memory” section). This will be overkill if only a
portion of data being stored in a flash block needs to be
deleted. Considering content of a file may be distributed
in different pages of different flash blocks, sanitizing a file
using block erasure will be unavoidably expensive.
Wei et al. proposed scrubbing (Wei et al. 2011) to

address the aforementioned issue. As programming indi-
vidual pages is possible, the idea of scrubbing is to re-
program the page, where the data should be securely
deleted, to turn all its remaining ‘1’ bits into ‘0’. Note that
flash memory allows to individually program bit ‘1’ to ‘0’,
but the reverse operation is not feasible except perform-
ing a block erasure. A major concern of scrubbing is that
it may result in undefined behaviors due to possibility of
introducing read errors. To handle this concern, Wei et al.
examined error rates for different types of flash memory
and showed that the error rates vary widely. For some
flash devices, scrubbing causes frequent errors, while for

some others, it does not cause any errors. They intro-
duced scrub budget, which refers to the number of times
that the NAND flash can allow to be scrubbed with-
out exhibiting a significant risk of data errors. When the
scrub budget for a block is exceeded, secure deletion will
be instead performed by other approaches (e.g., invok-
ing garbage collection). More recently, Qin et al. (2013)
incorporated RAID-5 architecture to enhance the reliabil-
ity and eliminate the negative effect of reprogram on flash
memory.
File system layer. Sun et al. (2008) proposed a secure

deletion method in YAFFS by investigating characteris-
tics of NAND flash memory. They proposed two secure
deletion approaches, zero overwrite (similar to the scrub-
bing (Wei et al. 2011)) and block erase. Especially, they
define a costs-benefits model by comparing the overwrite
cost on the deleted pages and the erase cost on the block
that contains the deleted pages. Additionally, a new adap-
tive hybrid scheme is applied to select the cheaper one
between the two secure deletion approaches. Another
kernel-level zero-overwriting secure deletion approach
was also proposed by Reardon et al (2012).
By adding a new communication channel between the

file system and the device driver, the file system can
inform the device that particular blocks are no longer
valid, e.g., Trim (Intel Corporation: Intel Solid-State Drive
Optimizer 2009) command and TrueErase (Diesburg et al.
2012). With the information of invalid blocks, the device
driver can implement its own efficient secure deletion
without requiring data blocks to be explicitly overwrit-
ten by the file system. Especially, TrueErase is designed
for the blocks belonging to files specifically marked as
sensitive.
Application layer. Since the application layer cannot

directly touch the lower layers, secure deletion can only
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be achieved by filling the entire remaining free space.
Reardon et al. (2012) proposed two user-level filling-based
secure deletion approaches for YAFFS: purging and bal-
looning. Their basic idea is to fill the entire free space of
the file system, such that all unused blocks of the physi-
cal medium will no longer contain sensitive information.
By completely filling the file system’s empty space with
noise, all previously data deleted by the user are guaran-
teed to have been erased. Compared to purging which
ensures rapid secure deletion of data from user-space, bal-
looning achieves a probabilistic continuous secure dele-
tion guarantee by reducing the block reallocation period.
Braga et al. (2014) proposed two user-level approaches to
securely delete files on Android smart phones. The one
that is designed to delete unencrypted files is also based
on filling. The cost of the filling-based secure deletion
approaches is proportional to the size of free space avail-
able on the physical medium. A larger size of free space
will lead to a higher overhead in order to fill it (Reardon
et al. 2013). The efficiency can be improved by perpetually
maintaining the free space of the physical medium within
a limited range (Reardon et al. 2012).

Encryption-based secure deletion for NAND flash.
Data can be rendered inaccessible by encrypting them
and deleting the corresponding key. Boneh et al. pro-
posed the first encryption-based solution that securely
deletes encrypted data stored on the tape by deleting the
cryptographic keys (Boneh and Lipton 1996).
Controller layer. Reliably destroying keys is challenging,

as side-channel attacks based on semiconductor memory
data remnants (Halderman et al. 2009) may allow an
attacker to recover the key or key-related information.
Swanson et al. (2010) proposed scramble and finally erase
(SAFE), which combines encryption and erasure tech-
niques to provide almost instant secure deletion with ver-
ifiability. SAFE relies on the assumptions that data in the
SSDs are stored encrypted and the SSDs implement best
practices of key management (e.g., the keys should never
leave the controller). It works as follows: Upon receiving
a sanitize command, it erases the controller’s key mem-
ory, such that the driver is not able to encrypt/decrypt the
data. It then erases every block on the device, and writes
all the pages with a known pattern, and erases them again.
Finally, it reinitializes the device and performs a low-level
format operation on the drive, and provides a new key to
the controller.
File system layer. Lee et al. (2008, 2010) proposed a

secure deletion approach for YAFFS, a log structured
NAND flash file system. By modifying YAFFS, they
encrypt files and force all keys of a specific file to be
stored in the same block. Therefore, only one erase oper-
ation needs to be performed in order to securely delete a
file. Lee et al. (2011) then extended the aforementioned

approach to perform standard data sanitization which can
satisfy government agencies’ requirements (NSA/CSS and
DoD 5220.22-M) for the secure deletion.
Reardon et al. (2012) proposed data node encrypted file

system (DNEFS), which enables secure data deletion for
flash memory. They also incorporate DNEFS into flash
file system UBIFS (Memory Technology Devices: UBIFS
2015). In DNEFS, they divide the entire flash memory into
two areas: a small key storage area and a large main data
storage area. They encrypt each data node (i.e., the unit of
I/O) with a unique key, and collocate the keys in the key
area. Secure deletion is achieved by removing keys, which
can be performed efficiently, as keys are condensed in a
small area.
DEFY (Peters et al. 2015) also provides secure dele-

tion, complementary to its deniability. It leverages all-
or-nothing transform (AONT), a cryptographic function
which can ensure that a missing portion of a message will
render the entire message irrecoverable. In this way, DEFY
can efficiently achieve secure deletion by only removing
a small portion of the data being deleted. Braga et al.
(Braga and Colito 2014) proposed two secure deletion
approaches for Android phones, one of which is based on
encryption. They modified the key management of EncFS
(Wang et al. 2012), an encrypted file system, to ensure that
every file is encrypted with a unique key and a random
IV. The removal of the unique key and IV makes the file
irrecoverable.
Table 4 summarizes the features offered by different

secure deletion approaches for flash-based storage sys-
tems, including overwriting-based and encryption-based
approaches. These approaches may also have differ-
ent deletion granularity. Generally, the scrubbing-based
secure deletion approaches (Wei et al. 2011; Qin et al.
2013; Sun et al. 2008; Reardon et al. 2012), which only
targets at the invalid data, and the encryption-based
secure deletion approaches (Lee et al. 2008, 2010, 2011;
Reardon et al. 2012), which only need to delete keys,
have relatively low performance overheads compared to
the overwriting-based approaches. A major advantage of
encryption-based approaches is that, deleting a small key
usually can be much more efficiently achieved compared
to deleting data which are large in size.

A new direction for secure deletion
Secure deletion is used to securely dispose data once they
become obsolete. This requires a security deletion guaran-
tee that the adversary should neither recover the deleted
data, nor learn anything about them (“Secure deletion”
section). The question is, can we achieve the secure dele-
tion guarantee by simply deleting the data themselves?
The answer is unfortunately no. Conventional secure dele-
tion approaches rely on either overwriting or encryption
to make the deleted data inaccessible. However, the past
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Table 4 Comparison of features offered by secure deletion approaches for flash-based storage systems

Scheme Method Layer Deletion granularity

Scrubbing (Wei et al. 2011) and SmSD (Qin et al. 2013) Overwriting-based Controller (FTL) A physical page

Sun et al. (Sun et al. 2008) Overwriting-based File system (YAFFS) Single file

Zero overwriting (Reardon et al. 2012) Overwriting-based File system (YAFFS) Single file

Trim (Intel Corporation: Intel Solid-State Drive Optimizer 2009) and

TrueErase (Diesburg et al. 2012) Overwriting-based File system Single file
to device driver

Purging and ballooning (Reardon et al. 2012) Overwriting-based Application All the invalid data

Braga et al. (Braga and Colito 2014) for Overwriting-based Application All the invalid data
unencrypted files

SAFE (Swanson and Wei 2010) Based on overwriting Controller The entire
and encryption storage medium

Lee et al. (2008, 2010) Encryption-based File system (YAFFS) Single file

Lee et al. (2011) Encryption-based File system (YAFFS) Single file

DNEFS (Reardon et al. 2012) Encryption-based File system (UBIFS) Single file

DEFY (Peters et al. 2015) Encryption-based File system (YAFFS) Single file

Braga and Colito (2014) for Encryption-based File system (EncFS) Single file
encrypted files

existence of the deleted data may leave artifacts in the lay-
out at all layers of a computing system (Bajaj and Sion
2013b; Chen and Sion 2015) or create side effects on
the other data which have not been deleted (Bajaj and
Sion 2013a), and the adversary can potentially take advan-
tage of those structural artifacts or side effects to learn
sensitive information about the deleted data (Bajaj and
Sion 2013a, b; Chen and Sion 2015).
To justify the impact of the past existence of the deleted

data, we use a balanced binary search tree (BST) (Chen
et al. 2016). We first create a balanced BST by inserting
five nodes in the order of 2, 11, 13, 14, 1, and obtain tree
T1 (Fig. 3a). We then delete node 2, obtaining tree T2
(Fig. 3b). However, if we directly create the balanced BST
by inserting nodes in the order of 11, 13, 14, 1, we will
obtain tree T3 (Fig. 3c). This example indicates that, due
to the past existence of node 2, T2 and T3 have different

structures. This also indicates that, although node 2 have
been deleted, its structural artifacts remain in the data
organization. Therefore by having access to tree T2, the
adversary may suspect the past existence of the sensitive
data which have been deleted, and tries to partially or fully
recover them.
We also describe some concrete attack scenarios which

can take advantage of structural artifacts (Jia et al. 2016;
Chen et al. 2016). Commodity NAND flash-based block
devices usually adopt a log-structured writing technique,
in which flash blocks as well as pages within a block
are allocated sequentially (Min et al. 2012). As shown in
Fig. 4, A, B, C, and D are the data being written to NAND
flash, and each occupies a flash page. To securely delete
C, the user has two options: 1) We perform a scrubbing
(Wei et al. 2011) over the corresponding flash page. The
scrubbing technique however, will convert this page to a

Fig. 3 An example from (Chen et al. 2016) showing why structural artifacts matter. T1, T2, and T3 are balanced BSTs. a Tree T1, b Tree T2, and c Tree T3
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Fig. 4 Scrubbing-based secure deletion

page with all “0” bits (i.e., a zero page). By having access
to the storage state after deletion of C, the adversary will
notice the zero page and suspect that a past deletion has
been performed on it. 2) We encrypt A, B, C, and D
with different keys, and delete key for C (Reardon et al.
2012). However, the adversary can also find out that C has
been deleted since it cannot be successfully decrypted to
plaintexts which are semantically meaningful. A further
attack will be performed to fully or partially recover C
by taking advantage of the correlation between C and its
neighboring data (Chen et al. (2016) provides a concrete
attack scenario which can take advantage of the structural
artifacts to recover bitcoin transactions).
To remove impacts of the past existence of the deleted

data (including both structural artifacts and side effects),
a few recent works investigate undetected secure dele-
tion, truly secure deletion, history independence, as well
as untraceable deletion.

Undetectable secure deletion. Jia et al. (2016) tried to
achieve the secure deletion guarantee by hiding the dele-
tion history. Intuitively, if the deletion history is concealed
from the adversary, he/she should not be able to find
out whether there was a deletion in the past, eliminating
his/her possibility in recovering the deleted data or learn-
ing anything about the deleted data. Based on this key
observation, Jia et al. investigated a novel security notion
for NAND flash-based block devices, i.e., undetectable
secure deletion, to achieve two security properties: 1) Data
to be deleted are completely removed from NAND flash
memory, which ensures that the adversary cannot have
access to the data once they have been deleted; 2) The
deletion history is concealed from the adversary, which
ensures that the adversary cannot gain any knowledge
about whether there was a deletion in the past.
To realize undetectable secure deletion, Jia et al. pro-

posed NAND Flash Partial Scrubbing (NFPS), an unde-
tectable secure deletion scheme for NAND flash-based
block devices. Having observed that deleting data from

flash with a full scrubbing (Wei et al. 2011) or a block era-
sure may provide the adversary a clue that there was a
deletion in the past, Jia et al. proposed to perform a par-
tial scrubbing, i.e., partial page reprogramming and partial
block erasure, to only modify a portion of the bits in the
page/block storing the deleted data, avoiding producing a
zero page or an all-“1” block.

Truly secure deletion. NFPS (Jia et al. 2016) aimed to
conceal the past existence of the deleted data in the
NAND flash memory. However, it still cannot sanitize the
structural artifacts introduced by the deleted data. Chen
et al. (2016) investigated another novel security notion,
namely, truly secure deletion, which can ensure the saniti-
zation of both the data and the structural artifacts.
To achieve truly secure deletion, Chen et al. (2016) pro-

posed TedFlash, a truly secure deletion scheme for NAND
flash-based block devices. In TedFlash, the data of every
write to NAND flash will be placed to an empty loca-
tion which is randomly selected. Note that as the random
placement of data is independent and does not affect
the placements of any other data, TedFlash can elimi-
nate the structural artifacts brought by each write. Most
importantly, the random placement technique is exclu-
sively feasible for NAND flash, because: 1) Random seeks
on flash memory are as efficient as sequential seeks. 2)
The random placements can distribute data evenly among
flash, naturally achieving a good wear leveling.

History independence. History independence is pro-
posed to prevent historic information about the pattern of
access to a data structure from being leaked through its
representation when observed by an adversary (Chen and
Sion 2015). History independence ensures that by hav-
ing access to a storage state, the adversary is not able to
identify the operation sequence which leads to this state.
In other words, given two operation sequences leading to
the same storage state: one sequence has a delete opera-
tion (e.g., deleteD) and its corresponding insert operation
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(e.g., insert D), and the other sequence does not have the
aforementioned delete and insert operation, the adversary
will not be able to differentiate which operation sequence
led to this storage state. Therefore, history independence
ensures that after having removed a data record, the stor-
age state is somehow equivalent to a state that the deleted
record never exists, naturally achieving the secure dele-
tion guarantee. Implicitly, history independence ensures
that no structural artifacts will be introduced. Other-
wise, the memory representation of each storage state
cannot be “independent” of the operation sequence
leading to it.
Bajaj and Sion (2016; Bajaj and Sion 2013b) designed

history independent file system (HIFS), the first approach
which can provide history independence for file storage
over mechanical hard disks. HIFS uses a history indepen-
dent hash table to allocate file data to the underlying block
device in a history independent manner. Most signifi-
cantly, they can simultaneously achieve history indepen-
dence and preserve locality to improve I/O performance.
However, HIFS does not work for flash-based storage
systems (“The architecture of a storage system” section),
since flash memory usually has its own internal software
layer (e.g., FTL) which is used to transparently handle its
special characteristics by using a special history depen-
dent block placement technique.
Chen et al. thus proposedHiFlash (Chen and Sion 2015),

aiming to achieve history independence in flash-based
block devices. To achieve history independence, HiFlash
enforces a bijection between block device and flash mem-
ory. Specifically, HiFlash always places data records, which
are written to the same block-device locations, to the
same flash locations, regardless of their write patterns.
However, by introducing a bijective mapping between
block device and flash memory, HiFlash can only remove
structural artifacts introduced by the software component
staying between the block device and the flash mem-
ory (e.g., FTL). It is unfortunately not able to remove
the structural artifacts introduced from the upper layers.
Therefore, it strongly relies on the assumption that the
upper layer has eliminated the structural artifacts, which
is not necessarily true.

Untraceable deletion. Bajaj and Sion (2013a) introduced
untraceable secure deletion, aiming to remove side effects
of the data being deleted (i.e., the impacts of the past
existence of the deleted data on the data which are still
preserved in the computing devices). The corresponding
design, Ficklebase, is to achieve untraceable secure dele-
tion in the context of relational databases. In Ficklebase,
once a tuple is expired, all its side-effects will be removed
via versioning and query rewriting.
Table 5 summarizes the secure deletion approaches

which handle impacts of the past existence of deleted
data, including both structural artifacts and side effects.
The approaches can also securely remove data themselves,
and may be incorporated into different layers of a storage
system.

Future directions
This section provides an overview of the promising
research directions for both PDE and secure deletion.

Achieving plausible deniability and secure deletion
in a single system. Most of the existing systems either
provide deniability or achieve secure deletion. However,
data confidentiality should be simultaneously ensured
during and after the lifetime of the data, because: First,
by recovering the data being deleted, the adversary can
achieve a similar gain comparable to compromising con-
fidentiality of the data being stored; Second, if the con-
fidentiality of the data cannot be ensured during their
lifetime, secure deletion (i.e., ensuring confidentiality of
the data after their lifetime) turns meaningless since
the adversary has already obtained the data before they
are “securely” removed. Therefore, we expect a system
which can achieve both plausible deniability and secure
deletion. Simply combining the existing PDE and secure
deletion may be problematic, since secure deletion may
require a fine-grained encryption mechanism, and plau-
sibly deniable encryption is not necessarily designed as
fine-grained. In addition, when pre-processing data for
secure deletion purpose, careful consideration may be
needed to avoid bringing in any deniability compromises.
The only attempt for this type of system is DEFY (Peters

Table 5 Comparison of features offered by secure deletion approaches designed to handle impacts created by past existence of the
deleted data

NFPS (Jia et al. 2016) TedFlash (Chen
et al. 2016)

HIFS (Bajaj and
Sion 2013b; Bajaj
et al. 2016)

HiFlash (Chen and Sion 2015) Ficklebase (Bajaj and Sion 2013a)

Method to
sanitize data

Overwriting Encryption Overwriting Overwriting Encryption

Method to
sanitize past
impacts

Partial scrubbing Random
placement
technique

History indepen-
dent hash table

One-one mapping Versioning, query rewriting

Layer Controller (FTL) Controller (FTL) File system Controller (FTL) Application
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et al. 2015), but DEFY itself may suffer from deniability
compromise (Jia et al. 2017).

Providing confidentiality guarantee for light-weight
computing devices. Computing devices nowadays are
turning more and more light-weight. Wearable devices
like smart watches and smart glasses, IoT devices like
smart home hubs or smart plugs, are increasingly popular
today. Those light-weight computing devices are usually
equipped with limited computational power. However,
both the PDE and the secure deletion usually require
expensive encryption operations, and thus cannot directly
fit the use of light-weight devices. This can be mitigated
by either outsourcing part of the expensive computation
to the third-party cloud providers (without confidentiality
compromise) or reducing the level of security to improve
performance.

Eliminating deniability compromise and data leakage.
The existing PDE/secure deletion systems mainly focus
on external storage, and may neglect the security leakage
in other sources like memory. By having obtained snap-
shots of the victim computing device, the adversary may
capture the memory state, and may compromise deni-
ability or recover the data being deleted by performing
forensic analysis. Therefore, processing of the sensitive
data should be conducted in an isolated memory region,
which cannot be learned by the adversary. This isolated
memory region can be created by using trusted execution
environment (e.g., Intel SGX (Intel: Intel software guard
extensions 2017)).

Secure against quantum computing. Both PDE and
secure deletion may rely on encryption (e.g., AES-128,
XTS-AES), which is not necessarily quantum resistant.
The development of quantum computers seems to be
expedited recent years (Wikipedia: Timeline of quan-
tum computing 2018). Therefore, there will be a need
to ensure that the PDE and the secure deletion are
secure against quantum computing, which requires care-
fully checking the existing cryptography primitives being
used and replacing those which are vulnerable to quantum
computing with the ones that are quantum resistant.

Conclusion
In this survey, we summarize the existing approaches
for protecting data confidentiality against snapshot adver-
saries. Our survey covers techniques for both PDE and
secure deletion, which can ensure data confidentiality
during and after their lifetime, respectively. We also dis-
cuss a few promising future directions.
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