
SYSTEMATIC REVIEW Open Access

Quantitative imaging: systematic review of
perfusion/flow phantoms
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Abstract

Background: We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative
perfusion imaging (PI) applications to encourage best practices.

Methods: A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”,
limited to articles written in English published between January 1999 and December 2018. Information on phantom
design, used PI and phantom applications was extracted.

Results: Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37
accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1),
finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography
(n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs
were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue
perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only
exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared
phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was
identified.

Conclusion: We provided insights into contemporary phantom approaches to PI, which can be used for ground
truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether
assumptions underlying PI phantom modelling are justified for their intended phantom application.

Keywords: Microcirculation, Perfusion imaging, Phantoms (imaging), Reference standards

Key points

� Without a validated standard, interpretation of
quantitative perfusion imaging can be inconclusive.

� Perfusion phantom studies contribute to ground
truth evaluation.

� We systematically reviewed design and realisation of
contemporary perfusion phantoms.

� Assessed phantom designs are diverse and limited to
single tissue compartment models.

� Investigators are encouraged to adopt efforts on
phantom validation, including verification with
clinical data.

Background
Perfusion imaging (PI) is a powerful method for asses-
sing and monitoring tissue vascular status, and alter-
ations therein. Hence, PI is generally aimed at
distinguishing healthy from ischemic and infarcted tis-
sue. PI applications cover various imaging modalities
such as ultrasound, computed tomography (CT), posi-
tron emission tomography (PET), and magnetic reson-
ance imaging (MRI) that can record perfusion
parameters in a wide spread of tissues including brain,
liver, and myocardial tissue. A distinction can be made
between contrast-enhanced and non-contrast PI ap-
proaches. The pertinent signal intensity in tissue can be
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recorded as a function of time or after a time inter-
val, called dynamic or static PI respectively. This sys-
tematic review focuses on dynamic PI, as this
approach enables quantitative analysis and absolute
quantification of perfusion. In dynamic PI, it is pos-
sible to construct mathematical models that fit image
data with model parameters in order to explain ob-
served response functions in tissue. For example,
time-intensity curves highlight the distribution of con-
trast material into the tissue over time. Model out-
comes include computation of absolute blood flow
(BF), blood volume (BV), and/or mean transit times
(MTTs) [1]. Multiple BF models of tissue perfusion
exist, including model-based deconvolution, model-
independent singular value decomposition and
maximum upslope models [2]. These BF models are
increasingly used in addition to standard semiquanti-
tative analysis, as these show potential towards better
accuracy and standardised assessment of perfusion
measures [3–5].
Without a validated standard, interpretation of quanti-

tative results can be challenging. Validation and/or cali-
bration of absolute perfusion measures is required to
ensure unrestricted and safe adoption in clinical routine
[6–8]. Validation approaches include in vivo, ex vivo,
in vitro, and in silico studies and combinations hereof.
Each approach has advantages and disadvantages, and
may differ in level of representativeness, controllability
of variables, and practical applicability. Our focus was on
in vitro studies, i.e., physical phantom studies. Phantom
studies contribute to ground truth evaluation of single
aspects on quantitative PI applications in a simplified,
though controlled, environment. Phantom studies also
allow for the comparison and optimisation of imaging
protocols and analysis methods. We hereby observe a
shift from the use of static to dynamic perfusion phan-
toms (i.e., with a flow circuit), as the latter enables in-
depth evaluation of time-dependent variables.
In general, it can be challenging to translate findings

from phantom studies into clinical practice. For ex-
ample, it can be questionable whether certain choices
and simplifications in perfusion phantom modelling are
justified. Intra- and interdisciplinary knowledge sharing
on phantom designs, experimental findings, and clinical
implications can be used to substantiate this. Hence, this
systematic review presents an overview on contemporary
perfusion phantoms for evaluation of quantitative PI ap-
plications to encourage best quantitative practices.

Methods
A systematic search on general and contemporary perfu-
sion phantoms was conducted using Scopus database on-
line, which includes MEDLINE and EMBASE. The query
included “perfusion”, “flow”, and “phantom”. Inclusion

was limited to English written articles and reviews pub-
lished between January 1999 and December 2018.
Two investigators independently screened titles and

abstracts (M.E.K. and M.J.W.G.), whereby in vivo,
ex vivo and in silico related perfusion studies were ex-
cluded, even as non-related in vitro studies (e.g., static
and large-vessel phantoms). We hereby note that ther-
mal and optical PI techniques fall outside the scope of
this review. The same investigators performed full-text
screening and analysis. Study inclusion required incorp-
oration of microvascular flow simulation and we ex-
cluded single-vessel phantom studies. In addition,
references were scrutinised on cross-references. Obser-
ver differences were resolved by discussion.
The perfusion phantom overview concerns three

main aspects regarding ground truth evaluation of
quantitative PI, as schematically depicted in Fig. 1.
Details on perfusion phantom design, studied PI ap-
plication and overall phantom application were ex-
tracted from each paper. We categorised phantom
design features in terms of simulated anatomy, physi-
ology, and pathology. Anatomy simulation lists infor-
mation on the studied tissue type and surrounding
tissue. Physiology simulation contains the used phan-
tom configuration, the corresponding tissue-
compartment model, the applied flow profile and
range, and the simulation of motion (e.g., breathing
and cardiac motion). Pathology simulation indicates
the presence of perfusion deficit simulation.
Extracted parameters for the studied PI application en-

counters the used contrast protocol, imaging system, and
BF model. We also listed the studied input and output
variables for the diverse phantom applications. Input vari-
ables were categorised as follows: (1) phantom/patient
characteristics; (2) contrast protocol, if applicable; (3) im-
aging method; and (4) flow quantification method (see
Fig. 1). Output variables included the following perfusion
measures: arterial input function; tissue response function;
MTT; BV; and BF. If mentioned by the authors, we listed
published results on phantom performance, which de-
scribes the relation between the “ground truth” flow meas-
ure and the obtained quantitative PI outcomes. Finally, we
documented in which studies phantom data are compared
with human, animal, or mathematical data, and which
phantoms are commercially available.

Results
Phantom data assessment
We have retrieved 463 articles using Scopus, of which 397
were rejected after abstract screening and another 32 after
full-text reading. The search resulted in 37 accepted articles
including cross-references (Fig. 2). Tables 1, 2, 3, and 4
summarise our main findings on phantom designs and ap-
plications in diverse PI domains.
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Fig. 1 System representation of ground truth validation process of quantitative perfusion imaging (PI). The diverse input variables that might
affect quantitative perfusion outcomes are shown on the right. Q serves as an example input variable and refers to set phantom flow in mL/min.
BF is accordingly the computed blood flow in mL/min (system output), and r is the residual between both. The latter can be translated into a
measure of accuracy. The figure summarises the central topics of this review paper

Fig. 2 Flow chart of study selection process
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Phantom design
Anatomically, the phantoms simulate perfusion of various
tissue types, including organ specific tissue (brain, n = 11
articles; myocardial, n = 8; liver, n = 2; tumour, n = 1; fin-
ger, n = 1) and non-specific tissue (n = 14). Several phan-
toms additionally mimic surrounding tissue (Tables 1, 2,
3, and 4). All phantoms comprise a simplified “physio-
logic” model of perfusion that can be translated into a sin-
gle tissue compartment model. Figure 3 schematically
illustrates the basics of six distinguished phantom configu-
rations, which specify three phantom types: basic (n = 6
articles); aligned capillaries (n = 22); and tissue filled (n =
12). The observed phantom designs simulate the micro-
vasculature and tissue as one combined volume (n = 23
articles) or two physically separated volumes (n = 17) (e.g.,
via a semipermeable membrane). Note that papers can
present more than one phantom, and phantom designs
may slightly differ from the schematic representations.
Basic phantoms generally consist of a single volume

with ingoing and outgoing tubes, disregarding physio-
logical simulation of microcirculation and tissue. In
capillary phantoms, the microvasculature is simulated
as a volume filled with unidirectional aligned hollow
fibres or straws (e.g., a dialysis cartridge). The
amount, diameter, and permeability of these fibres

vary. Tissue-filled phantoms incorporate tissue-
mimicking material inside the volume, which subse-
quently leads to formation of a “microvasculature”. Used
materials include sponge [20, 21, 33, 44], (micro)beads
[19, 31, 40], gel [18, 39], and printed microchannels [32,
43]. Remarkably, in most studies, fluid exchange between
simulated microvasculature and tissue (i.e., transfer rates
K1 and k2) was uncontrollable, except for the study per-
formed by Ohno et al. [33]. In this study, the compliance
of the capacitor space could be altered to control k2 to
some extent. Low et al. [43] and Ebrahim et al. [32] have
mathematically simulated the desired phantom flow con-
figuration, before printing the microchannels. However,
these models did not simulate fluid exchange between
microvasculature and tissue. Continuous flow was ap-
plied in 26 phantom studies and pulsatile/peristaltic
flow in 11 phantom studies. Flow settings vary per
study and target organ and are presented in three dif-
ferent units (Tables 1, 2, 3, and 4). In case of brain
and myocardial perfusion phantom modelling, flow
experiments do not always cover the whole physio-
logical range (Fig. 4). In addition, we observed two
phantom studies that incorporated clutter motion
(i.e., small periodic motion), but no studies included
breathing or cardiac motion (Tables 1, 2, 3, and 4).

Fig. 3 Schematic representation of the 1-tissue compartment model and six derived phantom configurations. A distinction is made between
three phantom types: basic, aligned capillaries and tissue filled (black spheres). Moreover, the microvasculature and tissue can be simulated as
one combined (a) or two separated volumes (b) (e.g., via a porous membrane). Cp and Ct represent the concentration of the compound of
interest (is being imaged) in the simulated blood plasma and tissue, respectively. K1 and k2 comprise the two transfer coefficients. Formation of
in- and outgoing flow (arrow) and compartment flow varies per individual phantom design
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Regional perfusion deficit simulation (pathology) was
only executed by Boese et al. [23]. Several studies
mimicked some sort of global perfusion deficits by re-
ducing the total flow or perfusion rate.

Studied PI applications
Tables 1, 2, 3, and 4 depict 17 studies focusing on MRI,
11 on ultrasound imaging, 11 on CT, and 2 on PET; 4
studies presented a direct comparison of MRI with PET
or CT. A contrast-enhanced protocol was used in 28
studies. The used BF model for perfusion quantification
varies per imaging modality and contrast protocol.

Phantom applications
Variables related to phantom/patient characteristics (n =
32), contrast protocol (n = 12), imaging method (n =
16), and quantification method (n = 7) were studied in
relation to various quantitative perfusion measures
(Table 1). Most papers describe the influence of flow
settings on quantitative perfusion outcomes, followed by
variation in contrast volume and acquisition protocol.
Several studies compare outcomes to human/patient
data (n = 7), animal data (n = 2), and mathematical sim-
ulations (n = 9) (Table 1). In addition, we have identified
one commercially available perfusion phantom that is
described by Driscoll et al. [13] and applied by Peladeau-
Pigeon et al. [12]. The relation between the “ground
truth” flow measure and quantitative PI outcomes is
summarised in Table 5. Remarkable is the diversity in
used measures of perfusion and comparison (e.g., abso-
lute errors, correlations statistics).

Discussion
A systematic search of the literature (from 1999 to 2018)
was performed on contemporary perfusion phantoms.
Detailed information was provided on three main as-
pects for ground truth evaluation of quantitative PI ap-
plications. We have elaborated on thirty-seven phantom
designs, whereby focusing on anatomy, physiology and
pathology simulation. In addition, we have listed the im-
aging system, contrast protocol and BF model for the
studied PI applications. Finally, we have documented for
each phantom application the investigated input and
output variables, data comparison efforts and commer-
cial availability. Hence, this review presents as main re-
sult an overview on perfusion phantom approaches and
emphasises on the choices and simplifications in phan-
tom design and realisation.
Although perfusion phantom modelling involves

various tissues and applies to divers PI applications,
we observe similarities in overall phantom designs
and configurations. These configurations can be cate-
gorised in three types (6/40 basic, 22/40 capillary, and
12/40 tissue filled) and two representations of micro-
vasculature and tissue (23/40 as one combined and
17/40 as two separated compartments). Differences in
these six phantom configurations are reflected in the
resulting flow dynamics, e.g., how a contrast material
is distributed and how long it stays inside the simu-
lated organ tissue. None of the assessed phantoms
could control inter-compartmental fluid exchange.
Ideally, one would be able to fine-tune the exact flow
dynamics in perfusion phantom modelling to achieve

Fig. 4 Overview of used flow ranges and units in assessed perfusion phantom studies. (a) shows the studied flow ranges in mL/min, (b) in mL/
min/g, and (c) in cm/s. The grey blocks represent physiological flow ranges for brain and myocardial tissue [45, 46]

Kamphuis et al. European Radiology Experimental            (2020) 4:15 Page 9 of 13



patient realistic (and contrast material specific) re-
sponse function simulation. The required level of rep-
resentativeness depends on the intended analyses,
being closely related to the input parameters and
boundary conditions of the BF model used. Since all
assessed phantoms are limited to single tissue com-
partment models, phantom validation of higher order
BF models should be performed with caution. It is
generally important to verify whether assumptions in
phantom modelling are justified for the intended
phantom application. This also concerns decisions re-
garding motion, pulsatile flow and perfusion deficit
simulation. For example, in myocardial perfusion
modelling it could be relevant to incorporate

respiratory and cardiac motion for certain analyses
[47, 48], while for other tissues “motion” could be
disregarded more easily.
The need for standardisation and validation of (quanti-

tative) PI applications is widely recognised [49, 50]. Per-
fusion phantom studies contribute to this endeavour,
since these studies enable direct comparison between
imaging systems and protocols. We only observed one
commercial perfusion phantom in our search result. We
foresee an increased clinical impact when phantoms be-
come validated and widely available. In our opinion,
phantom validation efforts are sometimes reported in-
sufficiently and ambiguously. The concept of phantom
validation can be difficult, since it is application-

Table 5 Design and realisation of brain perfusion phantoms for quantitative perfusion imaging (PI)

1st author, year [reference] Perfusion measure(s) Phantom performance Q

Direct comparison with Q

Klotz, 1999 [29] BF r = 0.990 50–140mL/min

Wang, 2010 [27] BF r > 0.834 45–180mL/min

Mathys, 2012 [31] BF r = 0.995 200–600mL/min

Peladeau-Pigeon, 2013 [12] BF r = 0.992 210–450mL/min

Ohno, 2017 [33] BF r > 0.90 240–480mL/min

Ziemer, 2015 [40] BF r = 0.98 0.96–2.49 mL/g/min

O’Doherty, 2017 [36] BF r = 0.99 1–5 mL/g/min

Andersen, 2000 [9] BF ε ≈ 0.015 ± 0.03 cm/s
ε ≈ 0.001 ± 0.03 cm/s

0.015 ± 0.002 cm/s
0.570 ± 0.003 cm/s

Ressner, 2006 [39] BF ε > 40%
ε < 20%

1–3 cm/s
5–7 cm/s

Zarinabad, 2012 [35] BF ε = 0.007 ± 0.002 mL/g/min
ε = 0.23 ± 0.26 ml/g/min

0.5 mL/g/min
5 mL/g/min

Zarinabad, 2014 [34] BF ε < 0.03 mL/g/min
ε < 0.05 ml/g/min

2.5–5 mL/g/min
1–2.5 mL/g/min

Suzuki, 2017 [25] BF ε ≈ 0.0589 ± 0.0108 mL/g/min 0.1684 mL/g/min

Hashimoto, 2018 [24] BF ε ≈ 0.0446 ± 0.0130 mL/g/min 0.1684 mL/g/min

Ebrahimi, 2019 [32] BF BF/Q > 0.6 0.12–1.2 mL/min

Indirect comparison with Q

Veltmann, 2002 [17] rkin r > 0.984, χ2 < 0.019 10–45 mL/min

Chai, 2002 [20] ΔSI ratio r = 0.995 50–300mL/min

Cangür, 2004 [28] TTP
PSI
AUC
PG
FWHM

r = -0.964
r = 0.683
r = 0.668
r = 0.907
r = -0.63

1.8–21.6 mL/min

Myer-Wiethe, 2005 [16] ΔSI r = 0.99 4.5–36mL/min

Lee, 2016 [19] fp r > 0.838 1–3 mL/min

O’Doherty, 2017 [36] SI r = 0.99
r = 0.99

1–5 mL/g/min (MRI)
1.2–5.1 mL/g/min (MRI vs PET)

Kim, 2016 [14] AUC Efficiency <50% 0.1–2.0 mL/min

Claassen, 2001 [30] AUC, PSI, MTT No clear correlation with Q

Phantom performance is predominantly listed in correlation statistics (r, χ2) and absolute errors (ε). A distinction is made between direct and indirect comparison
with a “ground truth” flow measure (Q), which consists of theoretical or experimental values. BF Blood flow, TTP Time to peak, MTT Mean transit time, AUC Area
under the curve, (P)SI Peak signal intensity, fp Perfusion fraction, rkin Replenishment kinetics, FWHM Full width at half maximum, PG Positive gradient
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dependent and prone to subjectivity. The latter becomes
apparent in the use of the words “considered”, “reason-
able”, and “acceptable” (by whom, to whom, according
to which criteria?) [51]. We therefore suggest to use Sar-
gent’s theory on model verification and validation [52].
Van Meurs’ interpretation of this theory, including a
practical checklist, is also applicable to physical, biomed-
ical models (in adjusted form) [51]. For example, accord-
ing to the checklist, investigators should verify whether
the applied flow range covers the full physiological
range. Our results (see Fig. 4) show great diversity in
measured flow ranges. In addition, investigators are ad-
vised to consult physiologists and clinicians along the
process, and compare findings with clinical data. In nine
studies, phantom data are indeed compared with human
or animal perfusion data (see Table 1).
When analysing phantom results, we noticed that in-

vestigators use different measures to evaluate quantita-
tive PI outcomes, which hampers comparability (see
Table 5). Some investigators express the relation be-
tween quantitative PI outcomes and the “ground truth”
flow in correlation statistics or plots and others in abso-
lute errors. Due to the diversity in outcome measures,
applied flow ranges, and amount of measurements car-
ried out, interpretation of these results should be han-
dled with caution. A uniform, unambiguous measure to
evaluate both phantom validity and the accuracy and
precision of quantitative PI outcomes is desired.
This study has limitations. Our search was limited to

articles published between 1999 and 2018, yet we are
aware that the development and use of perfusion phan-
toms date further back. Contemporary studies build on
these designs, which makes it relevant to elaborate on
perfusion phantom experiments in advanced PI systems.
Furthermore, we have decided to leave out detailed in-
formation on phantom design and fabrication (e.g., ma-
terial choices and dimensions), since this information
can be found in the appropriate references. Besides,
phantom manufacturing is highly subject to change. We
expect to see more three-dimensional printed perfusion
phantoms in the coming years [43, 53, 54].
In conclusion, this systematic review provided in-

sights into contemporary perfusion phantom ap-
proaches, which can be used for ground truth
evaluation of quantitative PI applications. It is desir-
able to indicate an unambiguous measure for phan-
tom validity. Furthermore, investigators in the field
are recommended to perform measurements in the
full physiological flow range, consult physiologists and
clinicians along the process, and compare findings
with clinical data. In this way, one can verify and val-
idate whether made choices and simplifications in
perfusion phantom modelling are justified for the
intended application, hence increasing clinical impact.
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