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Abstract

Background: Visceral leishmaniasis (VL) is a parasitic infection (also called kala-azar in South Asia) caused by Leishmania
donovani that is a considerable threat to public health in the Indian subcontinent, including densely populated Bangladesh.
The disease seriously affects the poorest subset of the population in the subcontinent. Despite the fact that
the incidence of VL results in significant morbidity and mortality, its environmental determinants are relatively
poorly understood, especially in Bangladesh. In this study, we have extracted a number of environmental
variables obtained from a range of sources, along with human VL cases collected through several field visits,
to model the distribution of disease which may then be used as a surrogate for determining the distribution
of Phlebotomus argentipes vector, in hyperendemic and endemic areas of Mymensingh and Gazipur districts in
Bangladesh. The analysis was carried out within an ecological niche model (ENM) framework using a maxent
to explore the ecological requirements of the disease.

Results: The results suggest that VL in the study area can be predicted by precipitation during the warmest quarter of
the year, land surface temperature (LST), and normalized difference water index (NDWI). As P. argentipes is the single
proven vector of L. donovani in the study area, its distribution could reasonably be determined by the same environmental
variables. The analysis further showed that the majority of VL cases were located in mauzas where the estimated probability
of the disease occurrence was high. This may reflect the potential distribution of the disease and consequently P. argentipes
in the study area.

Conclusions: The results of this study are expected to have important implications, particularly in vector control strategies
and management of risk associated with this disease. Public health officials can use the results to prioritize their visits in
specific areas. Further, the findings can be used as a baseline to model how the distribution of the disease caused by P.
argentipes might change in the event of climatic and environmental changes that resulted from increased anthropogenic
activities in Bangladesh and elsewhere.
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Background
Visceral leishmaniasis (hereafter, VL) caused by Leish-
mania donovani is transmitted to humans by the bite of
the sand fly vector. Some of the prominent species include
Phlebotomus argentipes [1], Phlebotomus orientalis in East
African lowlands [2], Phlebotomus papatasi in Southwest
Asia [3], and Phlebotomus martini in Kenya/Ethiopia [4].
The disease is endemic in 98 countries with an estimated
global burden of 300 million people [5]. Annually,
between 20,000 and 40,000 human fatalities are believed
to be attributed to this disease worldwide [6], and the risk
of insurgence/resurgence or spread into new areas is likely
to increase with the changing climate [7].
Of the total global incidences of VL (also called

kala-azar in South Asia), more than 67% of the cases
are found in the Indian subcontinent, largely affecting
the poorest in a population [6, 8]. The literature
suggests that the number of people at risk in India,
Bangladesh, and Nepal ranges from 200 to 300 million
[9], and the annual economic impact is estimated to be
US$350 million [10]. Because of the significant increase in
VL cases in the Indian subcontinent, in 2005, India,
Bangladesh, and Nepal undertook a program to eliminate
the disease [11].
Environmental factors acquired from various sources,

including geographic information and remotely sensed
data, have been used to predict and elucidate the distribu-
tion of the disease caused by vectors. This approach has
proven to be highly useful for disease prevention and has
been used to forecast epidemics, which is imperative for
the preparedness of health systems to cope with such out-
breaks [3, 4, 7, 12–19]. For example, land surface
temperature and vegetation index obtained from satellite
data showed significant correlation with the occurrence of
sand flies in East Africa [4]. An ecological niche model
(hereinafter, ENM) showed that the distribution of the
sand fly vector was strongly linked with land cover type in
the Middle East [14]. P. papatasi was found to be associ-
ated with vegetation in Southwest Asia [3]. Using two pre-
dictive models, Nieto et al. [20] showed that the highest
VL risk in the interior region of Brazil was linked with a
semiarid and hot climate, while the coastal forest region
was unsuitable for sand fly. Spatiotemporal dynamics of
vector species and human dengue cases was investigated
using the monthly normalized difference vegetation index
from NOAA–AVHRR data together with surface pro-
perties and topographic index [17]. Their study revealed
significant correspondence between predicted vector
activity and human dengue cases in South America. Simi-
larly, elevation, rainfall, temperature, and forest cover were
found to be associated with the distribution of sand flies
in France [13]. Therefore, Guernier et al. [21] emphasized
that consideration of a combination of ecological and cli-
matic factors could greatly enhance the understanding
about the distribution of human pathogens. All of the
studies noted above have demonstrated the influence of
environmental factors on the occurrence of disease and,
consequently, potential distribution of vectors in various
settings, which could support targeted interventions to
tackle vector-borne diseases such as VL caused by sand fly.
Various modeling techniques are now available to inte-

grate environmental layers with disease cases, which
allow environmental factors to be isolated and potential
vector distribution to be mapped. Among them, the
ENM has played a vital role in determining the under-
lying factors that contribute to the spatial patterns of the
disease [17]. It is a powerful tool because of its ability to
predict the distribution of vectors in areas where
detailed sampling is lacking [22], and has been utilized
in various studies around the world to model dengue
[23], malaria [24, 25], canine leishmaniasis [13], anthrax
[15], visceral leishmaniasis [20, 26], leishmaniasis trans-
mitted by Lutzomyia [27–29], Chagas disease [19], and
Japanese encephalitis [16]. For example, using climatic
variables together with topographic parameters in an
ENM, González et al. [7] predicted that climate change
will exacerbate the ecological risk of human exposure to
leishmaniasis in North America.
Although the incidence of VL is not a new phenomenon

in Bangladesh, the major resurgence after the 1990s was
mainly attributed to the cessation of DDT (dichloro
diphenyl trichloroethane) spraying, originally undertaken
to control malaria vectors in South Asia [30, 31]. To date,
a number of initiatives were taken into account to elimin-
ate the disease from Bangladesh, of which the VL elimin-
ation program is the most recent and currently in place
[32]. With the introduction of the program in 2005, there
had been a sharp decrease in the number of cases [11, 33].
Environmental vector management was implemented
as part of the elimination program, for instance in
Mymensingh district, but its effectiveness showed mixed
outcomes [34]. Le Rutte et al. [35] emphasized that such
measures require additional intervention in highly en-
demic areas. Thornton et al. [36] emphasized that a “one
size fits all” strategy may not be an appropriate approach
because VL occurrence is a multifaceted problem. As
noted by Joshi et al. [10], complete elimination may be dif-
ficult to achieve in South Asia due to a number of reasons,
including shortcomings of disease surveillance systems
and resource constraints. Because the natural envi-
ronment is constantly disturbed by humans through agri-
cultural development and/or deforestation due to the
ever-increasing population in Bangladesh, minimizing
“ecological risk” of VL spread [7] could be an important
alternative to keep its occurrence at an acceptable level.
The exact terrestrial habitat of the sand fly vector is largely
unknown [37]; therefore, modeling the distribution of
disease based on environmental conditions could provide
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the information required for the effective management of
this fatal disease [38–40]. The outcome may then guide
health officials in making informed decisions and targeted
interventions.
Although a number of studies of the clinical mani-

festations, epidemiological features, and socioeco-
nomic aspect of VL have been conducted in Bangladesh
[9, 11, 33, 34, 41–55], very few studies have used VL cases
together with environmental variables to investigate the
disease occurrence and factors affecting its distribution,
particularly in endemic areas of Bangladesh [56]. This
study aims to fill this gap with an assumption that if the
probability of the distribution of the disease can be mod-
eled, then the occurrence of vectors could be determined
since their geographical spread appears to be the same.
Here, the human cases obtained from the field visits were
used to model the distribution of VL. As sand flies are
found to be distributed in and around infected households
in endemic areas of Bangladesh [54, 56, 57], we believe
that using human VL cases, in the absence of actual vector
locations, could provide valuable insights into the likeli-
hood of vectors over space and contribute to the under-
standing of the geographic ecology of the vectors.
In this work, first, we aimed to develop an ENM to

predict the distribution of disease in endemic areas of
Bangladesh by assuming that its distribution is likely to
follow the incidence of its vectors. Second, we attempted
to characterize the environmental and ecological condi-
tions suitable for the occurrence of P. argentipes, which
is important in formulating appropriate measures for
effective health-care delivery.

Methods
Study area
In this study, we concentrated on two districts of
Bangladesh: one is hyperendemic, and the other is rela-
tively endemic [58]. Three upazilas (subdistricts), namely
Fulbaria, Trishal, and Gaffargaon, in Mymensingh district
and Sreepur upazila in Gazipur district constitute the
study area, which lies between longitudes of 90.26°–90.54°
E and latitudes of 24.19°–24.62° N (Fig. 1). Of the 15,850
VL cases reported in Bangladesh between 2008 and 2014,
Fulbaria had 4858 cases (30.65%), Trishal had 4670 cases
(29.47%), Gaffargaon had 1426 cases (9.0%), and Sreepur
had 283 cases (1.8%) [59]. These four upazilas comprised
70.92% of the total number of VL cases reported in
Bangladesh. Therefore, we believe the study area provides
a unique opportunity to examine the correspondence be-
tween human VL cases and potential distribution of P.
argentipes.

Environmental variables
The environmental data (Table 1) included 19 biocli-
matic (bioclim) variables, six variables derived from
remotely sensed data, and four soil variables obtained
from a public database. The bioclim variables were
downloaded from the WorldClim website [60]. They
have a nominal resolution of approximately 1 km2 and
were developed from monthly average climate data
between 1950 and 2000 using observed data [61].
Six Landsat scenes, from 2010 to 2015 (11 Mar. 2010,

14 Mar. 2011, 16 Mar. 2012, 19 Mar. 2013, 30 Mar.
2014, 17 Mar. 2015), were downloaded from the USGS
site [62]. Preprocessing of Landsat data included geore-
ferencing, subsetting, and atmospheric correction [63].
A number of derivatives were then computed, including
land surface temperature (LST), normalized difference
vegetation index (NDVI) [64], and normalized difference
water index (NDWI) [65]. A land use/land cover (LULC)
map was also derived via maximum likelihood super-
vised classification [63, 66]. The major LULC categories
were vegetation, human settlements, waterbodies, and
cultivated land. To derive LST, the thermal band of each
Landsat scene was converted to spectral radiance [67],
which was corrected for emissivity [68]. The images
were then converted to the Celsius unit. Mean annual
LST, NDVI, and NDWI data were then computed from
these images. A digital elevation model (DEM) was also
downloaded from ASTER GDEM [62] and used to
calculate the topographic wetness index (TWI) as well
as elevation surface. The TWI was calculated using slope
and flow accumulation data derived from DEM [69].
Apart from the bioclim and satellite-derived parame-

ters, edaphic layers were retrieved from Bangladesh
Agricultural Research Council (BARC) [70]. All the
layers were then clipped to the study area and resampled
to the same geographic extent. As the bioclim variables
have a nominal resolution of 1 km2, the Landsat-derived
products and other variables were resampled to the
same spatial resolution.

Human VL cases
Multitemporal human VL cases were obtained from
kala-azar patient registry logbooks located in each
Upazila Health Complex (UHC). The union (lowest
administrative unit in Bangladesh) and village names
were then extracted from logbooks against the mauza
(village and mauza are synonymous but mauza is
used in Bengali) names, obtained from a community
series database provided by the Bangladesh Bureau of
Statistics (BBS). This operation resulted in a total of
3671 cases from 2010 to 2015, whose residence was
within the study area. In early 2016 (January–May),
we conducted several field visits to obtain the
geographic coordinates of infected VL cases, occurred
between 2010 and 2015, and successfully located 333
households. A Global Positioning System (GPS) was used
to obtain the precise coordinates of the individual



Fig. 1 Location of the study area. Point shapes indicate the observed human VL cases obtained from the fieldwork
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households. Two handheld GPSs (Trimble Nomad 800GXE)
were employed to record the absolute location of a case. If
a household had multiple cases, we recorded only one
point for that household to facilitate the dispersed distri-
bution of cases over the area of interest. Because living
with or near a person who had recently experienced VL
has been identified as an important risk factor in
Bangladesh [9, 49], we hypothesized that the use of mul-
tiple cases from the same household could lead to house-
hold clustering that may bias our model. During the
fieldwork, each household was assigned a code in the data-
base to uniquely identify its location related to upazila,
mauza, and union. Besides, geotagged photographs of
physical and cultural features were taken to facilitate this
study. The location of the 333 VL cases is shown in Fig. 1.
Given the paucity of case locations, the spatially unique

human VL cases obtained from the fieldwork were used
as presence data in our effort to develop an ENM. Human
cases have been used as presence data in a number of pre-
vious studies to develop ENMs for determining potential
vector distribution in different settings [20, 71, 72].
Ecological niche modeling
There are two approaches to construct an ENM for
modeling disease and the distribution of vectors [73].
The first approach involves modeling the species, with
occurrence data, that participate in the transmission
cycle [14, 16, 74] while the second approach analyzes
the distribution of disease occurrence, as if it was a
species, considering the entire transmission cycle and its
ecological relationships [20, 71, 72]. In addition to this,
P. argentipes has been shown to be the single proven
vector of L. donovani in the study area [50]; thus, its
distribution could reasonably be determined by the same
environmental variables used to model the distribution
of the disease.
In this study, we employed the second approach, using

the maxent software to construct an ENM [75], which is
based on a maximum entropy algorithm. This algorithm
has been found to be robust in predicting vectors or spe-
cies distribution from presence-only data [76, 77]. Sillero
[22], however, observed that the use of presence-only
data results in the identification of a “realized niche,”



Table 1 Environmental variables used in this study

Serial
no.

Variable Description of the variable Source

1 Bio_1 Annual mean temperature www.worldclim.org/
current

2 Bio_2 Mean diurnal range
(mean of monthly
(max temp −min temp))

3 Bio_3 Isothermality (Bio2/Bio7)
(*100)

4 Bio_4 Temperature seasonality
(standard deviation*100)

5 Bio_5 Max temperature of
warmest month

6 Bio_6 Min temperature of
coldest month

7 Bio_7 Temperature annual
range (Bio5–Bio6)

8 Bio_8 Mean temperature of
wettest quarter

9 Bio_9 Mean temperature of
driest quarter

10 Bio_10 Mean temperature of
warmest quarter

11 Bio_11 Mean temperature of
coldest quarter

12 Bio_12 Annual precipitation

13 Bio_13 Precipitation of wettest
month

14 Bio_14 Precipitation of driest
month

15 Bio_15 Precipitation seasonality
(coefficient of variation)

16 Bio_16 Precipitation of wettest
quarter

17 Bio_17 Precipitation of driest
quarter

18 Bio_18 Precipitation of warmest
quarter

19 Bio_19 Precipitation of coldest
quarter

20 Drainage Soil drainage www.barc.gov.bd

21 GST General soil type

22 Soil
moisture

Soil moisture

23 Soil
reaction

Soil reaction or soil pH

24 LULC Land use/land cover Landsat images
(https://earthexplorer.
usgs.gov/)25 NDVI Normalized difference

vegetation index

26 NDWI Normalized difference
water index

27 TWI Topographic wetness
index

28 LST Land surface temperature

29 Dem Elevation ASTER GDEM
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which is the area suitable in terms of biotic and abiotic
factors. In contrast, Lobo et al. [78] noted that the use of
absence or pseudo absence data increases the chance of
error of estimation. In this work, we utilized field-
derived VL case locations, as presence-only data to be
used as input data. The maxent software computes
niches by finding the distribution of probabilities closest
to uniform, with the constraint that feature values match
their empirical averages [79]. Based on the environmen-
tal conditions of known locations, maxent estimates a
probability distribution map with a value between 0 and
1 for each cell, where 0 indicates the least suitable and 1
indicates the most suitable cell for disease or species
occurrence [76]. The reasons for using maxent in this
study were threefold: one, it is good at characterizing en-
vironments in a study area [80] and identifying potential
niches of vectors [81]; two, the results are highly useful
for regions where actual vector locations are missing or
limited [76]; and three, the fact that the disease is both
zoonotic and anthroponotic [82] means that a realized
niche for P. argentipes is achievable, which is therefore a
potential niche for VL and can readily become a realized
niche for VL by the introduction of an infected animal
or human. Hence, the second approach seems to be
relevant to this work.
In this study, we used a wide range of environmental

variables and developed 30 models, each with one of the
29 variables (Table 1) removed and one with none of the
variables removed. The 30 models were run to evaluate
the contribution of each variable to the modeling results.
In each iteration, we recorded the best combination of
variables by calculating the test area under the curve
(AUC). High test AUC values indicate a good fit of the
model to the testing data, implying high predictive
power [83]. The excluded variables that caused the
greatest decreases in AUC values were also recorded.
This operation outputted a total of six variables, namely
LST, NDWI, precipitation of the warmest quarter,
precipitation seasonality, general soil type (GST), and
drainage (Table 2). These variables were then used to
construct an ENM to determine their influence on the
likelihood of P. argentipes occurrence.
Out of the 333 VL case locations, 75% (248 presence

points) were assigned randomly as training data and the
remaining 25% (82 points) were used as testing points
for model validation. Note that three duplicate points
were removed by maxent during the model building.
Both threshold-dependent and threshold-independent
approaches were employed to evaluate the ENM. The
AUC of the receiver operating characteristic (ROC) is a
threshold-independent method that was used to calcu-
late the total AUC of the sensitivity versus the fractional
predicted area [77]. Models with AUC values from 0.75
to 0.90 are considered very useful, and >0.90 is

http://www.worldclim.org/current
http://www.worldclim.org/current
http://www.barc.gov.bd/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Abdullah et al. Tropical Medicine and Health  (2017) 45:13 Page 6 of 15
considered highly accurate [72, 84]. The threshold-
dependent measure was based on minimum training
presence and used a one-tail binomial test. The null
hypothesis was that the ENM does not predict the test/
predicted presence points better than a random model.
If the null hypothesis is rejected, then the ENM is a
better predictor [14, 77].
To determine the variables that contributed most to

the ENM construction, the percent contribution and the
jackknife test of variable importance were used. The
maxent algorithm measures the drop in the training
AUC during permutation and expresses it as the percent
contribution to the model. On the other hand, during
the jackknife test, the model is developed using only one
variable to find the increase in training gain and then
with all variables while excluding that variable to deter-
mine the decrease in training gain [85, 86]. The variable
that causes the highest gain when used in isolation
encompasses the most useful information, and the one
causing the highest decrease in gain contains the most
unique information [83]. Therefore, we isolated the top
three variables during the final ENM development based
on the highest percent contribution and the two vari-
ables that produced the highest increase and decrease in
training gain (when included and excluded alone). How-
ever, when a single variable was found in all three cri-
teria, we extended our search based on the highest
values of training gain, test gain, and test AUC in the
jackknife test. The variables that produced the highest
gains and test AUCs when used alone were considered
as the most important variables [83]. The probability
distribution map produced by maxent was then con-
sulted to extract logistic probability values of each
mazua, in order to determine suitable and unsuitable
locations (based on the probability values) for the distri-
bution of P. argentipes. A threshold value of 0.5 is com-
monly used [87] to identify moderate to high probable
locations of the disease, consequently the vectors. The
mean VL cases obtained from the UHC records were
subsequently computed for each mauza and compared
with the probability value. This comparison may be use-
ful to understand the strength of the ENM developed
here and the suitability of the disease distribution and,
consequently, potential distribution of vectors in the
study area.
Results
The results of 30 runs of the models, where each vari-
able was excluded one at a time and once with all the
variables included, are shown in Table 2. Only six vari-
ables produced test AUC values below 0.815, namely
precipitation seasonality, precipitation during the warm-
est quarter, drainage, general soil type, NDWI, and LST.
These variables were considered to have contributed
most to the model development.
In Fig. 2, sensitivity versus the fractional area graphs

for the final ENM with LST, NDWI, precipitation of the
warmest quarter, precipitation seasonality, general soil
type, and drainage are shown for the training and test
data. The AUC value for the training was 0.842 and the
test AUC was 0.804 with a standard deviation of 0.030,
indicating the performance of the model was highly
satisfactory. Further, the test AUC was well above the
random prediction AUC, suggesting that the ENM was
much better at predicting the distribution of disease,
hence the occurrence of P. argentipes than a random
model. The narrow range of the standard deviation
showed the high accuracy of the average output pro-
duced. The minimum training presence for a training
point was 0.024; therefore, this value was used as the
threshold in the model evaluation. The fractional pre-
dicted area was 0.977 with a test omission rate of 0.012.
At this threshold, the null hypothesis was rejected
because the constructed ENM performed significantly
better than a random model (p < 0.05).
Table 3 shows that precipitation of the warmest quar-

ter had the highest percent contribution, along with the
highest increase and decrease in training gain in the
jackknife test. As shown in Fig. 3, the jackknife test of
variable importance revealed that both the test gain and
test AUC were higher for LST, precipitation of the
warmest quarter, and NDWI. These three variables had
a total contribution of 70.2% to the model building
(Table 3) and were possibly highly influential for disease
occurrence. The specific probability values of these three
variables showed that precipitation of the warmest
quarter, which had a value of 1040 mm, was potentially
suitable, while NDWI values from −0.35 to −0.10 and
LSTs between 29.86 and 31.19 °C were estimated to be
conducive. An LST of 29.9 °C and NDWI of −0.225 pro-
duced the highest probability of affecting the distribution
of disease.
The probability distribution map of the disease pro-

duced by the ENM is shown in Fig. 4. The distribution
map can be used to identify areas with high and low
portability of the disease occurrence or potential of P.
argentipes distribution at the mauza level. Intersection
of this map with the mauza database indicated that out
of 479 mauzas, four in Fulbaria, three in Gaffargaon,
eight in Trishal, and seven in Sreepur upazilas exhibited
moderate to high probability of disease occurrence
(Table 4), consequently the potential of the distribution
of P. argentipes in the study area.
Interestingly, of the 22 mauzas (27.5% of the study

area), which were identified using a cutoff value of 0.5,
18 had the higher numbers of mean VL cases. This
result suggests that the ENM performed well and



Table 2 Results of the 30 runs of the models with individual variables excluded in turn

% Contribution in
model development

Jackknife test
(based on training gain)

Excluded variable Test AUC Standard
deviation

1st 2nd 3rd

None 0.819 0.0328 bio18 bio18 LST

Annual mean temperature (Bio_1) 0.818 0.0330 bio18 bio18 LST

Mean diurnal range (Bio_2) 0.820 0.0329 bio18 bio18 LST

Isothermality (Bio_3) 0.821 0.0327 bio18 bio18 LST

Temperature seasonality (Bio_4) 0.819 0.0331 bio18 bio18 LST

Max temperature of warmest month (Bio_5) 0.819 0.0330 bio18 bio18 NDWI

Min temperature of coldest month (Bio_6) 0.819 0.0332 bio18 bio18 LST

Temperature annual range (Bio_7) 0.820 0.0329 bio18 bio18 LST

Mean temperature of wettest quarter (Bio_8) 0.819 0.0329 bio18 bio18 LST

Mean temperature of driest quarter (Bio_9) 0.820 0.0328 bio18 bio18 LST

Mean temperature of warmest quarter (Bio_10) 0.819 0.0330 bio18 bio18 LST

Mean temperature of coldest quarter (Bio_11) 0.819 0.0329 bio18 bio18 LST

Annual precipitation (Bio_12) 0.820 0.0328 bio18 bio18 LST

Precipitation of wettest month (Bio_13) 0.818 0.0330 bio18 bio18 LST

Precipitation of driest month (Bio_14) 0.820 0.0325 bio18 bio18 LST

Precipitation seasonality (Bio_15) 0.812 0.0337 bio18 bio18 LST

Precipitation of wettest quarter (Bio_16) 0.820 0.0327 bio18 bio18 LST

Precipitation of driest quarter (Bio_17) 0.819 0.0329 bio18 bio18 LST

Precipitation of warmest quarter (Bio_18) 0.814 0.0331 GST bio13 LST

Precipitation of coldest quarter (Bio_19) 0.819 0.0330 bio18 bio18 LST

Soil drainage 0.814 0.033 bio18 bio18 GST

General soil type (GST) 0.811 0.0342 bio18 bio18 LST

Soil moisture 0.820 0.0327 bio18 bio18 LST

Soil reaction 0.820 0.0327 bio18 bio18 NDWI

Land use/land cover category (LULC) 0.820 0.0328 bio18 bio18 LST

Normalized difference vegetation index (NDVI) 0.822 0.0321 bio18 bio18 NDWI

Normalized difference water index (NDWI) 0.813 0.0334 bio18 bio18 LST

Topographic wetness index (TWI) 0.819 0.0328 bio18 bio18 LST

Land surface temperature (LST) 0.813 0.0328 bio18 bio18 NDWI

Elevation 0.820 0.0327 bio18 bio18 LST

Italicized variables are considered to have contributed most to the model development
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demonstrates the correspondence between known VL
cases and potential distribution of vectors. In other
words, if the probability of the disease occurrence itself
is being modeled, one can expect that its incidence will
follow the same. In addition, the ecological requirements
of the disease as a result of P. argentipes abundance in
these mauzas (Table 4) indicated positive relationships
between observed human cases and precipitation dur-
ing the warmest quarter of the year, LST, and NDWI.
For instance, the mean LST (30.17 °C), mean NDWI
(−0.24), and mean precipitation of the warmest quar-
ter (1040.8 mm) were found to account for the high
VL occurrence in Kushmail mauza in Fulbaria upazila, as
exemplified by the high probability of disease distribution.
A somewhat similar association was found in Kakchar
mazua in Trishal upazila. However, this association was
not always true for every mauza investigated in this study.
For instance, Achim Patuli mauza in Fulbaria upazila
showed some non-linearity between mean VL cases and
probability of the disease distribution.

Discussion
VL is a life-threatening disease that disproportionately
affects the poorest subset of populations in the Indian



Fig. 2 Sensitivity versus specificity graphs for VL disease distribution using the final ENM
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subcontinent and elsewhere [8]. We developed an ENM
to demonstrate the correspondence between human VL
cases and potential distribution of P. argentipes in
endemic areas of Bangladesh. Ecological requirements of
the disease occurrence caused by the sand fly vector
were also determined. The analysis revealed that precipi-
tation during the warmest quarter of the year (bio18),
NDWI, and LST were the main environmental factors
associated with the distribution and incidence of the dis-
ease. As P. argentipes is the single proven vector of L.
donovani in the study area [50], its distribution is likely
be determined by the same environmental variables.
One highly likely explanation is the role of these envi-
ronmental factors in regulating microclimates of the re-
gion, which potentially affect vector populations and the
reservoir hosts.
Precipitation during the warmest quarter of the year

appeared to be the main climatic factor influencing
actual and probable incidences of the disease, which re-
inforces the general consensus that moist conditions are
suitable for sand flies such as P. argentipes. High seaso-
nality in the occurrence of the disease has been observed
during the warm months in Bangladesh [9]. Therefore,
Table 3 Identification of the top three variables based on percent c

Variable Percent contribution Training gain
(without variable)

Training gai
(only variab

LST 15.8 0.7247 0.2379

NDWI 22.8 0.676 0.2681

Precipitation
seasonality

5.6 0.785 0.0975

Precipitation of
the warmest quarter

31.6 0.6261 0.293

Drainage 15.4 0.7819 0.135

GST 8.8 0.7527 0.0771
the influence of precipitation during this period is not
surprising as sand fly populations and the proportion of
gravid females are at their highest during this period
[34]. The Irrigation Support Project for Asia and the
Near East (ISPAN) [88] observed that adult sand flies
usually emerge during early summer (March–May) in
Bangladesh and continue to thrive until the monsoon
period (June–September/October) as a result of in-
creased humidity. It is, thus, reasonable to assume that
moist conditions resulting from heavy rainfall lead to the
occurrence of the disease and possibly support sand fly
emergence and abundance, especially in the study area,
because high humidity is a prerequisite for their survival
[38, 89]. Humidity determines the extrinsic incubation
and vector life cycle, and Bhunia et al. [90], for example,
observed that the abundance of P. argentipes in Bihar
was associated with high humidity and heavy rainfall.
Our results differ slightly from those of similar studies
in Iran [91], India [39, 89], and Sudan [38] in which
annual rainfall, rather than precipitation during a certain
period, was reported as an influential factor affecting the
distribution of the disease. The difference between our
findings and those of others may stem from local
ontribution, and training and test gains

n
le)

Test gain
(without variable)

Test gain
(only variable)

Test AUC
(without variable)

Test AUC
(only variable)

1.0048 0.4909 0.7891 0.6779

0.9771 0.4878 0.8048 0.7146

1.066 0.1523 0.7873 0.6582

0.9063 0.5081 0.7878 0.7322

1.1004 0.1171 0.7958 0.6489

1.1058 0.0326 0.7914 0.572



Fig. 3 Jackknife test of variable importance in the ENM. a Training gain. b Test gain. c Test AUC
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physiographic and climatic characteristics of the study
sites as well as differences in the methods used. Because
the transmission of many parasitic diseases is confined
to the summer season, changes in the lengths of rainy
and dry seasons, together with changes in the intervals
between seasons as a result of climatic changes, are
likely to affect larvae and adult vector development and
abundance [92]. Additional study is therefore warranted.
The NDWI is another important variable affecting the

occurrence of the disease and potentially accountable for
vector abundance in the study area. In an NDWI image
derived from Landsat, negative values are a reflection of
water features [65]. Over the study area, we found that
water features ranged from −0.351 to 0.104, which
may have contributed to the occurrence of P. argentipes.
The presence of waterbodies, such as swamps, ponds,
ephemeral canals, and marshy lands, is considered to
provide suitable vector breeding sites [93]. This result
suggests that people living close to waterbodies may
have elevated risk of infection. Case–control studies in
India confirmed that rural households in close proxim-
ity to waterbodies were at greater risk of VL than those
apart [40, 94]. Bhunia et al. [39, 90] examined the ef-
fect of waterbodies/NDWI derived from satellite data
on VL cases and reported a strong association, which
agrees with our finding. Their study further revealed
that VL cases decreased with increased distance from
waterbodies. In a recent study, Abedi-Astaneh et al.
[95] showed that low-lying land provides a good eco-
logical niche for the sand fly vector. Our study area is
characterized by lowlands with widespread water fea-
tures; therefore, higher transmission potential of P.
argentipes is very likely. The role of waterbodies in
supporting vector abundance in the study area may be



Fig. 4 Estimated probability of the disease in the study area
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because they contribute significantly to maintaining
moisture in the soil/subsoil, which suits the breeding
and propagation of the immature stages of sand flies as
well as provides resting habitats for the vector in ad-
joining domestic biotopes [40].
In addition to the presence of waterbodies in endemic

areas, modification of the natural hydrological system
through flood control, drainage, and/or irrigation may
be equally responsible for the distribution of disease via
enhanced vector activity. This was evidenced by Emch
[53], who noticed that the incidence of VL cases in
flood-controlled (e.g., embanked) areas of northwest
Bangladesh was significantly higher than that in non-
embanked areas, which he attributed to lack of seasonal
flooding within the embanked areas. Despite the
mechanism being not fully clear, ISPAN [88] argued that
floods can wash away organic matter and larvae sites,
and this process is impeded by flood control works that
evidently facilitate larval development and breeding of
sand flies. The efficacy of flooding on immature stages
of sand fly was also observed by Mukhopadhyay et al.
[96] in India, suggesting that flooding beneficially
removes vector breeding sites. Hence, environmental
changes caused by population growth, agricultural intensi-
fication, and development activities (e.g., flood control
works, road construction) may have resulted in an en-
vironment that is humid, a factor essential for sand
fly larval development. In addition, widespread rainfall



Table 4 Mauzas showing moderate to high probabilities of the VL cases, caused by P. argentipes with corresponding mean value of
environmental variables

LST NDWI Precipitation of the
warmest quarter

Union Mauza Mean cases Probability Mean (°C) Mean Mean (mm)

Fulbaria Kushmail Kushmail 24 0.92 30.174 −0.244 1040.833

Achim Patuli Achim Patuli 18 0.65 30.223 −0.221 1027.950

Putijana Putijana 16 0.76 29.956 −0.276 1040.833

Radhakanai Radhakanai Dhurdhuri 14 0.51 30.135 −0.238 1050.540

Trishal Rampur Kakchar 41 0.97 30.135 −0.252 1064.750

Kanihari Kanihari 35 0.96 30.214 −0.232 1076.440

Harirampur Magurjora 29 0.96 30.364 −0.211 1044.500

Kanihari Barma 16 0.87 30.128 −0.233 1068.800

Harirampur Rargaon 13 0.81 30.211 −0.233 1041.643

Trishal Satra Para 10 0.88 30.343 −0.237 1045.500

Bali Para Bahadurpur 7 0.58 30.177 −0.245 1066.667

Kanthal Kanthal 6 0.54 30.041 −0.248 1073.609

Gafargaon Raona Raona 7 0.63 30.071 −0.250 1037.667

Jessora Jasara 5 0.60 30.295 −0.226 1046.636

Gaffargaon Autbaria 6 0.52 30.105 −0.253 1050.500

Sreepur Maona Maona 33 0.86 30.635 −0.223 990.160

Maona Bara Rathura 13 0.76 30.677 −0.231 986.286

Ward No-04 Bhangahati 12 0.80 30.457 −0.217 995.500

Barmi Satkhamair 9 0.71 30.478 −0.248 1004.485

Telihati Tengra 9 0.64 30.532 −0.229 1002.200

Rajabari Noagaon 8 0.66 30.366 −0.240 976.670

Ward No-01 Ujilaba Purbapara 4 0.51 30.183 −0.288 997.000
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during summer in the study area could lead to artificial
logging and/or riverine pools due to its low elevation,
which appear to affect the ecological environment of the
vectors [40]. Consequently, the population dynamics of
disease-carrying insects or their breeding periods and
reproduction may be affected, because the breeding suc-
cess of sand flies is highly dependent on rainfall duration
[97]. Furthermore, people in rural Bangladesh commonly
interact with waterbodies for various reasons such as fish-
ing, bathing, and/or irrigation. These types of activities
may enhance transmission potential of VL to humans.
The transmission dynamics of VL in relation to water-
bodies, therefore, remains a very promising area for de-
tailed investigation.
One of the most important factors in the distribution

of sand fly is temperature because it affects its survival
and the speed of development of the different stages in
the life cycle [98]. A temperature range of 7–37 °C with
a relative humidity of >70% is highly favorable for sand
fly survival in India [99]. Our analysis indicated that
mean annual LST in the range 29 to 31 °C was an
important predictor of the distribution of the disease,
which may be useful to understand the distribution of P.
argentipes in the study area, since one can expect that
the incidence of disease generally follows the occurrence
of sand fly [49]. This finding supports an earlier observa-
tion by Kesari et al. [100], who demonstrated that mean
and maximum LSTs were significantly associated with
sand fly density in India. Thomson et al. [101] also
found that mean annual maximum daily LST from 34 to
38 °C was one of the most important ecological determi-
nants of P. orientalis distribution in Sudan. Similarly,
Gebre-Michael et al. [4] reported that, in East Africa,
seasonal and annual LSTs were one of the best
ecological determinants of P. martini and P. orientalis.
Another study in Sudan, however, reported a negative
relationship between LST and VL occurrence but con-
firmed the role of annual mean maximum and minimum
daily atmospheric temperatures in the distribution of
vectors [98]. Kesari et al. [100] indicated that a dry sea-
son LST of 22.23 °C and a wet season LST of 23–34 °C
could account for P. argentipes distribution; however, in
our study, we found that an annual LST of 29–31 °C
likely provided a suitable niche for the incidence of the
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disease, suggesting the potential of P. argentipes survival
and abundance in the study area. Nevertheless, our
study together with findings from previous work in India
and East Africa clearly underscored the role of LST in
the occurrence of the disease.
If temperatures increase and rainfall regimes change as

a result of climate warming, there would be a significant
effect on vector populations. Rainfall helps to increase
relative humidity, and alterations of temperature could
support longevity of the vector and transmission of the
disease [102]. Therefore, the impact of probable climate
changes on the spread of the disease caused by sand flies
(e.g., P. argentipes) remains a very important research
topic in South Asia and Bangladesh.
Based on the probability value of 0.5, our ENM diffe-

rentiated mauzas that had moderate to high probability
of the disease (Table 4, Fig. 4), suggesting the likelihood
of vector presence over space. These mauzas were
distributed in all four upazilas in the study area, and in
these mauzas, the observed mean VL cases appeared to
follow the likelihood of P. argentipes distribution. Al-
though the human cases in this study were retrospective,
this finding does not seem to have occurred at random,
meaning that our modeling approach clearly coincides
the potential vector distribution with observed VL cases.
This finding is partially consistent with those of Bern
et al. [9] and Chowdhury et al. [11], who found that
Fulbaria and Trishal in Bangladesh were highly endemic
to VL. Note that the slight disagreement between prob-
ability of disease distribution and mean VL cases of
three mauzas (Achim Patulia in Fulbaria, Satra Para in
Trishal, and Naogaon in Sreepur) may have resulted
from the socioeconomic situation and cultural behavior
of the inhabitants of the investigated upazilas. An
ongoing study is expected to clarify this.
A number of improvements to this study are possible.

First, ENMs, such as the one developed in this study, are
based on limited numbers of historical human VL cases.
Small samples of occurrence points could lead to sam-
pling bias, which may affect the overall results [25],
though maxent arguably produces accurate predictions
[76]. Second, inclusion of absence points (if available)
could help to identify reasons for unsuitable ecological
conditions, though Ortega-Huerta and Peterson [103]
have suggested that this issue has a negligible effect
when the spatial scale of analysis is small. Third, ENM
predictions are based on input variables that affect larval
development and vector survival [16]. Since we used the
location of human cases as an input variable, the model-
ing result may be interpreted as a proxy for the potential
distribution of P. argentipes. Fourth, the use of too many
environmental variables may lead to misrepresentations
due to overfitting [104], which might have increased the
model complexity [77]. Fifth, we used a grid-based
model to predict potential P. argentipes distribution
based on human cases and environmental parameters as
opposed to using biogeographic limits [15]. This could
be another limitation. Since P. argentipes is the single
proven vector accountable for disease transmission in the
study area [50], this work did not consider other species
that may be responsible for the transmission of VL in the
study area. This might be another shortcoming of this
work. Finally, VL case data obtained from UHCs were very
poorly recorded and required very careful assimilation.
Due to a shortage of funds and the sparse distribution of
VL-affected households, we had to rely on a small sample
size to develop the ENM. Future studies should include
more samples from the endemic areas.
Despite the limitations described above, the major

strengths of this study are the identification of a fine-
scale regional map that shows potential distribution of
the disease and the isolation of the factors affecting the
occurrence of P. argentipes. Our modeling result could
certainly be used as a proxy for potential distribution of
vectors that influences sand fly distribution in the en-
demic areas of Bangladesh. We believe that this work
may be of considerable value, especially since a recent
study strongly emphasized the need for microenviron-
mental studies of factors that influence VL distribution
in endemic areas of Bangladesh [56].

Conclusions
To the best of our knowledge, this is the first attempt to
identify underlying environmental factors that are
accountable for visceral leishmaniasis (VL) incidence in
Bangladesh. We developed an ENM to model the distri-
bution of the disease which can be used as a proxy for
potential distribution of vectors in endemic areas. In
addition, ecological niches of the disease were identified,
based on a wide range of environmental variables.
The analysis demonstrated that precipitation during

the warmest quarter, land surface temperature (LST),
and normalized difference water index (NDWI) were
the main environmental factors influencing the occur-
rence of the disease in the study area. The result of
the ENM may also be used to determine potential
distribution of P. argentipes, as it is the only proven
vector in the study area. Further, the occurrence of
the vectors is likely to be determined by these envi-
ronmental variables. This model could be used as a
stepping stone to improve vector surveillance and
sand fly control efforts, which could then support
mapping of at-risk households. This work can be used
as a baseline to model how the disease as well as
vector distribution might change in the event of global
environmental changes. Awareness should be raised in re-
gions with high probability of the disease occurrence to
prevent its insurgence/resurgence since it is anthroponotic
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in and around Bangladesh. This ecological study could be
used with other socioeconomic parameters to develop a
holistic and foolproof policy for eradicating the disease.
We believe that knowledge of the environmental require-
ments to predict the distribution of the disease and, con-
sequently, the vectors over space could help to support
targeted responses to tackle this lethal disease, which
affects the poorest people in Bangladesh.
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