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Abstract

Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although
embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER),
inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation
of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–
Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted
much attention. In the present review, we particularly focus on recent studies that have elucidated possible
mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
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Background
In eukaryotic cells, the concentrations of ribonucleotide
triphosphates (rNTPs), i.e., RNA precursors, are ap-
proximately two orders of magnitude higher than those
of DNA precursors, deoxyribonucleotide triphosphates
(dNTPs) [1, 2]. Although DNA polymerases (pols) can
accurately discriminate the correct substrate dNTPs
against rNTPs, the great abundance of rNTPs in cellular
nucleotide pools enables them to be incorporated into
genomic DNA. Indeed, numerous rNTPs are incorporated
into the genome; approximately 13,000 and > 1000,000
ribonucleotides are embedded into the genomes of yeast
and mouse embryonic fibroblast cells, respectively [3, 4].
In humans, hypomorphic mutations of the genes encoding
subunits of RNase H2, the enzyme essential for initiation
of canonical ribonucleotide excision repair (RER), are
associated with the serious autoimmune disease Aicardi–
Goutières syndrome (AGS) [5]. The AGS autoimmune
phenotype is believed to be caused by the accumulation of
endogenous nucleic acid species, which activate intracellu-
lar Toll-like receptors, and/or DNA damage responses
induced by the embedded ribonucleotides, stimulating

interferon production in RNase H2-compromised cells
[6]. In mouse models, early embryonic lethality results
from the complete disruption of RNase H2 [3, 7]. Add-
itionally, tissue-specific inactivation of RNase H2 can
progress to tumorigenesis [8, 9]. Mammalian cells defi-
cient in RER accumulate ribonucleotides in the genome
and display various abnormalities, such as DNA replica-
tion delay, enhanced DNA damage, chronic activation of
DNA damage responses, and epigenetic dysfunction [3, 7,
10–12]. Thus, genomic ribonucleotide accumulation is a
disastrous event in cells, and molecular mechanisms
underlying ribonucleotide-induced genome instability
have been of a great interest over the last decade. Essential
studies in this field have been well summarized in several
reviews [13–19]. In this article, we focused on mammals
in particular and recent research that has investigated the
possible mechanisms underlying ribonucleotide incorpor-
ation and their processing pathways has been described.

Review
Source of ribonucleotide incorporation into DNA
Eukaryotic DNA pols are classified into six families (A, B,
X, Y, RT, and AEP) on the basis of amino acid sequence
comparisons [20, 21]; family A (pols γ, θ, and ν), family B
(pols α, δ, ε, and ζ), family X (pols β, λ, μ, and TdT), family
Y (pols η, κ, ι, and Rev1), family RT including telomerase,
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and family AEP including PrimPol. Most pols possess a
conserved “steric gate” amino acid residue, which prevents
ribonucleotide incorporation into DNA [22]. Although
pols β and λ lack an aromatic steric gate amino acid side
chain, both pols utilize a protein backbone segment to
discriminate among sugars [23–25].
Although pols have a discrimination system against

rNTPs, they can incorporate rNTPs into DNA at a non-
negligible rate. For the human replicative pol α from
family B, rNTPs are inserted with a 500-fold lower
frequency than dNTPs during DNA synthesis [26]. The
other replicative pols, δ and ε, are prone to incorporate
rNTPs at physiological nucleotide concentrations similar
to those of yeast replicative pols that incorporate one
ribonucleotide for every thousands of deoxyribonucleo-
tides [27, 28]. Therefore, millions of ribonucleotides may
be embedded into the human genome. Notably, 3′-exo-
nuclease activities of these pols cannot efficiently remove
the inserted ribonucleotides [27, 28], which suggests that
the proofreading during replication does not protect the
genome from the aberrant ribonucleotide incorporation.
The mitochondrial pol γ, a member of family A, discrimi-

nates rNTPs with 1000- to 77,000-fold preference for
dNTPs depending on the identity of nucleotides [26, 29].
As observed in family B pols, the 3′-exonuclease activity of
pol γ does not contribute to the protection from ribonucle-
otide incorporation [30]. Based on previous studies, for
16.5 kb of mitochondrial DNA (mtDNA), pol γ is predicted
to incorporate roughly 10–20 ribonucleotides during repli-
cation. However, the number of ribonucleotides in mtDNA
(54, 36, and 65 ribonucleotides in one mtDNA molecule of
human fibroblasts, HeLa cells, and mouse liver, respect-
ively) was shown to be much higher than the expected
frequency [30, 31]. This difference is expected to result
from the presence of the other pols participating in mtDNA
replication and/or the influence of varying nucleotide
concentrations inside mitochondria [30].
Family X pols, involved in DNA repair processes such

as base excision repair (BER) and non-homologous end
joining (NHEJ), have also been suggested to play roles in
inserting ribonucleotides into DNA. Pols β and λ have
substrate selectivity in the range of 3,000- to 50,000-fold
preference for dNTPs in comparison with rNTPs [22].
Although they strongly discriminate against ribonucleo-
tides, a recent study showed that pol β, rather than pol
λ, has an impact on the activity of ribonucleotide inser-
tion opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-
oxo-dG), a base resulting from oxidative damage, in cel-
lular extracts [32]. Additionally, oxidative ribonucleotide
8-oxo-rGTP can be utilized as a substrate for DNA
synthesis by pol β [33]. Notably, pol μ and TdT, unlike
other pols, favorably incorporate rNTPs into DNA
(only 1- to 10-fold discrimination against rNTPs) [22,
34]. Importantly, ribonucleotides are primarily utilized

by both pols during NHEJ in cells [35], leading to benefi-
cial consequences for DNA strand break repair; the inser-
tion of ribonucleotides increases the fidelity of pol μ and
promotes the ligation step during NHEJ [35, 36]. Although
DNA repair processes, as well as DNA replication, can be
sources of ribonucleotide incorporation, the transient
presence of ribonucleotides contributes to the efficient re-
pair of DNA maintaining genome integrity.
Family Y pols can replicate across DNA lesions via a

process known as translesion DNA synthesis (TLS). Des-
pite the presence of the steric gate residue in the active
site [37–39], TLS pols can insert rNTPs into DNA in the
following specific situations [38, 40]: Pol ι can incorpor-
ate rNTPs opposite undamaged template DNA depend-
ing on the sequence context. During TLS, the insertion
of rNTPs by Pol ι is also observed across damaged DNA
such as an abasic site (AP-site) and 8-oxo-dG. Another
TLS Pol η can insert rCTP opposite 8-oxo-dG and
cisplatin intrastrand guanine crosslinks. In addition, the
activity of RNase H2-mediated cleavage of the inserted
ribonucleotide decreases in the presence of these types
of DNA damage. Thus, the TLS pathway may contribute
to genomic ribonucleotide accumulation.

Repair/tolerance mechanisms of embedded
ribonucleotides
RNase H2-initiated ribonucleotide excision repair
Embedded ribonucleotides are primarily repaired by
RNase H2-mediated RER (Fig. 1 (1)) [41]. In vitro stud-
ies have revealed the detailed mechanism underlying the
RER pathway: RNase H2 recognizes the ribonucleotide
in DNA and cuts the DNA 5′-phosphodiester bond of
the ribonucleotide [42, 43]. This incision reaction is
followed by strand displacement synthesis by pols δ or ε,
flap DNA cleavage by flap endonuclease FEN1 or the
exonuclease Exo1, and nick sealing by DNA ligase I [41].
Eukaryotic RNase H2 is a heteromeric complex contain-

ing a catalytic subunit RNASEH2A and auxiliary subunits
RNASEH2B and RNASEH2C [43]. RNASEH2B physically
interacts with PCNA via the PCNA-interacting motif [44],
indicating that RER is coupled with DNA replication.
Indeed, mammalian cell studies suggest that RNase H2 is
recruited and co-localized to replication and repair foci,
not only via the interaction of RNASEH2B and PCNA but
also via the catalytic site of RNASEH2A [45, 46]. Notably,
RNase H2 is constitutively expressed throughout the cell
cycle in HeLa cells [3], implying the possible role of RER
in replication-independent repair.
Reportedly, RER is required for efficient mismatch

repair (MMR). A single ribonucleotide in close proximity
to a mismatch is processed by RNase H2 for generating a
nick, which provides a strand discrimination signal for
MMR of nascent strand replication errors [47, 48]. Hence,
as also observed during NHEJ (see the section above) [35],
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ribonucleotide insertion is not merely an erroneous event
occurring during replication, but it is an important bio-
logical process in maintaining genome stability.

Topoisomerase-mediated excision repair
In the absence of functional RNase H2, the embedded
ribonucleotides are repaired by an alternate pathway
involving DNA topoisomerase, the enzyme that relaxes
negatively supercoiled DNA by transiently cleaving and
re-ligating one or both strands of DNA (Fig. 1 (2)) [49–
51]. Yeast and human topoisomerase 1 (TOP1) incise
the DNA 3′-side of a ribonucleotide, generating a nick
and a covalent protein-DNA cleavage complex (TOP1cc)
between the TOP1 tyrosyl moiety and the 3′-phosphate
of the ribonucleotide [52, 53]. Upon cleavage, the 2′-hy-
droxyl of the ribose sugar attacks the phosphotyrosyl

linkages, generates a 2′,3′-cyclic phosphate, and releases
TOP1 [52, 53].
Recent studies using purified human TOP1 suggest

further distinct processing of the released DNA (Fig. 2):
(1) re-ligation of the nick; (2) strand cleavage by TOP1 a
few nucleotides upstream from the nick, leading to the
formation of a second TOP1cc; and (3) sequential cleav-
age on the opposite strand of the nick [54, 55]. Specific-
ally, the re-ligation of the nick by TOP1 allows a second
attempt of the excision repair. Second, TOP1cc forma-
tion upstream from the nick leads to the release of a
short DNA fragment containing 2′,3′-cyclic phosphate,
which generates short deletions at repetitive sequences
through TOP1-mediated false ligation. Lastly, cleavage of
the opposite strand by TOP1 results in the formation of
a severe DNA strand break with TOP1cc at the strand
terminus. These models have been supported by studies
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Fig. 1 Overview of processing mechanisms of ribonucleotides embedded in DNA. (1) Embedded ribonucleotides are repaired by RNase H2-
dependent RER. (2) In the absence of RNase H2, ribonucleotides in DNA are processed by topoisomerases, resulting in genomic instability. (3) The BER
factor APE1 excises the damaged ribonucleotides in DNA. (4) The involvement of NER on ribonucleotide removal is under debate. (5) APTX resolves
abortive ligation intermediates created at 5′-ribonucleotide termini. (6) Ribonucleotides on the template DNA strand impact on DNA synthesis
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with yeast TOP1, which induces 2–5-nt deletion muta-
tions at the repetitive sequences, as well as DNA double
strand breaks in the genome [54, 56, 57]. Furthermore,
mouse and human cells lacking RNase H2 had elevated
levels of 53BP1 or phosphorylated histone (γH2AX) foci,
indicating the formation of DNA strand breaks in the
mammalian genome [3, 7, 10, 12]. According to these
studies, a question arises as to whether such deletion
mutations can be caused by ribonucleotide accumulation
in vivo. Findings of a recent study have revealed that
deletions are induced by aberrant ribonucleotide incorp-
oration into mouse mitochondrial DNA [58]. In con-
trast, base substitutions (T:A →G:C base substitutions
at GTG trinucleotides), but not deletion mutations, have

been detected through whole exome sequencing of
tumor cells derived from Rnaseh2b knock-out mice [9].
Taken together, TOP1-dependent ribonucleotide exci-
sion repair can be highly mutagenic and possibly induces
severe genomic instability in the absence of RER;
however, its biological consequences in mammalian cells
require further investigation.
On the basis of a recent study, the depletion in TOP1

reduces the number of γH2AX foci in RER-deficient
human cells [59], which provides evidence of the false
processing of embedded ribonucleotides by TOP1 in
mammals. Interestingly, the lack of RNase H2 desensitizes
human cells to poly(ADP-ribose) polymerase (PARP)
inhibitors that form PARP1-trapping DNA lesions [59].
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Fig. 2 Models depicting the processing of ribonucleotide by mammalian topoisomerase 1. (1) A nick containing 2′,3′-cyclic phosphate and 5′-OH
ends is re-ligated by TOP1. (2) Strand cleavage by TOP1 upstream from the nick leads to the formation of a second TOP1cc. Re-ligation across the
gap by TOP1 causes a short-deletion. (3) Cleavage of the opposite strand by TOP1 results in the formation of the DNA strand break with TOP1cc
at the strand terminus
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Therefore, DNA damage created by TOP1-mediated ribo-
nucleotide excision induces PARP1 activation. Because
mono-allelic or bi-allelic loss of RNASEH2B is frequently
observed in chronic lymphocytic leukemia and castration-
resistant prostate cancers, genomic ribonucleotides may
be a therapeutic target in tumors [59].
It has been reported that the presence of ribonucleo-

tides in DNA stimulates the cleavage activity of type II
topoisomerase (TOP2) and leads to the formation of a
TOP2 cleavage complex (TOP2cc) at 5′-ribonucleotides
[60, 61], possibly causing DNA strand breaks. For repair-
ing this ribonucleotide-induced TOP2cc, TOP2 has to
be proteolyzed. The consequent degradation of TOP2cc
allows the processing of the TOP2-DNA crosslinks by
tyrosyl-DNA phosphodiesterase 2 (TDP2) that hydrolyzes
the 5′-tyrosine phosphodiester bonds between DNA
5′-phosphates and the active site tyrosine of TOP2 [61].
Therefore, TDP2 plays a protective role against the toxic
effects of ribonucleotide-induced DNA damage in cells.

Base excision repair
BER is a primary repair pathway that is involved in cor-
recting damage to endogenous bases such as oxidative
and alkylated bases, e.g., 7,8-dihydro-8-oxoguanine and
N3-methyladenine [62, 63]. BER is initiated by excision
of the damaged or mismatched base by DNA glycosy-
lases. The AP-site produced is further processed by
apurinic/apyrimidinic endonuclease 1 (APE1), which cat-
alyzes the cleavage of the sugar-phosphate backbone 5′
at the AP-site. For the mechanism of BER, the question
that arises is whether the embedded ribonucleotides are
recognized as the substrate of BER factors (Fig. 1 (3)).
Reportedly, 8-oxoguanine DNA glycosylase (OGG1) can
bind to an oxidized ribonucleotide, i.e., 8-oxoriboguanosine
(8-oxo-rG), in DNA but showed no glycosylase/lyase activ-
ity in vitro [64]. Similarly, the human MutY homolog
(MUTYH), which removes mispaired adenine opposite
8-oxoguanine, is fully inactive against riboadenosine (rA)
paired with 8-oxoguanine [33]. Interestingly, APE1 cleaves
an abasic ribonucleotide (rAP-site) in DNA and also has
weak endonuclease and 3′-exonuclease activities on the
embedded 8-oxo-rG, while mammalian RNase H2 has no
activity against either rAP-site or 8-oxo-rG [65]. Therefore,
among BER mechanisms, APE1 is a candidate for being the
back-up repair mechanism for processing damaged ribonu-
cleotides that cannot be removed by RNase H2.

Nucleotide excision repair
Nucleotide excision repair (NER) is involved in the
removal of helix-distorting DNA lesions such as UV-in-
duced cyclobutane pyrimidine dimers. Because NER
factors can recognize a nearly infinite variety of DNA
damages, ribonucleotides misincorporated into DNA may
serve as the substrate for NER. The possibility of this

alternative repair pathway has been debated among re-
searchers (Fig. 1 (4)) [66]. Purified NER proteins derived
from thermophilic eubacteria recognize and excise ribo-
nucleotides in DNA [67]. In E. coli cells, the disruption of
NER factors increases spontaneous mutagenesis in the
absence of RNase HII [67]. However, a recent in vitro
study revealed that ribonucleotide-containing DNA is a
very poor substrate for purified E. coli and human NER
systems [68], which indicates that NER is not a major
repair pathway in mammals. The precise role of NER in
the repair of embedded ribonucleotides is presently being
debated.

Processing of ribonucleotide-induced abortive ligation
During RER, RNase H2 cleaves the 5′-side of a ribonu-
cleotide and creates a nick, i.e., a RNA-DNA junction. In
such conditions, the presence of a ribonucleotide on the
5′-terminus impairs the sealing of the nick by human
DNA ligases I and III (Fig. 1 (5)). This abortive ligation
results in the formation of a toxic 5′-adenylation
(5′-AMP) at the ribonucleotide terminus [69]. Human
aprataxin (APTX), the enzyme that removes 5′-AMP
from abortive ligation intermediates, has been known to
efficiently repair the 5′-AMP at RNA-DNA junctions
generated during RER. The study indicated that the
potential role of APTX is to protect genome integrity
against the complex types of damage that can be gener-
ated during RER.

DNA synthesis across embedded ribonucleotides
In the absence of RER, the accumulation of ribonucleo-
tides into the genome leads to replication stress in cells
[3]. On the basis of in vitro experiments, human replica-
tive pol δ pauses slightly during DNA synthesis across a
single ribonucleotide on the template DNA (Fig. 1 (6))
[27]. Although human pol α and mitochondrial pol γ are
also able to bypass a template ribonucleotide [30, 64],
physiological concentrations of rNTPs have been shown
to inhibit DNA synthesis by pol γ [30]. Furthermore,
multiple consecutive ribonucleotides hinder the primer
extension reaction catalyzed by pol δ [27].
The oxidation of ribonucleotides in DNA can be more

problematic for replication; the oxidative ribonucleotide
8-oxo-rG strongly blocks primer extension catalyzed by
pol α [64]. For TLS pols, pol κ inefficiently bypasses rG
and 8-oxo-rG [64]. Interestingly, pol η rapidly bypasses
both undamaged and damaged ribonucleotides [64].
Both TLS pols can bypass 8-oxo-rG in a more error-free
manner than 8-oxo-dG. Therefore, the ribonucleotide
sugar backbone influences fidelity during TLS. These stud-
ies suggest that the ribonucleotides in the genome impede
replication by pols, possibly stalling replication forks. In this
scenario, TLS pols are required as ribonucleotide-tolerance
mechanisms.
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Conclusions
There is increasing interest in the impact of ribonucleo-
tide incorporation into DNA. The possible mechanisms
underlying ribonucleotide-induced genomic instability
and its consequences to the cell have been reported in
numerous in vitro and in vivo studies. The recent note-
worthy studies described in this review demonstrated
that ribonucleotides that are transiently present in the
genome are not only problematic lesions but may also
be beneficial to the maintenance of genome integrity.
However, the inactivation of canonical RER results in
various deleterious effects in cells, which likely result
from the unwanted processing of ribonucleotides, and
may cause severe symptoms in humans. Further studies
will be necessary for providing a better understanding of
the biological action of the ribonucleotides, e.g., muta-
genic potential, in the mammalian genome.
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