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Abstract

The emergence of antibiotic-resistant foodborne bacteria is a global health problem that requires immediate
attention. Bacteriophages are a promising biotechnological alternative approach against bacterial pathogens.
However, a detailed analysis of phage genomes is essential to assess the safety of the phages prior to their use as
biocontrol agents. Therefore, here we report the complete genome sequence of bacteriophage phiE142, which is
able to lyse Salmonella and multidrug-resistant Escherichia coli O157:H7 strains. Bacteriophage phiE142 belongs to
the Myoviridae family due to the presence of long non-flexible tail and icosahedral head. The genome is composed
of 121,442 bp and contains 194 ORFs, and 2 tRNAs. Furthermore, the phiE142 genome does not contain any genes
coding for food-borne allergens, antibiotics resistance, virulence factors, or associated with lysogenic conversion.
The bacteriophage phiE142 is characterized by broad host range and compelling genetic attributes making them
potential candidates as a biocontrol agent.
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Introduction
Foodborne diseases are an important cause of morbidity
and mortality worldwide, therefore are a serious public
health problem [1]. Bacteria cause the majorities of food-
borne illnesses; Escherichia coli and Salmonella are
among the most common foodborne pathogens that
affect millions of people annually [2]. Furthermore, the
emergence of antimicrobial resistance E. coli and Sal-
monella strains makes more difficult its control [3].
Hence, novel control methods for reducing the risk of
bacterial food contamination, which are both environ-
mental friendly, are urgently needed.
In this context, bacteriophages have several potential

applications in the food industry; these killing-bacteria

viruses are alternatives to conventional antimicrobials
method for the control of pathogenic bacteria and have
great potential in the improvement of food safety [4–6].
Bacteriophages suitable for biocontrol purposes must be
genetically sequenced to ensure that are strictly lytic (al-
ways lyse infected cells host), does not encode any bac-
terial virulence factors or proteins with a potential to
cause allergenicity [7, 8].
The primary aim of our research group is increase

knowledge of phage biodiversity and contribute to the
understanding of different types of phages in several re-
gions of Sinaloa, an important agricultural region in
Northwestern Mexico. Recently, a new bacteriophage,
designated as phiE142, one of phages isolated, exhibits a
high potential as a biocontrol agent [9]. However, infor-
mation about genome of phage phiE142 is still limited;
therefore, to further understand the phage biology, the
genome was sequenced.
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Organism information
Classification and features
The bacteriophage phiE142 was previously isolated in
Food and Environmental Microbiology Laboratory at the
Research Center for Food and Development from animal
feces samples collected on a farm in Northwestern
Mexico. An E. coli strain EC-48 (bacterial used for bac-
teriophage propagation and titration), was also isolated
from the same geographical region two years before the
isolation of the phage [10]. Phage phiE142 produced
clear plaques of 2 to 3 mm in diameter on the E. coli
EC-48 lawn; the plaques were already visible after four
to six hours of incubation time at 37 °C.
We analyzed the lytic host range of phage using spot

tests assays of different bacterial, including 48 Salmonella
strains and 33 E. coli strains (Additional file 1: Table S1).
Based upon spot testing results, the phage phiE142 had
lytic activity against 76% of the E. coli strains and 29% of
Salmonella strains tested. These results indicate that bac-
teriophage phiE142 has the potential to be evaluated as an
alternative strategy to biocontrol of E. coli and Salmonella.
The phiE142 phage was stained with 2% uranyl acetate

and examined by transmission electron microscopy
(TEM) and classified into its appropriate viral morpho-
type according to Ackermann’s classification [11]. The
analysis suggests that phage phiE142 belongs to the
order Caudovirales and family Myoviridae based on the
presence of almost isometric head with an average diam-
eter of ∼ 58 nm, long non-flexible contractile tail about
120 nm in length (Fig. 1) [12]. Phage phiE142 has a gen-
ome of 121,442 bp, with a coding region of 94.4%, GC
content of 37.4%, and the gene density is 1.60. It con-
tains 194 coding sequences ranging from 102 bp to
3,300 bp, with 53 genes on the positive strand and 141
genes on the negative strand. Phylogenetic characteris-
tics of this phage are indicated in Table 1.
The sequence of DNA polymerase has become a

commonly-used marker for constructing phylogenetic
analysis, therefore the phylogenetic tree was performed
based of DNA polymerase deduced amino acid se-
quences. According to the phylogenetic tree, the phage
phiE142 and others eight phages that infect the bacterial
family Enterobacteriaceae were clustered in the same
group (Figs. 2 and 3). All of these phages are members
of the Tevenvirinae subfamily and are strictly lytic
(Based on PHACTS program server). Considering the
close relationship among these phages, it is likely that
phiE142 also belongs to this genus. This result confirms
the findings obtained by electron microscopy.

Genome sequencing information
Genome project history
The bacteriophage phiE142 is one of the first genome to
be completely sequenced publicly available for a phage

infecting E. coli and Salmonella strains isolated from en-
vironmental sources in Northwest Mexico. The analysis
of more genomes of bacteriophages is necessary to in-
crease our understanding of the genetic diversity of bac-
teriophages, phage biology, basic molecular mechanisms,
and provide a deeper insight into the relationship of
phages with their hosts. Furthermore, analysis of phage
genomes may reveal novel antimicrobial peptides and
enzymes with bactericidal activity. In addition, the gen-
ome well understood is an essential requisite to ensure
the safety of the phages prior to their use as biocontrol
agents. Therefore, the genome project was deposited in
the Genomes On Line Database (GOLD). The genome
sequence of bacteriophage phiE142 was deposited in
GenBank under accession number KU255730. The sum-
mary of genome project is available in the Table 2.

Growth conditions and genomic DNA preparation
Standard double-layer agar plate method was used to
obtain high-titer stocks of the phage phiE142 [13], with
some modifications. Briefly, 100 μl of phage stock and 1
ml of overnight culture of E. coli strain EC-48 were
mixed with 3 ml TSB with 0.4% agarose, spread on TSA
plates, and incubated overnight at 37 °C. After, phage
was subsequently collected by adding 6 ml of SM buffer
(50 mM Tris-HCl, pH 7.5, 0.1 M NaCl, 8 mM MgSO4,
0.01% gelatin) to the surface of each plate and the soft

Fig. 1 Transmission electron microscopy (TEM) of bacteriophage
phiE142, which exhibits an icosahedral head, long and non-flexible
tail. This morphology corresponds to the Myoviridae family

Amarillas et al. Standards in Genomic Sciences  (2016) 11:89 Page 2 of 7

http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3291
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3291
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3291
http://doi.org/10.1601/nm.3091
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/nm.3291
http://www.ncbi.nlm.nih.gov/nuccore/KU255730
http://doi.org/10.1601/nm.3093
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DTSB+with+0.4


agar was scraped off the surface of the agar plates. Cell
debris was removed by subsequent centrifugation at
5,500 × g for 10 min, the supernatant was filtered with
0.22 μm syringe filters, and phage particles were precipi-
tated by centrifugation at 40,000 × g at 4 ° C for 2 h. The
phage pellet was suspended in SM buffer and stored at
4°C. Bacteriophage DNA was isolated by the method of
proteinase K and phenol–chloroform as previously de-
scribed [14], with minor modifications. One milliliter of
purified phage suspension was treated with 1 μg/ml of
DNaseI and RNaseA (Sigma-Aldrich) at 37 °C for 1 h.
Subsequently, sodium dodecyl sulfate (final concentra-
tion, 0.5%), EDTA (20 mM, pH 8.0), and proteinase K

(final concentration, 25 μg/ml) were added, and the sus-
pension was incubated at 56 °C for 1 h. After proteins
were removed by an equal volume of phenol-chloroform
(1:1), and DNA was precipitated from the aqueous phase
by cold ethanol. Following centrifugation at 15, 000 × g
for 15 min at 4 °C, the pellet was washed twice with 70%
ethanol, centrifuged at the same conditions. Finally, the
dried DNA pellet was suspended in nuclease-free water.
Concentration of phage DNA was estimated with a
NanoDrop spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE) and also the quality of extracted DNA
was also tested visually with electrophoresis on a 1%
agarose.

Genome sequencing and assembly
High-throughput DNA Sequencing of phage genomic
DNA was performed using HiSeq 2000 technology (Illu-
mina) to produce 100 bp paired-end reads, library con-
struction and sequencing were performed according to
the manufacturer’s instructions. In total, about 18 mil-
lion pair reads of 100 bases in length were obtained with
a quality filter threshold of Q30. The reads were ana-
lyzed and quality checked using FastQC and Geneious
software package R8 (Biomatters Ltd., New Zealand) was
used to trim raw reads with a low quality score. The de
novo assembly was conducted with Velvet (implemented
in Geneious, running VelvetOptimiser for selection of k-
mer), resulting in one final contig with coverage from
approximately 10,000-fold. Additional manual functional
annotation and genome map was performed using Gen-
eious software.

Genome annotation
Open reading frames (ORFs) were identified using Glim-
mer 3.02 [15], GeneMark.hmm [16], and ORF Finder
[17]. The putative functions of the ORFs were analyzed
by protein BLASTp searches, with a cut off E value of 10
−4. Predicted protein sequences were analyzed against
InterProScan [18], Pfam [19] and TMHMM Server ver-
sion 2.0 [20] for conservative domain identification. Sig-
nal peptides were predicted using SignalP 4.1. The
search of putative tRNA encoding genes was done using
ARAGORN [21] and tRNAscan-SE [22]. The origin of
replication was predicted using a GC-skew plot gener-
ated by GenSkew [23]. Moreover, all identified ORFs
were compared against the virulence factor database
[24] and the ResFinder database [25]. Additionally, the
predicted phage protein sequences were searched to
identify proteins potentially allergenic using tools from
the Food Allergy Research and Resource Programme
[26]. The lifestyle of the phages was predicted using the
PHACTS program [27]. Whole genome comparisons
were carried out using Mauve [28].

Table 1 Classification and general features of Enterobacteria
phage phiE142 according to the MIGS recommendation [29]

MIGS ID Property Term Evidence
codea

Classification Domain: viruses, dsDNA
viruses, no RNA stage

TAS [11]

Phylum: unassigned

Class: unassigned

Order: Caudovirales TAS [11]

Family: Myoviridae TAS [11]

Genus: unassigned

Species: unassigned

Strain: phiE142

Gram stain Not-applicate

Particle shape Icosahedral head with
long contractile tail

IDA

Motility Not-applicate IDA

Sporulation Not-applicate IDA

Temperature range Not-reported

Optimum temperature Not-reported

pH range; Optimum Not-reported

Carbon source Not-applicate

MIGS-6 Habitat Equine gut IDA

MIGS-6.3 Salinity Not-reported

MIGS-22 Oxygen requirement Not-applicate

MIGS-15 Biotic relationship Intracellular parasite of
E. coli strain EC-48

IDA

MIGS-14 Pathogenicity Lytic phage of E. coli
strain EC-48

IDA

MIGS-4 Geographic location Elota, Sinaloa, México IDA

MIGS-5 Sample collection March 04, 2014 IDA

MIGS-4.1 Latitude 23°54′35.8″N IDA

MIGS-4.2 Longitude 106°54′28.2″W IDA

MIGS-4.3 Depth 0 m IDA

MIGS-4.4 Altitude 20 m IDA
a Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author
Statement. These evidence codes are from the Gene Ontology project [30]
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Genome properties
The detailed annotation information for phage genome
was summarized in Table 3. The phage has a DNA gen-
ome consisting of 121,442 bp with a GC content of
37.4%, which is significantly lower than that of the host
E. coli (about 50% GC). Genome analysis of the phage
revealed 194 putative open reading frames (94.4% of the
genome consists of a coding region), with 26 oriented in
a forward orientation and 168 in a reverse orientation,
and two tRNA genes were identified. Based on BLAST
results, functions were assigned to 95 of the genes; most
of the annotated genes (98 genes) were hypothetical pro-
teins, probably due to the enormous diversity of

bacteriophages and the insufficient database information
about the functional genes of phage. Only one gene
product is hypothetical novel proteins (Additional file 2:
Table S2). The distribution of the ORFs into COG func-
tional categories is provided in Table 4.

Insights from the genome sequence
The results of BLAST revealed that the genome of phage
phiE142 has a high similarity (query coverage, 94%; iden-
tity, 97%) with coliphage vB_EcoM_PhAPEC2, which be-
long to the Tevenvirinae subfamily of the genus T4-like
viruses, an observation that is consistent with the ana-
lysis of the DNA polymerase. We therefore concluded

Fig. 2 Phylogenetic tree based on the predicted amino acid sequences of the DNA polymerase of 17 bacteriophages. Phylogenetic tree was
performed in MEGA 6.0 version by the neighbor joining method with the Jukes Cantor model. The percentages of bootstrap samples (of 1,000)
are indicated for each internal branch. The scale bar indicates the proportion of substitutions per site

Fig. 3 Diagram of bacteriophage genome. The arrows indicated open reading frame (ORF), the orientation of which shows the direction of
transcription. Putative genes are colored according to the predicted functions of their products: Phage structural proteins (blue arrows), DNA
regulation module (green arrows), packaging module (pink arrows), host lysis proteins (red arrows), and hypothetical proteins (gray arrows)
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that phiE142, based on sequence similarity, belong to
the Tevenvirinae subfamily. However, some differences
in genome organization were observed, because progres-
sive Mauve genome alignment revealed one colinear
block that is in the different order in both bacterio-
phages (Additional file 3: Figure S3). The principle re-
gion of genomic dissimilarity was located between
110,000 pb and 121,000 pb, this region includes a set of
ORFs found to be associated with phage-host recogni-
tion, suggesting specific features of phage evolution.
The phiE142 genome is functionally organized into four

modules containing gene clusters for virion morphogen-
esis, DNA replication/regulation, DNA packaging, and

host cell lysis. This modular organization of the genome is
typical of bacteriophages.
Thirty-one ORFs were found to encode proteins in-

volved in the morphogenesis of virions. These include
the ORFs 1–3, 170, 172, 175–185, and 187–194, which
are proposed to be genes encoding the components of
the tail fiber and baseplate. Databases homology
searches suggested that ORFs encoding capsid protein
are 46, 139, 142, and 174. Additionally, the proteins
encoded by ORFs 185 and 186 are most similar in its
amino acid sequence to neck protein.
Overall, a total of 46 ORFs are associated with pro-

cessing of the viral DNA. Our analysis of the phage ge-
nomes reveals several genes potentially involved in
nucleotide metabolism, including ORFs 14–15, 38–39,
47, 64, 70, 96, 100–101, 125, and 171. In addition, genes
that encode proteins involved in replication and tran-
scription of its own DNA were identified in ORFs 5, 7,
12–13, 18, 20–21, 24–25, 28–29, 32, 34–35, 37, 49, 56,

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finishing

MIGS-28 Libraries used Standard Illumina paired-end

MIGS 29 Sequencing platforms Illumina HiSeq

MIGS 31.2 Fold coverage ~10,000×

MIGS 30 Assemblers Velvet-Geneious R8

MIGS 32 Gene calling method Geneious R8

Locus Tag phiE142_

Genbank ID KU255730.1

GenBank Date of Release January 19, 2016

GOLD ID Gp0128385

BIOPROJECT NAa

MIGS 13 Source Material Identifier NAa

Project relevance Bacteriophage candidate as
a biological control agent

Table 3 Genome statistics

Attribute Value % of Totala

Genome size (bp) 121,442 100.00

DNA coding (bp) 114,642 94.40

DNA G + C (bp) 45,419 37.40

DNA scaffolds 1 100.00

Total genes 196 100.00

Protein coding genes 194 98.98

RNA genes 2 1.02

Pseudo genes 0 0.00

Genes in internal clusters 0 0.00

Genes with function prediction 95 48.47

Genes assigned to COGs 148 75.51

Genes with Pfam domains 62 31.96

Genes with signal peptides 5 2.57

Genes with transmembrane helices 15 7.73

CRISPR repeats 0 0.00
aThe total is based on the total number of protein coding genes in the genome

Table 4 Number of genes associated with general COG
functional categories

Code Value % of Totala Description

J 5 2.55 Translation, ribosomal structure and
biogenesis

A 1 0.51 RNA processing and modification

K 3 1.53 Transcription

L 17 8.67 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 2 1.02 Cell cycle control, Cell division,
chromosome partitioning

V 0 0.00 Defense mechanisms

T 6 3.06 Signal transduction mechanisms

M 0 0.00 Cell wall/membrane biogenesis

N 0 0.00 Cell motility

U 0 0.00 Intracellular trafficking and secretion

O 6 3.06 Posttranslational modification, protein
turnover, chaperones

C 0 0.00 Energy production and conversion

G 0 0.00 Carbohydrate transport and metabolism

E 12 6.12 Amino acid transport and metabolism

F 11 5.61 Nucleotide transport and metabolism

H 5 2.55 Coenzyme transport and metabolism

I 0 0.00 Lipid transport and metabolism

P 0 0.00 Inorganic ion transport and metabolism

Q 0 0.00 Secondary metabolites biosynthesis,
transport and catabolism

R 20 10.20 General function prediction only

S 60 30.61 Function unknown

- 48 24.48 Not in COGs
aThe total is based on the total number of protein coding genes in the genome
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59, 61, 66, 71, 73–76, 78, 81, 86, 102, 106, 130, 132, 141,
144, and 173.
Two ORFs exhibit similarity to a gene involved in the

host cell lysis, including endolysin and holin. The protein
encoded by ORF 143 displays a high degree of identity
with the endolysin. This ORF contained one glycohydro-
lase domain (hydrolyse the beta-1,4-glycosidic bond be-
tween N-acetylmuramic acid and N-acetylglucosamine),
which indicates that this protein is probably an enzyme
that degrades peptidoglycan. While the putative protein of
ORF 4 was identified as a holin protein. Unusually, this
ORF is not located adjacent to the endolysin ORF, in most
genomes bacteriophages, the holin ORF is adjacent or
overlaps a ORF encoding an endolysin. The deduced holin
encoded by phiE142 phage has one putative transmem-
brane domain, and thus resembles class III holins.
The phage lifestyle prediction result of PHACTS indi-

cated that the phiE142 is a virulent phage, consistent
with the results of genomic analysis, which revealed the
absence of genes associated with the establishment and
maintenance of lysogenic cycle.
The DNA packaging module includes ORF 60, which

encode the putative portal protein. However, it was not
possible to identify the terminase subunits.

Conclusions
Our data suggest that phiE142 is a member of T4-like
virus genus of the Myoviridae family and the Tevenviri-
nae subfamily. Interestingly, in silico analyses of phiE142
genome did not exhibit homology to known virulence-
associated genes, genes involved in lysogeny nor to anti-
biotic resistance genes or potential immunoreactive al-
lergens. These results indicate that phage phiE142
exhibits genetics properties suitable for evaluation as a
biocontrol agent.

Additional files

Additional file 1: Table S1. Bacterial strains used in the host range
spectrum of the bacteriophage phiE142. Phage was assessed for host
range by spot testing. (+) indicate positive sensitivity to phage lysis, and
(-) indicate negative sensitivity to phage lysis. (DOCX 41 kb)

Additional file 2: Table S2. Predicted open reading frames (ORFs) of
phiE142 and predicted database matches (DOCX 60 kb)

Additional file 3: Figure S3. Comparison of genome sequence of
bacteriophages phiE142 and vB_EcoM_PhAPEC2. The comparison was
carried out with progressive MAUVE. (JPG 177 kb)
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