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Draft genome sequence of the extremely
halophilic archaeon Haladaptatus cibarius
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Abstract

An extremely halophilic archaeon, Haladaptatus cibarius D43T, was isolated from traditional Korean salt-rich
fermented seafood. Strain D43T shows the highest 16S rRNA gene sequence similarity (98.7 %) with Haladaptatus
litoreus RO1-28T, is Gram-negative staining, motile, and extremely halophilic. Despite potential industrial applications
of extremely halophilic archaea, their genome characteristics remain obscure. Here, we describe the whole genome
sequence and annotated features of strain D43T. The 3,926,724 bp genome includes 4,092 protein-coding and 57
RNA genes (including 6 rRNA and 49 tRNA genes) with an average G + C content of 57.76 %.
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Introduction
The extremely halophilic archaea, called haloarchaea,
possess the small retinal protein halorhodopsin [1–3]
and currently consists of more than 47 genera that live
in hypersaline environments [4, 5]. Three members of
the genus Haladaptatus—H. paucihalophilus [6], H.
litoreus [7], and H. cibarius [8]—were isolated from a
low-salt, sulfide-rich spring; marine solar saltern; and
salt-fermented seafood, respectively. Haladaptatus com-
prises Gram-negative staining, non-motile haloarchaea
that have polar lipids including phosphatidylglycerol,
phosphatidylglycerol phosphate methyl ester, and phos-
phatidylglycerol sulfate [6]. The genomic analysis re-
vealed that H. paucihalophilus survives in low salinity
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conditions because of trehalose synthesis with OtsAB
pathway and trehalose glycosyl-transferring synthase
pathway, and glycine betaine uptake [9]. However, other
members in the genus Haladaptatus have not been ana-
lyzed at the genome level.
H. cibarius was isolated from the traditional Korean

salt-fermented seafood, which is made with shellfish [8].
D43T (= DSM 19505T = JCM 15962T) is a representative
strain and designated as the type strain of the species. It
can grow in 10%–30% (w/v) NaCl (optimum, 15%), with
Mg2+ required for growth. In addition, cells are not lysed
in distilled water. The genome sequences of this genus
are expected to provide fundamental information for
the halotolerant features and biotechnological applica-
tions of the haloarchaea. Here, we describe the first
whole genome sequence of H. cibarius along with its
annotated features, and summarize the taxonomic
classification.
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Organism information
Classification and features
The taxonomic position for H. cibarius D43T was iden-
tified with type strains obtained from the EzTaxon-e
server [10]. The 16S rRNA sequences of D43T and
closely related strains were aligned using the ClustalW
multiple sequence alignment program [11] and were
subsequently used for the phylogenetic analysis. Phylogen-
etic trees were constructed using the neighbor-joining
[12], maximum-parsimony [13], and maximum likelihood
[14] algorithms with bootstrap values of 1,000 using
MEGA version 5 molecular evolutionary genetics analysis
program [15]. Strain D43T clustered with type strains of
Haladaptatus species (Fig. 1), exhibiting 16S rRNA gene
sequence similarities of 98.7% and 95.1% between strain
D43T (EF660747) and the type strain of H. litoreus and H.
paucihalophilus, respectively. Classification and general
features of H. cibarius D43T are shown in Table 1.
Strain D43T is a Gram-negative staining, coccus or

coccobacillus, motile archaeon approximately 1.0 μm in
diameter (Fig. 2). Catalase and oxidase tests yielded posi-
tive results, but reduction of nitrate to nitrite under aer-
obic conditions was negative. Cells contained the polar
lipids phosphatidylglycerol, phosphatidylglycerol phos-
phate methyl ester, and two unidentified glycolipids.
Strain D43T hydrolyzed gelatin and Tween 80, utilized
formate and acetate as carbon sources, and produced
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Fig. 1 Phylogenetic tree constructed using the neighbor-joining method b
of strain D43T in genus Haladaptatus. Bootstrap values (>70%) at nodes are sh
parsimony/maximum likelihood probabilities based on 1000 replicates. Filled
Methanosarcina semesiae MD1T was used as an outgroup. Bar, 0.05 substitutio
acid from sucrose and D-glucose. The strain was sensi-
tive to anisomycin, aphidicolin, chloramphenicol, and ri-
fampicin, and was resistant to ampicillin, erythromycin,
kanamycin, streptomycin, and polymycin B.
Genome sequencing and annotation
Genome project history
The genome project and sequence of the H. cibarius
D43T genome were deposited in the Genomes OnLine
Database [16] (project ID: Gp0086819) and GenBank
(accession number: JDTH00000000), respectively. The
BioProject number was PRJNA236630. Sequencing and
annotation were performed by Chun Lab Inc. (Seoul,
Korea) and Integrated Microbial Genomes Expert Re-
view (IMG-ER) [17].
Growth conditions and genomic DNA preparation
H. cibarius D43T grew optimally on halophilic medium
[6] supplemented with 15% (w/v) NaCl and 20 mM Mg2+

adjusted to pH 7.0, producing colonies with a pink color
after incubation at 37°C as previously described [8].
Genomic DNA was extracted and purified using a
G-spin DNA extraction kit (iNtRON Biotechnology
Inc., Sungnam, Korea), according to the manufacturer’s
instructions.
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Fig. 2 Scanning electron micrographs of H. cibarius D43T obtained by SUPRA 55VP (Carl Zeiss, Jena, Germany). Scale bars represent 200 nm

Table 1 Classification and general features of Haladaptatus cibarius D43T [18]

MIGS ID Property Term Evidence codea

Classification Domain Archaea TAS [24]

Phylum Euryarchaeota TAS [25]

Class Halobacteria TAS [26]

Order Halobacteriales TAS [27, 28]

Family Halobacteriaceae TAS [28, 29]

Genus Haladaptatus TAS [6]

Species Haladaptatus cibarius TAS [8]

Type strain D43T (DSM 19505, JCM 15962) TAS [8]

Gram stain Negative TAS [8]

Cell shape coccus or coccobacillus TAS [8]

Motility motile TAS [8]

Sporulation Not reported TAS [8]

Temperature range 15–50 °C TAS [8]

Optimum temperature 37 °C TAS [8]

pH range; Optimum 6.0–8.0; 7.0 TAS [8]

Carbon source Sucrose, D-fructose, D-glucose, lactose, formate, acetate TAS [8]

MIGS-6 Habitat Salt-fermented seafood TAS [8]

MIGS-6.3 Salinity 35 % NaCl (w/v) TAS [8]

MIGS-22 Oxygen requirement Aerobic TAS [8]

MIGS-15 Biotic relationship Free-living TAS [8]

MIGS-14 Pathogenicity Not reported

MIGS-23.1 Isolation Salt-fermented food TAS [8]

MIGS-4 Geographic location Republic of Korea TAS [8]

MIGS-5 Sample collection time Not reported

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reported

MIGS-4.3 Depth Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes - TAS: traceable author statement (i.e., a direct report exists in the literature). These evidence codes are from the Gene Ontology project [30]
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Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Improved high-quality draft

MIGS-28 Libraries used Illumina PE, Ion PGM, and PacBio libraries

MIGS-29 Sequencing platforms Illumina Mi-seq, Ion PGM, and PacBio RS systems

MIGS-31.2 Fold coverage 374.92 × Illumina; 292.08 × Ion PGM; 43.25 × PacBio

MIGS-30 Assemblers CLC Genomics Workbench 6.5.1, SMRT Analysis 2.1

MIGS-32 Gene calling method IMG-ER

Locus Tag HL45

GenBank ID JDTH0000000

GenBank Date of Release June 20, 2014

GOLD ID Gi0069860

BIOPROJECT PRJNA236630

MIGS-13 Source material identifier D43T

Project relevance Environmental and biotechnological
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Genome sequencing and assembly
Genomic sequences of H. cibarius D43T were generated
from a total of 9,237,360 quality-filtered reads (710.3-
fold coverage) by combining 5,074,634 reads (374.9-fold
coverage) obtained from Mi-Seq 300 bp paired-end li-
brary (Illumina, San Diego, CA, USA), 4,112,798 reads
(292.1-fold coverage) obtained from an Ion Torrent Per-
sonal Genome Machine 318v2 chip (Life Technologies,
Carlsbad, CA, USA), and 49,928 reads (43.3-fold coverage)
obtained from PacBio RS 10 kb library (Pacific Biosci-
ences, Menlo Park, USA). Illumina and PGM data were
assembled de novo with CLC Genomics Workbench 6.5.1
(CLC bio, Boston, MA, USA) and PacBio data were as-
sembled using the HGAP2 algorithm in SMRT Analysis
Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 3,926,724 100.00

DNA coding (bp) 3,378,684 86.04

DNA G + C (bp) 2,267,915 57.76

DNA scaffolds 13 100.00

Total genes 4,149 100.00

Protein-coding genes 4,092 98.63

RNA genes 57 1.37

Genes in internal clusters 3,135 75.56

Genes with function prediction 2,676 64.50

Genes assigned to COGs 2,188 52.74

Genes assigned Pfam domains 2,699 65.05

Genes with signal peptides 98 2.36

Genes with transmembrane helices 1049 25.28

CRISPR repeats 4
2.1 (Pacific Biosciences). Resultant contigs were assembled
with CodonCode Aligner 3.7 (CodonCode Corporation,
Centerville, MA, USA). Sequences were assembled to 13
scaffolds with an N50 contig size of 985,075 bp; the genome
sequencing project information and its associated MIGS
version 2.0 compliance levels [18] are shown in Table 2.

Genome annotation
The open reading frames of the assembled genome were
predicted and annotated using IMG-ER [17], NCBI COG
[19], Pfam [20], and EzTaxon-e [10] databases. The rRNA
and tRNA genes were identified using RNAmmer 1.2 [21]
and tRNA scan-SE 1.23 [22], respectively.

Genome properties
The draft genome sequence for H. cibarius D43T con-
tained 3,926,724 bp, with 13 scaffolds. The G + C content
was 57.76 % (Fig. 3 and Table 3), and 4,092 protein-coding
genes were predicted along with 57 RNA genes, including
six rRNA (two 5S, three 16S, and one 23S rRNA), 49
tRNA, and two additional RNA genes. There were 2,676
protein-coding genes with predicted functions: 773 were
enzymes, 98 encoded signal peptides, and 1,049 encoded
transmembrane proteins. The distribution of genes in
the COG functional categories is shown in Table 4. A
large number of genes were associated with the COG
functional categories of cell wall biogenesis (79, 3.3 %);
transcription (100, 4.1 %); and transport and metabol-
ism of amino acids (299, 12.3 %), carbohydrates (121,
5.0 %), and lipids (80, 3.3 %). Further analysis with
dbCAN [23], a database for annotation of
carbohydrate-active enzymes, showed that the genome
contains genes encoding various enzymes for the break-
down and biosynthesis of carbohydrates such as
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Fig. 3 Graphical map of the H. cibarius D43T pseudochromosome. From outside to center: RNA genes (red, tRNA and blue, rRNA) and genes on
the antisense and sense strands (colored according to COG categories). Inner circle shows the GC skew, with yellow and blue indicating
positive and negative values, respectively. GC content is indicated in red and green. The genome map was visualized using CLgenomics 1.06
(Chun Lab Inc.)
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chitinase (GH18), chitosanase (GH5), pullulanase
(GH13), trehalose synthase (GT4 and 20), cellulose syn-
thase (GT2), and alginate lyase (PL6).

Insights from the genome sequence
The genome analysis of H. cibarius D43T revealed genes
involved in glycine betaine synthesis—including betaine
aldehyde dehydrogenase, glycine betaine demethylase, and
choline-glycine betaine transporter gene—that allow H.
cibarius to maintain osmotic balance in hypersaline
environments. In addtion, trehalose-related genes of
trehalose-6-phosphate synthase, trehalose-6-phosphatase,
trehalose-6-phosphate synthase and trehalose-6-phosphate
hydrolase, and trehalose-utilization protein genes were an-
alyzed in the genome sequences of H. cibarius D43T. The
genes related with trehalose synthesis in the genome show
the possibility of trehalose production that is important in
food industry.
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Table 4 Number of genes associated with general COG functional categories

Code Value % age Description

J 164 6.76 Translation, ribosomal structure, and biogenesis

A 1 0.04 RNA processing and modification

K 100 4.12 Transcription

L 102 4.20 Replication, recombination, and repair

B 3 0.12 Chromatin structure and dynamics

D 20 0.82 Cell cycle control, cell division, chromosome partitioning

Y 0 0.00 Nuclear structure

V 37 1.53 Defense mechanisms

T 55 2.27 Signal transduction mechanisms

M 79 3.26 Cell wall/membrane biogenesis

N 28 1.15 Cell motility

Z 0 0.00 Cytoskeleton

W 0 0.00 Extracellular structures

U 28 1.15 Intracellular trafficking and secretion, and vesicular transport

O 88 3.63 Post-translational modification, protein turnover, chaperones

C 162 6.68 Energy production and conversion

G 121 4.99 Carbohydrate transport and metabolism

E 299 12.32 Amino acid transport and metabolism

F 76 3.13 Nucleotide transport and metabolism

H 109 4.49 Coenzyme transport and metabolism

I 80 3.30 Lipid transport and metabolism

P 173 7.13 Inorganic ion transport and metabolism

Q 46 1.90 Secondary metabolism biosynthesis, transport, and catabolism

R 392 16.16 General function prediction only

S 263 10.84 Function unknown

- 1961 47.26 Not in COGs

The total is based on the total number of protein coding genes in the genome
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Conclusions
The draft genome sequences of the extremely halophilic
archaeon isolated from the salt-fermented seafood were
analyzed. Genes related with glycine betaine and trehalose
for the survival in extreme environments were identified.
The extremely halophilic archaeon could be a valuable re-
source for biotechnological applications because hypersa-
line conditions minimize the risk of contamination by
other microorganisms. Further characterization of halo-
philic enzymes of the haloarchaea based on the genomic
analyses can provide more detailed information on enzyme
structures and potential industrial applications.
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