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Abstract

The literature states that Strontium (Sr) is able to simultaneously stimulate bone formation and suppress bone
resorption. Recent animal studies suggest that the systemic administration of Sr, in the form of strontium ranelate
(SRAN), would enhance the osseointegration of implants. The purpose of the present study was to undertake a
systematic review on animal studies evaluating the systemic administration of Sr to enhance the osseointegration
of titanium implants and the remodeling of bone grafts. The MEDLINE (PubMed) and Scopus bibliographic
databases were searched from 1950 to October 2017 for reports on the use of systemic and non-radioactive Sr to
enhance the osseointegration of titanium implants and the remodeling of bone grafts in animals. The search
strategy was restricted to English language publications using the combined terms: “strontium” and “implant or
graft or biomaterial or bone substitute”. Five studies were included, all related to the systemic administration of Sr
in the form SRAN, and its effects on osseointegration of titanium implants. No studies on the use of SRAN-based
therapy to enhance the remodeling of bone grafts were found. The studies differed notably with respect to the
study population (healthy female rats, healthy male rats, and female rats with induced osteoporosis) and SRAN dose
(ranging from 500 to 1000 mg/kg/day). Results were diverse, but a tendency suggesting positive influence of
systemic SRAN administration on the osseointegration of titanium implants was observed. No major side-effects
due to strontium administration were reported. Systemic Sr administration, in the form of SRAN, seems to enhance
peri-implant bone quality and implant osseointegration in animals, however, at a moderate extent. Further studies,
evaluating both the effects of this drug on implant osseointegration and the risk/benefit of its use, are needed to
provide a rationale of this therapeutic approach.
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Introduction
Following the trauma induced to the bone tissue during
dental implant installation, wound healing involves the
fine-tuned coupling of bone resorption and formation
[1, 2], which finally leads to the direct bone-to-implant
contact, i.e., implant osseointegration [3]. The same

biological mechanisms are involved in the wound heal-
ing (i.e., remodeling) of a bone defect filled with bone
graft and/or bone substitute material [4]. In order to en-
hance wound healing and thereby achieve an optimized
osseointegration and/or bone defect closure, systemic-,
and local administration of drugs, including growth and
differentiation factors, and/or implant and graft drug-
based surface modifications have been employed with
variable success [5, 6]. In the past years, the literature
regarding the local interventions (mostly based on the
modification of implant surfaces to improve the osseoin-
tegration process) became highly developed [6]. On the
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other hand, the additional effect of systemic therapies
supplementing such local modification factors, although
acknowledged, was not developed in a similar manner
[5].
Examples of systemic administration of anabolic and anti-

catabolic substances include estrogen [7], parathyroid hor-
mone [8], and bisphosphonates [9, 10]. In particular, sys-
temic administration of bisphosphonates, which are widely
used for cancer and osteoporosis treatment, is based on the
rationale that suppression of bone resorption—achieved by
this type of drugs—results in denser peri-implant bone and
thereby in larger amounts of bone-to-implant contact [11].
Indeed, a recent review of animal studies indicated that sys-
temic administration of bisphosphonates enhances implant
osseointegration, especially in animals with induced osteo-
porotic conditions [12]. Nevertheless, the increasing num-
ber of reports in recent years of bisphosphonate-related
osteonecrosis of the jaws has raised alarm regarding the
side-effects of bisphosphonate treatment [13] and has led to
the search of alternatives to this group of drugs.
Another type of drug recently developed for osteopor-

osis treatment is strontium (Sr) ranelate (SRAN) [14–16].
This drug is a salt consisting of two atoms of stable stron-
tium (Sr2+) and an organic acid (Ranelic acid), and it is
usually administrated orally [17, 18]. Sr ions possess a
high affinity to hydroxyapatite (HA) [19], and in contrast
to bisphosphonates that decrease bone resorption, Sr
exerts a dual action, i.e., it is able to simultaneously
stimulate bone formation and suppress bone resorption
[17, 20, 21]. This has been demonstrated in both animal-
(by means of bone mineral content analysis [22], dual-
energy X-ray absorptiometry [23], and histomorphometric
assessment [24]), and clinical studies (by means of micro-
tomography and histomorphometric assessment) [25].
Further, relatively recent reports from animal studies sug-
gest that the systemic administration of Sr would enhance
the osseointegration of implants.
Thus, the aim of this review was to undertake a system-

atic review of the literature on the available evidence—de-
riving from animal studies—on the systemic administration
of non-radioactive Sr to enhance the osseointegration of ti-
tanium implants and/or the bone regeneration (i.e., remod-
eling) in association with bone grafting techniques.

Material and methods
This review was executed in accordance with PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) [26], and the Cochrane Handbook for
Systematic Reviews of Interventions [27].

Criteria for considering studies for this review
Animal studies in which the methodology/results in-
cluded parameters regarding the use of systemic admin-
istration of non-radioactive Sr to enhance the

osseointegration of implants and/or the remodeling of
bone (and bone substitute materials) grafts qualified for
inclusion. Retrieval of information focused on (1) the
used posology (dose and timing), (2) the type of treat-
ment, (3) the assessed outcome, and (4) the side effects
of the treatment. Studies which failed reporting one or
more of these four topics still qualified for inclusion, but
the missing information was acknowledged as non-
declared.

Search strategy for identification of studies
Electronic search
The MEDLINE (Medical Literature Analysis and
Retrieval System Online, via PubMed) and Scopus data-
bases were searched until October 2017 for studies
evaluating the use of systemic non-radioactive Sr to
enhance to enhance the osseointegration of titanium im-
plants and the remodeling of bone grafts. The search
strategy was restricted to English language publications
using the combined terms: (strontium) and (implant or
graft or biomaterial or bone substitute). Systematic
reviews, reviews, and case reports were immediately
excluded.

Hand-searching
Unpublished data and hand-searching
Unpublished data were sought by searching a database
listing unpublished studies (OpenGray-www.opengrey.
eu). A manual search was additionally conducted based
on the reference lists of the selected papers. Further,
electronic databases of the following journals, which
were considered important to this review, were separ-
ately manually searched: Clinical Oral Implants Re-
search, Bone, International Journal of Implant Dentistry,
Osteoporosis International, Journal of Periodontology,
Journal of Clinical Periodontology, Journal of Dentistry,
Dentomaxillofacial Radiology, and Oral Surgery, Oral
Medicine, Oral Pathology and Oral Radiology. Further,
the bibliographic references of the included studies were
also sought for possible relevant studies.
Titles, abstracts, and full texts of the search results

were independently screened in duplicate by three re-
viewers (CRS, CBS, and RSN). When there was a dis-
agreement, the reviewers discussed the study and
reached consensus.

Study selection and data extraction
Three independent researchers (CRS, CBS, and RSN) con-
ducted data extraction and validity assessment of the stud-
ies that met the inclusion criteria. Data was extracted
focusing on the animal model, study groups, treatment
start, duration of the treatment, period of examination,
implant specification, evaluation methods, and results
(outcomes), according to what was reported in each study
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(i.e., histomorphometry, biomechanical, microtomogra-
phy, and serum analysis).

Study outcomes
Any qualitative and/or quantitative bone-related param-
eters which could explain the effects of the systemic ad-
ministration of non-radioactive Sr on bone tissue of the
animals, determining if and how this substance interacts
with the bone tissue and bone-tissue regeneration, were
included as relevant outcomes.

Quality assessment and risk of bias of included studies
Quality assessment of the studies was made according to
SYRCLE’s risk of bias tool for animal studies [28]. All ten
domains (sequence generation, baseline characteristics, al-
location concealment, random housing, performance blind-
ing, random outcome assessment, detection blinding,
incomplete outcome data, selective outcome reporting, and
other sources of bias) of SYRCLE’s tool were individually
evaluated in terms of the risk of bias (no summary scores
for the studies were included). Three reviewers (CRS, CBS,
and RSN) independently assessed the studies for their qual-
ity. When there was a disagreement regarding the assessed
data, a consensus meeting was carried out.

Review
Search results
The initial search for publications yielded 578 titles in
MEDLINE (PubMed) database, and 152 in Scopus data-
base. After duplicates were removed, there were a total
of 553 titles to be screened. After initial screening, using
the abstracts and key words, 37 publications remained
(31 from PubMed and 6 from Scopus), that potentially
met the inclusion criteria. Hand-searching did not reveal
any additional publications. After full-text reading, pub-
lications which did not fulfill the inclusion criteria were
excluded. From the selected full-texts, the main reason
for exclusion was the methodology based on the local
delivery of Sr, instead of its systemic use.
Finally, five studies reporting on the impact of systemic

administration of Sr on the osseointegration of titanium
implants were identified as eligible to be included in this
systematic review. No additional publications were found
from the bibliographic references of the included studies.
No information on the use of systemic administration of
strontium to enhance the remodeling of bone or bone
substitute materials following grafting procedures were
found. The study selection procedure is presented in the
PRISMA flowchart (Fig. 1).

Study outcomes
Tables 1 and 2 show the information retrieved from the
included studies. The studies differed notably with re-
spect to the study population, Sr dose, time-point of

medication start, duration of the treatment and period
of evaluation, implant specification, and the methods.
In one of the studies included in the present review,

including healthy female rats, SRAN at a dose of
625 mg/kg/day induced 33.9% higher pull-out strength
values, improved trabecular bone microarchitecture
(bone volume/total volume, trabecular thickness, struc-
ture model index, and connectivity), bone biomechanical
characteristics, and bone-to-implant contact, compared
with a control (C) group [29].
In another study, including healthy male rats, SRAN

at a dose of 800 mg/kg/day did not lead to higher
implant pullout values, but showed increased bone
volume fraction, trabecular number, and decreased
trabecular separation compared with the control
group, based on microtomographic and histomorpho-
metric findings. Further, SRAN was not able to sig-
nificantly enhance implant pull-out values when
compared to the treatment with bisphosphonates
(alendronate) of 4 and 8 weeks [30].
In three studies from the same research group, female

rats with ovariectomy-induced (OVX) osteoporosis were
included [31–33]. Although the same research group per-
formed the studies, the results were based on diverse ani-
mal populations, as it can be inferred from the studies. Rats
receiving a high dose of SRAN (SRANH, 1000 mg/kg/day)
showed an increased ratio between bone and total voxels in
direct contact to the implant (1.9-fold) compared with a
non-supplemented OVX group. Similar trends were
observed regarding trabecular thickness (by 1.2-fold), bone
volume/tissue volume (by 1.1-fold), trabecular number (by
90%), and connectivity density (by 85.1%), evaluated by
microtomography. In fact, the OVX+ SRANH group
showed similar or even statistically significantly better
values regarding the above-mentioned parameters when
compared with a non-osteoporotic group, while the im-
provements induced with a smaller dose of SRAN (SRANL,
500 mg/kg/day) did not reach statistical significance [32]
compared with the control group. However, SRANL ani-
mals showed improved implant osseointegration (as
assessed by microtomography and histomorphometric
evaluation) compared to a non-supplemented OVX group
[33], but did not enhance bone-quality-related parameters
when compared with a group receiving bisphosphonates
(zolendronated and alendronate) [31]. Animals receiving
bisphosphonates, however, showed significantly increased
bone mineral density, and bone-to-implant contact and im-
plant push-out values, when compared with a non-
supplemented OVX group [31].

Quality assessment and risk of bias
According to SYRCLE’s risk of bias tool for animal stud-
ies [28], the studies were classified in relation to the risk
of bias regarding their selection, performance, detection,
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attrition, and reporting characteristics. All studies suc-
cessfully met the criterion of not reporting their out-
comes in a selective manner, and all proposed aims and
elaborated hypotheses were adequately addressed in the
results and discussion sessions of the papers. On the
other hand, most studies were unclear regarding relevant
steps, e.g., the housing of the animals, allocation con-
cealment of the animals, whether outcome assessment
was blinded, and whether incomplete outcome data
existed and were not reported. Another possible source
of bias may be the lack of consistent reporting regarding
selection and justification of the posology of Sr supple-
mentation. All these parameters represent relevant
biases regarding the findings of the selected studies. The
overall scoring for the included studies is presented in
Table 3.

Discussion
Mechanism of action
Sr is a metabolic trace element closely related to cal-
cium. Sr2+ ions are incorporated into bone by two main

mechanisms: (a) a rapid uptake mechanism, dependent
on osteoblast activity, whereby Sr2+ becomes absorbed
via ion exchange processes with Ca2+ or binding to
osteoid proteins, and (b) Sr2+ ions incorporate into the
crystal lattice of the bone mineral phase. [34] When Sr2+

is present in higher levels than those required for
normal cell physiology, it induces pharmacological
effects on bone, through the activation of diverse
cellular pathways [34].
Systemic use of non-radioactive Sr has showed

promising results regarding the treatment of bone
pathologies, such as osteoporosis and osteoarthritis
[35–37], as it directly and positively interferes with bone
mass, quality, and strength [38]. Further, in vitro studies
have shown that Sr has the ability to increase bone forma-
tion [39, 40] while inhibiting osteoclast differentiation [41].
This dual action on bone remodeling, distinguishes Sr
from the other traditional anti-osteoporotic agents, which
either increase bone formation (intermittent parathyroid
hormones) or inhibit bone resorption (bisphosphonates)
[42]. Several mechanisms have been discussed for how

Fig. 1 PRISMA flow diagram
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systemic Sr-based therapy enhances bone formation
[43–46]. Sr might activate the calcium-sensing (or
another functionally different cation-sensing) receptor
on osteoblasts, thereby leading to enhanced bone
matrix production [46]. Another plausible mechanism
is that Sr induces prostaglandin production and cyclo-
oxygenase expression, thereby increasing osteoblastic
differentiation [44]. Further, Sr might interact with

fibroblast growth factor receptors, thereby increasing
osteoblast synthetic activity [43]. At last, Sr also inter-
acts with the mitogen-activated protein kinase (MAPK)
signaling pathway, enhancing the differentiation of
mesenchymal stem cells in osteogenic cells [45]. In
regard with interfering with bone resorption, Sr en-
hances osteoprotegerin (OPG) expression in osteoblasts
[40, 47, 48] thereby reducing osteoclastogenesis [42].

Table 3 Assessment of risk of bias using SYRCLE’s tool

Risk of bias Study

Maïmoun et al. 2010 [29] Li et al. 2010 [32] Li et al. 2012 [33] Linderbäck et al. 2012 [30] Chen et al. 2013 [31]

Selection

Sequence generation L L U L L

Baseline characteristics L L L L L

Allocation concealment U L U U U

Performance

Random housing U U U U U

Blinding U L U L U

Detection

Random outcome assessment U U U U U

Blinding U U L U U

Attrition

Incomplete outcome data U U U U U

Reporting

Selective outcome reporting L L L L L

Other sources of bias H H H H H

L low risk of bias, H high risk of bias, U unclear

Table 2 Included studies and the evaluation methods employed, together with major outcomes for each method

Study Tests and overall results

Bone mineral
density

Histomorphometric Biomechanical MicroCT Nanoindentation Serum
analysis

Maïmoun et al. 2010 [29] _ _ SRAN > C SRAN > C

(trabecular bone
microarchitecture
and BIC)

SRAN > C
(elastic modulus,
tissue hardness,
and working energy)

_

Li et al. 2010
[32]

_ _ OVX + SRH=CS >
OVX + SRANL > OVX

OVX + SRANH > CS >
OVX + SRANL > OVX

_ _

Li et al. 2012
[33]

_ OVX + SRAN > OVX
(BIC and BA)

OVX + SRAN > OVX OVX + SRAN > OVX _ OVX + SRAN >
OVX
(OCN)
OVX + SRAN <
OVX
(TRAP)

Linderbäck et al. 2012
[30]

BPA > SRAN=C
(4 and 8 weeks)

BPA > SRAN=C
(4 and 8 weeks)

BPA > SRAN=C
(4 and 8 weeks)

BPA > SRAN=C
(around implant)
BPA > SRAN > C
(growth plate)

_ _

Chen et al.
2013 [31]

BPZ = CS > BPA
= SRAN > OVX

BPZ = CS > BPA =
SRAN > OVX

BPZ = CS > BPA =
SRAN > OVX

_ _ _

CS sham operation as a control positive group, C control, SRAN strontium ranelate, OVX ovariectomy, SRANL strontium ranelate low dose, SRH strontium ranelate
high dose, BP bisphosphonate, BPA alendronate, BPZ zolendronate, BIC bone contact implant, BA bone area, OCN osteocalcin, TRAP tartrate-resistant acid phosphatase
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Based on this dual effect, studies have suggested the
use of Sr as an adjunct therapy in situations where
enhanced bone tissue formation is needed [24, 46, 49].
One could hypothesize that any event dependent on
bone formation, such as the osseointegration of im-
plants, could benefit of strontium supplementation, i.e.,
osseointegration is enhanced due to improved bone for-
mation rate and bone quality surrounding the implants
[1, 2].

Sr and implant osseointegration
All studies included in this review tested the hypothesis
that non-radioactive Sr supplementation would enhance
implant osseointegration. Overall, the results of the
included studies suggest that the systemic Sr administra-
tion enhances peri-implant bone quality and implant
osseointegration, however to a moderate extent. Positive
results regarding implant osseointegration and the qual-
ity of peri-implant bone tissue, as evaluated by various
methods (microtomography, histomorphometry, bio-
mechanical, nanoindentation, and serum analysis) were
observed in studies with both osteoporotic and healthy
animals [29, 30, 32, 33]. However, the effect of Sr was
not as pronounced as that achieved with systemic
administration of bisphosphonates [30, 31]. As men-
tioned, systemic administration of bisphosphonates is
known to lead to denser peri-implant bone, larger
amounts of bone-to-implant contact, and overall enhance-
ment of osseointegration-related parameters [11, 12, 50].
However, the reports on bisphosphonate-related osteo-
necrosis affecting the jaws [13] have practically removed
these drugs from the group of possible alternatives for
enhancing osseointegration [51].
In the present review, Sr was always used in the form

of SRAN. In contrast to what is reported for bispho-
sphonates, no reports of major side-effects due to the
SRAN treatment were found in the literature. However,
it is relevant to mention that the literature is limited
regarding the risks and pitfalls associated to systemic
SRAN therapy. In fact, one population study conducted
in France showed that osteoporotic patients with a his-
tory of venous thromboembolism presented cardiovas-
cular side effects related to SR (104 cases in 39 months)
[52]. In the same study, another important side effect,
cutaneous toxicity, was mentioned connected to the first
few weeks of drug administration. In this context, Sr
dosage may be an important issue. SRAN dose in the
studies included in the present review varied immensely
(from 500 to 1000 mg/kg/day). It is a known fact that
the anabolic effects of SR on bone remodeling are dose-
dependent [23, 24], and indeed the positive effects of SR
herein were observed with the higher doses [32, 33].
Clinical studies show efficacy regarding reduction of
fracture risk in postmenopausal women with

osteoporosis with a SRAN dose of 2 g/day [53]. Thus, a
corresponding effective dose in a human adult with
60 kg of body weight would be 30–60 g/day. Despite the
fact that high serum levels of strontium are required in
rats in order to generate significant anabolic bone
response [54], one could consider that if a dose 15 and
30 times higher than the clinical dose would be needed
to have an effect on osseointegration, this could lead to
toxicity in humans [55–57]. Clearly, this issue deserves
further investigation.
The variability in the results of the studies included in

this review, may not only relate to SRAN dose, but may
somehow relate to differences in the time-period after
ovariectomy, before the animals were included in the
study, which differed greatly among studies (from 4 to
12 weeks). Although it is already defined in the literature
that initial osteoporosis features appear already at
4 weeks after ovariectomy [58], in not a single study
included in this review, were the osteoporotic conditions
after ovariectomy confirmed by a specific test [31–33].
Thus, comparison of animals 4 and 12 weeks after ovari-
ectomy in terms of bone architecture characteristics
may not be considered optimal, since they represent
diverse stages of osteoporotic state [58]. In the same
context, in some studies, SRAN treatment started the
same day of implant installation [30–33], while in other
studies, treatment started 7 days after implantation [31];
SRAN treatment duration also varied much from among
studies (from 4 to 12 weeks). Considering the fact that
implant osseointegration in rats is completed within
maximum 8 weeks after installation [59] and the fact
that it is not yet known for how long should SRAN be
used before it exerts a measureable effect on bone archi-
tecture, differences in the time-point of SRAN treatment
start and its duration may have contributed to the vari-
ability in the results. Finally, differences in the evaluation
methods used in the various studies, ranging from the
gold-standard for osseointegration assessment, i.e., histo-
morphometry, to diverse biomechanical tests, and
microtomography that has the inherent drawback of
metal artifacts hampering osseointegration evaluation
[60], may have also contributed to the observed variabil-
ity in the results.

Quality assessment and risk of bias
According to SYRCLE’s tool for assessing risk of bias
[28], most studies were unclear regarding relevant steps
in the selection, performance, detection, and attrition
characteristics. On the other hand, there was a low risk
for bias related to outcome reporting, so that the con-
clusions were often and straight-forward related towards
the listed aims. Finally, a high risk for other biases,
mostly related to inconsistency when defining and
reporting the SRAN posology was seen in all included
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studies, something highly relevant, since it could directly
reflect on the results and interfere in the reproducibility
of the studies.

Conclusions
Based on the few studies included in this systematic re-
view, it is possible to state that the systemic administration
of Sr, in the form of SRAN, seems to enhance peri-
implant bone quality and implant osseointegration, how-
ever, to a moderate extent. Further studies should focus
on standardization of the study designs to properly assess
the effects of Sr, including parameters such SRAN dose,
administration start point, and duration of administration,
further allowing the assessment of potential risks/benefits
of SRAN use.
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