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Stroke recovery phenotyping 
through network trajectory approaches 
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Abstract 

Stroke is a leading cause of neurological injury characterized by impairments in multiple neurological domains includ-
ing cognition, language, sensory and motor functions. Clinical recovery in these domains is tracked using a wide 
range of measures that may be continuous, ordinal, interval or categorical in nature, which can present challenges 
for multivariate regression approaches. This has hindered stroke researchers’ ability to achieve an integrated picture 
of the complex time-evolving interactions among symptoms. Here, we use tools from network science and machine 
learning that are particularly well-suited to extracting underlying patterns in such data, and may assist in prediction 
of recovery patterns. To demonstrate the utility of this approach, we analyzed data from the NINDS tPA trial using the 
Trajectory Profile Clustering (TPC) method to identify distinct stroke recovery patterns for 11 different neurological 
domains at 5 discrete time points. Our analysis identified 3 distinct stroke trajectory profiles that align with clini-
cally relevant stroke syndromes, characterized both by distinct clusters of symptoms, as well as differing degrees of 
symptom severity. We then validated our approach using graph neural networks to determine how well our model 
performed predictively for stratifying patients into these trajectory profiles at early vs. later time points post-stroke. 
We demonstrate that trajectory profile clustering is an effective method for identifying clinically relevant recovery 
subtypes in multidimensional longitudinal datasets, and for early prediction of symptom progression subtypes in 
individual patients. This paper is the first work introducing network trajectory approaches for stroke recovery phe-
notyping, and is aimed at enhancing the translation of such novel computational approaches for practical clinical 
application.
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1  Introduction
1.1 � Dynamic and multi‑domain nature of stroke recovery
The process of neurological recovery after brain injuries 
such as stroke entails complex interactions among mul-
tiple variables that change dynamically over time [1, 2]. 
It is well known that the degree of recovery after stroke 
varies widely between individuals [3–6], where each 
patient’s recovery pattern uniquely reflects the combined 

influence of their lesion size and location [7], baseline 
health status, time to initial treatment [8], and response 
to medical treatment or rehabilitation, among many 
other intrinsic and extrinsic factors. Recovery trajectories 
furthermore vary depending on the specific neurological 
domain(s) affected (i.e., for motor, language, or sensory 
impairments) [9, 10], and each of these symptoms may 
show varying responsiveness to treatment. For example, 
language problems (aphasia), right-sided motor symp-
toms, and spatial perceptual problems (hemineglect) are 
reportedly less responsive than other symptoms to treat-
ment with tissue plasminogen activator (tPA) [11]. Stroke 
recovery is therefore notoriously heterogeneous in terms 
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of the type and severity of residual symptoms, as well as 
the timecourse of progression and/or resolution of those 
symptoms [12].

An important goal for stroke research is to reduce 
the ‘noise’ arising from this inherent heterogeneity by 
stratifying patients who are likely to have similar symp-
tom trajectories. The heterogeneity of symptoms and 
time-varying recovery patterns inherent to stroke make 
it an area especially well-suited area for data-driven 
approaches. The increasing availability of large scale 
stroke datasets has led to a recent explosion in the use 
of data-science methods for stroke research [13]. For 
example, machine learning analyses of stroke clinical data 
[12, 14] have been used to characterize symptom clusters 
[15], predict outcomes [3], and define composite meas-
ures of recovery [16].

1.2 � Limitations of conventional regression and machine 
learning approaches versus network science

While machine learning (ML) approaches have been suc-
cessful in a variety of analytical tasks, they often present 
challenges for interpretation and subsequent applica-
tion. By contrast, network science tools are explicit in 
their modeling, making them more useful for studying 
medical data where clinical interpretation is paramount. 
Additionally, typical ML approaches focus on prediction, 
while taking the outcome itself at face value; in contrast, 
network approaches attempt to improve how the out-
come itself is captured. While ML tools may not be as 
readily interpretable as network approaches for various 
types of analyses (such as understanding the interactions 
that underlie disease recovery patterns) ML still presents 
several desirable properties, particularly in terms of data-
driven predictive ability, and may therefore be useful for 
prognostication of patient recovery patterns.

Conventionally, statistical tools such as mixed-effects 
regression are used for modeling longitudinal data in dis-
ciplines where repeated measures designs are particularly 
relevant, such as education, motor learning, and psychol-
ogy [17–19]. Mixed-effects models have tremendous 
flexibility in their ability to accommodate different types 
of study designs and data types [20–22]. Such models are 
thus increasingly used in fields like neurorehabilitation 
where serial measures of recovery constitute a central 
focus [2, 18, 23]. Most importantly for our present pur-
poses, mixed-effect models provide a means of estimat-
ing a unique trajectory for each person by combining the 
models fixed-effects with random-slopes and intercepts 
to obtain a unique (non)linear trajectory for each person. 
These trajectories can then be compared across different 
domains of recovery to see which domains covary or vary 
independently from each other.

1.3 � Network science and trajectory profile clustering 
for stroke research

Insights into the complex patterns of symptom evolu-
tion can be gained through the computational power 
of network analysis. The field of network medicine 
[24] studies disease manifestation and progression as 
a function of multiple interacting disease variables, 
which may be of similar or different types. Network 
approaches also produce intuitive data visualizations 
that can facilitate interaction between clinicians and 
data scientists to yield novel insights on disease. How-
ever, with few exceptions, most network medicine stud-
ies have focused on biomolecular data [25, 26] rather 
than characterizing patients’ patterns of symptom pro-
gression over time.

Recently, Krishnagopal et  al. [27] introduced a net-
work-based approach called Trajectory Profile Clus-
tering (TPC) that groups patients based on similar 
patterns of symptom evolution. The intuitiveness and 
ability of TPC to integrate variables on multiple differ-
ent scales make it especially useful for studying disease 
severity, progression, and recovery. Multi-layer [28] 
types of trajectory clustering have also shown success 
in clinically validated disease trajectory prediction in 
Parkinson’s disease. We argue that TPC offers unique 
advantages for stroke recovery research based on its 
ability to simultaneously: (i) identify the dominant vari-
ables that differentiate stroke recovery subtypes; (ii) 
account for temporal disease progression patterns; and 
(iii) delineate distinct symptom groupings. This 
paper is the first work introducing network trajectory 
approaches for stroke recovery phenotyping, and is 
aimed at enhancing the translation of such novel com-
putational approaches for practical clinical application.

When analyzing recovery trajectories with TPC, an 
obvious question that arises is at what stage do patients 
begin to stratify into distinct trajectory clusters (i.e., 
when do they begin to show symptom patterns unique 
to their recovery subtype)? The timing of medical treat-
ments might be one important influence on the time-
course of recovery subtype stratification. For example 
in stroke, stratification might be expected to occur 
based on when patients receive treatments such as 
tPA or clot retrieval. Naively, this may appear to be a 
problem of simply measuring the differences between 
trajectory subtypes at each timepoint. However, since 
treatment efficacy for the same individual at different 
timepoints is not unrelated, more sophisticated tools 
are required to extract the timescale of separation. We 
can investigate these questions through graphical tools 
such as graph neural networks in machine learning.
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1.4 � Graph neural networks for the study of neurological 
disorders

The field of machine learning has been revolutionized by 
recent advances in deep neural networks, especially con-
volutional neural networks (CNNs) [29]. Conventionally, 
CNNs use local connections, shared weights and mul-
tiple layers to extract representations of data. However, 
CNNs work in a Euclidean domain and are best suited for 
use with images. By contrast, other deep learning meth-
ods can operate on a graph domain (i.e., graph neural 
networks or GNNs) [30]. Convolutional variants of graph 
neural networks provide a framework for transferring 
deep learning operators into a non-Euclidean (graphi-
cal) domain, and have been successful in a variety of tasks 
such as graph classification, node identification, link pre-
diction in protein interactions, knowledge graphs, and 
social network analysis, among others. Of particular 
interest here, they have been successfully applied to study 
neurological disorders including Alzheimer’s disease and 
autism [31, 32], and could similarly have utility in the 
study of stroke.

2 � Stroke dataset analyzed
To demonstrate the utility of using TPC and GNN for 
stroke recovery research, we analyzed cases from the 
well-characterized NINDS tPA trial data set [33]. This 
study was a randomized, double-blinded, placebo-con-
trolled trial that compared the effects of intravenous tPA 
(a thrombolytic agent used in ischemic stroke to dissolve 
blood clots) versus placebo treatment in 624 patients. 
The data set captured neurologic deficits on the NIH 
Stroke Scale (NIHSS) [34], which is the most widely used 
measurement scale for stroke neurologic deficits, and has 
well-defined clinimetric properties [35, 36]. Each item is 
scored on a scale (from 0–2 or 0–5), with higher values 
indicating greater stroke severity. The NINDS tPA trial 
captured NIHSS scores across 5 time points: at hospital 
admission, at 2 h, 24 h, 7–10 days, and 3 months post-
stroke. Here, we examined symptom progression in 11 
neurologic domains as assessed by 15 individual item 
subscores on the NIHSS. A description of the items/
variables is given in Table 1. We excluded a total of 135 
cases who had imputed data at any time point (134) 
and/or had died (118). We excluded these cases because 
the imputation approach that had been used could dis-
tort patterns of change in scores for individual patients 
(i.e., missing values were imputed as the worst score 
for each NIHSS item). After exclusions, there were 489 
remaining cases for analysis. Further, we treated time as 
a series of discrete observations, 0–4, starting with the 
patients’ assessment at admission. We have to treat time 
discretely rather than continuously because of how the 

data are coded in the NINDS tPA trial database. Ideally, 
we could measure time continuously in days or years, 
preserving the variability in assessment times [17–19], 
but that information was not available to us. Instead, in 
both the mixed-effect and TPC models, we fit trajecto-
ries based on discrete time. Although this transforma-
tion of the time variable means that absolute changes in 
time are arbitrary (i.e., 0–2 is 24 h, but 2–4 is potentially 
3 months), relative changes in time are still meaningful 
(i.e., negative slopes mean that neurological deficits were 
improving over time, at the choosen timepoints) (Fig. 1).

2.1 � Mixed‑effects regression model
To obtain individual trajectories for each person on the 
different domains of the NIHSS, we fit a series of ordi-
nal (cumulative link [21]) and Poisson (generalized lin-
ear [22]) mixed-models with random-intercepts and 
slopes for each subject. We focus on the ordinal models 
in the text because cumulative link models are designed 
to handle ordered, but non-continuous, response data. 
We present the Poisson models in the Additional file  1: 
Appendix S1. Although these models provide a reason-
able fit to the data, it is less clear that the NIHSS items 
meet the assumption of treating the responses as counts 
(i.e., the language item is scored as 0 = normal, 1 = mild 
aphasia, 2 = severe aphasia, 3 = total/global aphasia, 
but severe aphasia is not necessarily twice mild apha-
sia). However, the Poisson model might be more familiar 
to many readers than the ordinal model, and the models 
do largely agree in correlations between trajectories over 
time as shown in the Additional file 1: Appendix S1. The 

Table 1  NINDS tPA trial data, variable names and symptom 
descriptions

Variable name Symptom description

ATAXIA Coordination

CONSCIO (LOC) Level of consciousness

DYSAR (dysarthria) Speech (slurring)

EXTIN (extinction) Spatial perception

GAZE Eye movements

LANG (language) Language

LOCCOM (LOC communication) Command following

LOCQU (LOC questionnaire) Question answering

MOTORLA (left arm) Left arm strength

MOTORLL (left leg) Left leg strength

MOTORRA (right arm) Right arm strength

MOTORRL (right leg) Right leg strength

PALSY Facial weakness

SENSORY Skin sensation (pain/pinprick)

VISUAL Visual fields
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models do not completely agree, however, so we defer to 
the ordinal model as more appropriate given the scoring 
of the NIHSS.

The NINDS dataset contains repeated measures at 5 
time points across 11 different neurological domains 
(as measured by 15 different NIHSS assessment items), 
resulting in 75 observations per patient. To understand 
how changes in different symptoms relate to each other 
over time, we extracted the random-effects from each 
model to get a unique trajectory for each individual in 
each domain. Ideally, this estimation could be done in 
a single multilevel model that nests time within each 
domain within each participant. However, because the 
NIHSS domains all have numerically different max-
ima, they cannot all be estimated in the same ordinal 
model. As such, we chose to fit a unique model for each 
domain, extract the slopes for each person, and then 
compare those slopes across domains. Thus, it is impor-
tant to remember that absolute differences in the out-
come are difficult (if not impossible) to interpret (i.e., is 
total sensory loss, a 2 on the sensory domain, equivalent 

in severity to total gaze palsy, a 2 on the gaze domain?). 
However, relative changes across domains are still mean-
ingful (i.e., negative slopes mean improvement over time 
for all domains and if the slopes are positively correlated, 
that means the symptoms tend to improve together).

Models also included fixed-effects of Time, Group (tPA 
versus placebo), and the Group × Time interaction. Esti-
mates, standard errors, and p-values for all models are 
presented in the Additional file  1: Appendix S1. Statis-
tical significance was defined as ( α = 0.05 ) for all tests. 
Although the fixed-effects are presented in the results 
below, we want to emphasize that demonstrating the 
efficacy of tPA is not the goal of our analysis. Our goal 
is to describe how individuals change over time across 
domains and see which domains tend to be correlated 
with each other (doing this first with mixed-effect mod-
els and then with TPC). We present the effects of Group 
and the Group × Time interactions as an internal validity 

Fig. 1  Data from the NINDS tPA trial shown as a function of time and the 15 NIHSS assessment items. Note that some items (e.g., ataxia) range from 
0 to 2, others from 0 to 3 (e.g., language), and others from 0 to 4 (e.g., arm and leg measures). The proportion of participant obtaining that score at 
each timepoint is shown via a color-coded stacked histogram (total N = 489)
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check so that these analysis can be compared to past 
work showing the efficacy of tPA [33].

2.2 � Trajectory profile clustering
The Trajectory Profile Clustering algorithm [27] is 
designed to group together patients based on the simi-
larities of their disease trajectories. In essence, it uses 
graphical tools to generate trajectory profiles for each 
individual that track their evolution of symptoms across 
time, then clusters them into communities of similarly 
behaving individuals that define a recovery subtype. The 
algorithm proceeds as follows: 

1.	 Model using bipartite networks At time point t we 
construct a bipartite graph modeling connections 
between N individuals and V disease variables/ 
symptoms. The connections between the individu-
als and symptoms are encoded through an adjacency 
matrix At of size N × V  . For M time points, we 
can represent the set of these bipartite graphs as an 
N × V ×M by stacking the At across time points to 
generate a tensor X where Xivt gives the value of indi-
vidual i’s disease symptom v at time t.

2.	 Threshold and binarize to obtain trajectory profile 
We threshold each symptom to set values less than a 
fixed fraction κ of the maximum score for the symp-
tom to zero. For example, if symptom ν takes score 
values in (0, 1, 2, 3, 4, 5), if κ = 0.5 , we binarize scores 
such that scores below 5× 0.5 = 2.5 are set to 0, and 
above are set to 1. We call this thresholded matrix 
the trajectory profile matrix, Ti for patient i, that con-
tains a representation of how the set of symptoms 
that a patient is severely affected by varies with time. 
The matrix entries of Ti are calculated as follows: 

	 Since the range of values for each symptom rep-
resents the entire scale of severity, this thresholding 
ensures that patients are only considered ’connected’ 
to symptoms that they severely express.

3.	 Create a patient–patient network based on trajec-
tory similarity We create a patient–patient network 
P of all patients. The nodes of this network denote 
patients, and the strength of a link between patient i 
and patient j captures the similarity of their trajectory 
profiles. P has an adjacency matrix given by: 

(1)Ti
νt = 0 if Xiνt ≤ max(ν) · κ ,

(2)= 1 if Xiνt > max(ν) · κ .

(3)Pij =
∑

v,t

(Ti
vt ≡ T

j
vt).

 In other words, Pij gives the number of matrix 
entries for which trajectory profile Ti has the same 
value as Tj . This formulation implies that symptoms 
are equally weighted. While the approach is amena-
ble to non-uniform weighting, there is little clinical 
consensus on the relative importance of different 
symptoms. Hence, in the interest of not introducing 
external bias, we choose uniform weighting, adopt-
ing an agnostic approach that assumes all symptoms/
indicators are equally important. Other applica-
tions may require unequal weighting for symptoms 
and different time points, in which case one may 
calculate the patient–patient matrix as follows: 
Pij =

∑
v,t wvt(T

i
vt ≡ T

j
vt) where wvt is the weight of 

symptom v at time t.
4.	 Cluster the network to identify subtypes We then per-

form Louvain community detection [37] to maxi-
mize the Newman–Girvan modularity function [38] 
on the network defined by the adjacency matrix 
P. Such community detection allows us to identify 
’communities’ of patients, where individuals within 
a community have a relatively more similar stroke 
recovery profiles than patients between communi-
ties. As is common in network community detection 
approaches, the number of communities is not set 
a priori, but rather chosen so that the modularity is 
maximized. This process allows us to cluster trajec-
tory profiles, and hence patients, into subtypes which 
have high intra-subtype similarity. The subtypes are 
denoted by C1,C2, . . .CL , where each Cl is a collec-
tion of trajectory profiles of the patients in that sub-
type, and L is the total number of subtypes.

5.	 Construct aggregate profiles to characterize each sub-
type: We average the trajectory profiles of all patients 
in each community Cl to obtain the ‘community/sub-
type profile’ Sl . The subtype profile is indicative of the 
symptom features that describe the subtype. More 
specifically, it is the normalized average of the trajec-
tory profiles of all the patients in that subtype, i.e., Sl 
is a V ×M matrix with elements defined by 

 where Nl is the total number of individuals in sub-
type Cl.

2.3 � Graph neural network
Graph neural networks (GNNs) [30] are a machine learn-
ing approach that captures the relationships represented 
in graphs through message passing between the nodes of 
those graphs. GNNs take a graph as input and pass them 
several layers of nodes, artificial ‘neurons’. Here we use 

(4)Slvt =

∑
i∈Cl T i

vt

Nl
,
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graph neural networks to identify the timepoints that are 
most relevant in determining stroke recovery subtypes. 
Specifically, we train a graph neural network on symp-
tom–symptom graphs generated at each timepoint, and 
test the accuracy of a GNN in its ability to classify an 
individual into the correct recovery subtype using data 
from a single timepoint. A higher accuracy at a given 
timepoint implies that the recovery subtypes attributed 
to the patients are strongly correlated with the symptom 
profiles at that timepoint.

We generate a symptom–symptom interaction graph 
Gt at each timepoint t where the nodes represent the 
disease symptoms. This graph is undirected (i.e., if node 
x is connected to node y, vice-versa is also true, i.e., the 
adjacency matrix of this graph is symmetric). The graph 
is generated as follows. First we generate a symptom–
patient binary interaction network for a given timepoint 
as in step (3) of the previous section. We then project 
it to symptom space to obtain the symptom interaction 
profile of each patient at a timepoint. The corresponding 
adjacency matrix (of size V × V  ) for the graph for patient 
i is given by

Lastly, We repeat this for each individual such that there 
exist N symptom–symptom interaction graphs at each 
timepoint.

We then separate the individual cases into a training 
data set (70% of total individuals) and a test data set (30% 
of total individuals) used to validate our approach. A con-
volutional graph neural network is trained on a graph 
classifying task for each time point, with labels provided 
by the subtypes/communities of that individual. The 
stratification of individuals into their recovery subtypes 
at each timepoint is then measured by testing the accu-
racy of the GNN on the test data for each timepoint.

The graph neural network takes as input symptom–
symptom networks where we consider the 15 NIHSS 
assessment items as the nodes. The network consists of 
an input layer, a single hidden layer, and an output layer. 
The hidden layer comprises 64 artificial neurons. The 
input is processed through two graph convolutional lay-
ers with ReLU nonlinearities. We then calculate the 
graph representation by averaging all the neuron repre-
sentations in the output layer, which contains an equal 
number of neurons to the number of subtypes. The out-
put is passed through a softmax classifier that yields the 
probability of the graph belonging to a particular cate-
gory/subtype. We use cross-entropy loss and the adaptive 
moment estimation (ADAM) optimizer.

(5)Git = TT
ivt × Tivt .

3 � Results
3.1 � Key patterns in slopes from the ordinal mixed‑effect 

models
Full details of the models are presented in the Addi-
tional file 1: Appendix S1. In brief, however, there were 
statistically significant negative effects of Time for sev-
eral different domains of the NIHSS: LOC (b = − 0.43), 
dysarthria (b = − 0.76), visual extinction (b = − 0.38), 
gaze (b = − 0.68), language (− 0.39), the left arm (b=− 
0.99), the right arm (b = − 0.65), the left leg (b = − 
0.66), the right leg (b = − 0.55), palsy (b = − 0.67), 
and sensation (b = − 0.39), showing that neurological 
deficits generally improved over time. Consistent with 
prior analyses of these data [11], there were also statis-
tically significant effects of Group for extinction (b = 
+ 0.51), the left leg (b = + 0.49), the right leg (b = + 
0.74), and sensation (b = + 0.38), and Group × Time 
interactions for dysarthria (b = + 0.13), the left arm (b 
= + 0.36), and palsy (b = + 0.15), which showed that 
the placebo group fared worse overall or improved 
more slowly over time in several domains compared to 
the tPA group.

Inspection of the person-level coefficients of this 
model also provides some insights relevant to the cur-
rent goal of creating behavioral phenotypes. As shown 
in Fig.  2, and as would be expected given the common 
occurrence of post-stroke hemiplegia (weakening on 
one side of the body), some of the strongest correlations 
were for the ipsilateral arm and leg. The right arm and 
leg showed a similar timecourse of change in impairment 
( r = 0.80 ), as did the left arm and leg ( r = 0.81 ). Second, 
there are also patterns in the correlation matrix consist-
ent with lateralization of function as affected by unilat-
eral stroke. For instance, the NIHSS item for extinction 
was positively associated with left arm/leg deficits (both 
from right hemisphere damage; r = 0.36− 0.40 ), and 
much less associated with right arm/leg deficits (from 
left hemisphere damage; r = 0.08− 0.14 ). Gaze was also 
positively associated with extinction r = 0.53 , possibly 
reflecting the fact that gaze deviation is typically more 
pronounced in patients with hemineglect [39]. Lastly, 
language was positively associated with the right arm/
leg (all left hemisphere effected; r = 0.56− 0.57 ) and 
trivially associated with the left arm/leg (which are right 
hemisphere effected, r = − 0.07− 0.04).

In sum, ordinal mixed-effect regression provides us 
with analytical replication of past work (i.e., the supe-
riority of tPA to placebo as shown in several different 
domains of the NIHSS) and new insights into how sets 
of symptoms co-evolve over time. However, these cor-
relations between individual trajectories do not tell us 
which individuals cluster together nor do they provide 
us clear guidance on where cut-offs between different 
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groups of individuals should be drawn, or when clusters 
begin to show reliable separation. There multiple analyti-
cal approaches that one could take to achieve these aims 
(e.g., cluster analysis of the random-slopes at successive 
timepoints could theoretically achieve this goal follow-
ing the mixed-effect models). Acknowledging the diver-
sity of possible methods, we present TPC as a pragmatic 
method that can both establish the common multidimen-
sional trajectories that individuals tend to show and clas-
sify those individuals based on their trajectories.

3.2 � Stroke recovery subtypes identified by TPC
Maximizing modularity on the patient–patient trajec-
tory-similarity network gives us three distinct recovery 
subtypes. It is worth mentioning that the number of sub-
types are not predetermined, but are optimally chosen 
such that the modularity is maximized, i.e., the subtypes 
are optimally separated.

Figure 3 shows the clinical profiles of each subtype. The 
darkness of the shade of grey for each symptom over time 
denotes the fraction of patients who had a value above 
threshold for that symptom. To reiterate, the threshold-
ing ensures that patients are only considered affected 
with symptoms for which they display relatively high 

severity, defined to be above the population median. Our 
analysis identifies 3 distinct stroke trajectory profiles that 
align with clinically relevant stroke syndromes, charac-
terized both by distinct clusters of symptoms, as well as 
differing degrees of symptom severity over time. Several 
key features of the identified subtypes warrant comment. 
First, our TPC approach identifies a ‘mildly affected’ 
group that was the least symptomatic of the three sub-
types both in terms of baseline severity and 3-month 
residual symptoms. As a group, this subtype showed a 
mixture of features that are not clearly lateralizing. In 
addition, two severely affected subtypes are readily iden-
tified that correspond to left and right hemisphere syn-
dromes: We find a ‘left motor’ subtype, showing severely 
impaired left arm and leg strength together with hemine-
glect, but with essentially no right-sided motor symptoms 
(red boxes, Fig.  3), and a ‘right motor’ subtype, show-
ing severely impaired right arm and right leg strength 
together with aphasia (blue boxes, Fig.  3). Additionally, 
spatial perception scale items are most affected in the 
‘left motor’ group (corresponding clinically to a right 
hemisphere syndrome with hemispatial neglect). Con-
versely, the language and question-answering items are 
most affected in the ‘right motor’ group (corresponding 

Fig. 2  Correlogram showing the association between slopes in the different domains of the NIHSS. Correlations are shown as Spearman rank-order 
correlations. Red boxes indicate positive correlations and blue colors indicate negative correlations
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to a left hemisphere syndrome with primarily expressive 
aphasia). These findings are in alignment with prior fac-
tor analysis on the clinimetric properties of the NIHSS 
[40] and principal component analysis (PCA) to define 
common behavioral clusters [41], as well as results from 
our mixed-effects model in Sect.  3.1. The fact that our 
results capture clinically relevant subtypes and corrobo-
rate these prior findings supports the content validity 
of this analytic approach. Additionally, our clustering 
approaches reveal subtype structure at a finer scale (both 
in terms of symptoms as well as longitudinal symptom 
evolution) than can be achieved with PCA, and results 
that are clinically consistent.

It is notable that all three identified trajectory subtypes 
included both tPA- and placebo-treated patients, suggest-
ing that treatment effects were less defining characteris-
tics of patient recovery profiles than were initial severity 
and stroke laterality. TPC also provides interesting 
insights into patterns of symptom prevalence over time 
across subtypes. Spatial perception deficits (hemineglect) 
are present in both the left-motor and right-motor sub-
types, but tend to be milder and have better resolution in 
left hemisphere strokes. This observation reinforces the 
importance of targeted screening during rehabilitation 

for hemineglect symptoms in both left- and right-hem-
isphere stroke, since persistent milder symptoms that 
could be amenable to treatment might otherwise be over-
looked. Visual deficits are also present in both left- and 
right-hemisphere strokes as would be expected, but con-
trary to conventional understanding that visual deficits 
resolve less well than hemineglect, the overall prevalence 
of persistent visual symptoms at 3 months is lower than 
for hemineglect.

3.2.1 � Effects of tPA treatment and time
A natural extension of our TPC subtyping is to study 
the timecourse of stratification into these subtypes. One 
might wonder whether subtype (and consequently the 
expected recovery profile of a patient) is largely driven 
by baseline symptom severity or by early stroke treat-
ments. Machine learning is particularly well-posed to 
answer such questions. Since we operate in the graph 
domain, we use graph neural networks. We first extract 
trajectory profiles independently on patients who had 
received tPA within 3 h of stroke onset compared to 
patients who had received a placebo. In Fig.  4, we see 
that the identified subtypes retain the same symptom 
clusters identified in Fig.  3, but that overall symptom 
severity is lower in the tPA-treated population (Fig. 4A), 
particularly in symptoms that are dominant identifiers of 
the group. For instance, in the left-motor group, assess-
ment items for gaze, left arm and leg strength, and pain/
pinprick sensation showed higher recovery in the tPA-
treated group (Fig.  4A) versus placebo group (Fig.  4B). 
Similarly, in the right-motor group, assessment items 
for right arm and leg strength, and command-following 
(SLOCCOM) showed higher recovery in the tPA-treated 
group (Fig. 4A) compared to the placebo group (Fig. 4B). 
As expected, the effect of tPA is less obvious in the mini-
mally impaired group. We explore in Fig. 5 the accuracy 
of a neural network in predicting the subtype of an indi-
vidual given data at a discrete timepoint. We generated 
a symptom-interaction network for each individual at 
each timepoint, and trained a convolutional-GNN to 
learn properties of interaction with neighbors. The con-
volutions are used for averaging over the neighborhood. 
If the learned properties for that timepoint are separated 
according to subtypes, then data at that timepoint is con-
sidered a good predictor of the subtype. In the training 
stage, we assume that the subtype is known to the neural 
network, which attempts to learn correlations between 
symptom-interaction patterns and the subtype. We then 
test to identify if the features learned by the neural net-
work are consistent with the actual subtypes of the test 
patients.

Fig. 3  Corresponding profiles of the 3 stroke recovery subtypes. 
Subtypes identified by the algorithm containing fewer than 10 
patients are not shown (1 outlier patient falls under this category). 
The shade of grey indicates the affected fraction, i.e., fraction of 
patients in the recovery subtype that are severely affected by that 
symptom at that time. The number of patients in the subtype, and 
fraction of patients receiving treatment is listed above each panel. 
The symptom names are listed to the left. The red boxes highlight 
the unique combination of dominant symptoms of the ‘left motor’ 
subtype. The blue boxes highlight the unique combination of 
dominant symptoms of the middle ‘right motor’ subtype. The 
rightmost ‘mildly affected’ subtype has the mildest symptom profile. 
The symptoms names on the left are preceded by the letter ‘S’ 
(indicating ‘Stroke’) to be consistent with the naming convention in 
the dataset



Page 9 of 11Krishnagopal et al. Brain Informatics            (2022) 9:13 	

Figure  5 shows that there is a difference in predictive 
accuracy at baseline for the tPA vs. Placebo groups. The 
baseline timepoint is a more accurate predictor of sub-
type for patients who received tPA. This finding may 
seem unexpected if one posits that tPA ‘rescues’ an oth-
erwise poor prognosis with severe baseline symptoms 
predicting poor outcomes. However, the predictive accu-
racy for the tPA group rapidly increases during the first 

2 h, and given the expected timecourse for therapeutic 
effects of tPA, this finding provides additional validation 
of our approach. For the Placebo group, predictive accu-
racy grows at comparable rates (comparable slopes) up to 
the 24-h mark, showing peak predictive accuracy at the 
7–10 day mark, with standard error on the order 10−2 . 
The tPA group showed a further uptick in predictive 
accuracy by the 3-month mark, suggesting that treatment 
continues to exert an effect on recovery subtype stratifi-
cation even in the later stages of post-stroke. One might 
speculate that this is the result of tPA treatment salvaging 
a greater ‘reserve’ of neural tissue for later rehabilitation 
therapies to act upon. Our report on the rapid increase in 
predictive accuracy from 2 to 24 h post-stroke further-
more aligns with recent work by Heitsch et al. [42] who 
reported on the early change in NIHSS scores between 6 
and 24 h as a dynamic phenotype associated with long-
term outcomes.

4 � Conclusion and future work
In this work we introduce a network-based, data-driven 
method for stroke recovery analysis. First, we analyze 
the NINDS tPA stroke dataset using conventional quan-
titative medicine methods including a ordinal mixed-
effects regression model, examining the effects of time, 
group (tPA vs. Placebo), and their interactions across 
neurological domains. Further, to identify stroke recov-
ery subtypes and examine their characteristics at a finer 
resolution, we use the Trajectory Profile Clustering 
method which accounts not only for symptom severity 
at different timepoints, but also symptom interactions 
and their temporal evolution. Of note, although the 
analytical approach is clinically agnostic, we identify 

Fig. 4  Trajectory profiles (same as in the above figure) were applied independently on patients that A received tissue plasminogen activator (tPA) 
treatment within 3 h of stroke onset compared to B patients who received placebo. Subtypes identified by the algorithm containing fewer than 10 
patients are not shown (1 outlier patient falls under this category). The shade of grey indicates the affected fraction

Fig. 5  Test accuracy denoting predictive power of a graph neural 
network as a function of timepoint. Accuracy plotted separately 
for patients that received tPA treatment, placebo patients and all 
patients (tPA treated+placebo). 70% data used for training the neural 
network, 30% for testing. Number of training epochs = 100. We use a 
2 layer graph convolutional neural network with 16 hidden units and 
relu nonlinearity at both layers
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subtypes that are clinically relevant. In particular, we 
identify a mildly affected recovery subtype compris-
ing a larger proportion of patients who received tPA. 
Additionally, we observed that the two other recovery 
subtypes stratify as left- versus right-sided hemiplegia. 
Additionally, we identified that left motor deficits are 
strongly correlated with deficits in gaze and extinction, 
whereas right motor deficits correlated with deficits in 
language. These results again are biologically relevant, 
and are further validated by convergent findings in the 
mixed-effects regression models. Lastly, we use graph 
neural networks to study how much of the stratifi-
cation into subtypes is identifiable at different time 
points, and found that stroke recovery trajectories were 
largely defined within the first 24 h, consistent with the 
expected pharmacodynamics of tPA treatment deliv-
ered in the first 3 h after stroke.

This paper is the first work introducing network tra-
jectory approaches for stroke recovery phenotyping, 
and is aimed at enhancing the translation of such novel 
computational approaches for practical clinical appli-
cation. This work presents a data-driven method that 
is widely applicable to heterogenous neurological dis-
orders such as stroke, and bridges the fields of predic-
tive medicine and network informatics. Because our 
approach is uniquely adapted to accommodate input 
variables on multiple scales, future applications could 
include the integration of other types of data that may 
contribute to the heterogeneity of recovery, such as 
data on patient genotypes.
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