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Introduction
A majority of geomaterials are inherently cross-anisotropic (or transverse isotropic) due 
to the depositional processes. The normal of deposit plane is usually called fabric direc-
tion. The cross-anisotropic structure of geomaterials features inhomogeneous shear 
responses which depend on relationship between loading and fabric directions. For 
example, Oda and Koishikawa [1] and more recently Azami et  al. [2] both performed 
bearing capacity tests of a strip footing on sand and observed the bearing capacity in 
the fabric direction was 25–34% higher than the bearing capacity in the direction per-
pendicular to the fabric direction. The anisotropic strength of sands has been observed 
in laboratory tests by Oda [3–5], Oda et al. [6, 7], Arthur and Menzies [8], Arthur and 
Phillips [9], Wong and Arthur [10], Arthur et al. [11], Ochiai and Lade [12], Tatsuoka 
et al. [13], Lade et al. [14], Lam and Tatsuoka [15], and Yang et al. [16]. Such anisotropic 
strength cannot be described by isotropic failure criteria such as Mohr–Coulomb failure 
criterion, the Drucker-Prager failure criterion, and Lade’s failure criterion [17]. There-
fore, various anisotropic failure criteria have been developed. These anisotropic failure 
criteria can be divided into two categories.
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The first strategy was to reuse existing isotropic failure criteria by rotating principal 
stresses. The isotropic failure criteria were developed by assuming coaxiality between 
loading direction and fabric direction. However, the non-coaxiality between loading 
direction and fabric direction induces the strength variance in cross-anisotropic soils 
which violated assumption of isotropic failure criteria. To overcome such non-coaxi-
ality, researchers rotated principal stress space around origin so that the loading and 
fabric direction were coaxial again and the existing isotropic failure can be reused for 
cross-anisotropic soils, such as [18].

The second strategy was to use fabric tensors. The fabric tensors quantify the fabric 
structure formed in soils due to distributions of contact normals, voids, branch vectors, 
and particle long axes (Oda and Nakayama [19]). A popular fabric tensor was proposed 
by Oda and Nakayama [19], which was used by Li and Dafalias [20], Dafalias et al. [21], 
Gao et  al. [22], and Gao and Zhao [23] to formulate their anisotropic failure criteria. 
The second fabric tensor, called microstructure tensor, was developed by Pietruszczak 
and Mroz [24, 25], which was used by Pietruszczak and Mroz [24, 25], Lade [26, 27], 
Schweiger et al. [28], and Kong et al. [29] to develop their anisotropic failure criteria.

The fabric direction f can be identified by two spherical coordinates ϑ and ξ in prin-
cipal stress space as shown in Fig. 1a. The ϑ is the angle between fabric direction f and 
major principal stress σ1 and ξ is the angle between fabric direction f and intermedi-
ate principal stress σ2. Three common fabric configurations were investigated in the 
experimental studies: (1) f is perpendicular to σ1: ϑ = 90° and ξ = 0–90° (structure 1 in 
Fig. 1b); (2) f is perpendicular to σ2: ϑ = 0–90°, ξ = 90° (structure 2 in Fig. 1c), and (3) f 
is perpendicular to σ3: ϑ = 0–90°, ξ = 0° (structure 3 in Fig. 1d).

The existing anisotropic failure criteria focused on predicting anisotropic strength in 
structure  2 while the anisotropic strength in structures  1 and 3 are rarely studied. This 
study focuses on developing a generalized anisotropic failure criterion which can applied 
to three fabric configurations. The new anisotropic failure criterion will be formulated by 
integrating spatial mobilized plane developed by Nakai and Matsuoka [30, 31] and the iso-
tropic failure criterion developed by Lade [17]. The new anisotropic failure criterion only 
required three parameters to calibrate but demonstrated excellent prediction accuracy.

Anisotropic strength observations
The strength variation of cross-anisotropic soil at structure  2 has been extensively 
studied by many researchers using symmetrical triaxial test, plane strain compression 
test and torsion shear test. Figure 2 displays the symmetrical triaxial testing results of 

Fig. 1 Fabric direction definition and three fabric configurations considered in this study
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four different sands including Cambria sand from Ochiai and Lade [12], Leighton Buz-
zard sand from Arthur and Menzies [8], Ham river sand from Arthur and Phillips [9], 
and Toyoura sand from Oda [3]. The inclination angle ϑ was changed from 0° to 90° 
in the tests to investigate the anisotropic strength of sands. As shown, all the experi-
mental results exhibited a similar trend that angles of internal friction (φ) monotoni-
cally decrease as ϑ increases from 0° to 90°. The variation of φ values, defined as Δφ, was 
about 3°.

Lade et al. [14] performed a series of torsion shear tests on Nevada sand under con-
stant stress ratio b (b = 0, 0.25, 0.5, 0.75, 1.00) and constant mean effective stress 
pʹ = 100 kPa condition, where b = (σ2 − σ3)/(σ1 − σ3) and pʹ = (σ1 + σ2 + σ3)/3. The incli-
nation angle ϑ was changed to investigate the anisotropic strength in structure  2 in 
Fig. 1. Their test configurations were essentially equivalent to true triaxial test condition. 
The b = 0 tests were equivalent to symmetrical triaxial test, in which φ monotonically 
decreases as ϑ increases from 0° to 90° akin to the symmetrical triaxial tests. However, 
in b = 0.25, 0.5 and 0.75 tests, the φ curves exhibited a “checkmark” shape as ϑ increases 
from 0° to 90°. The maximum φ was at ϑ = 0° while the minimum φ was at ϑ = 67.5°.

The b = 1 tests were equivalent to triaxial extension test. The φ value at ϑ = 67.5° was 
somewhat abnormal and does not follow the checkmark shape as shown in Fig.  3a, 
which was likely attributed to test error as pointed out by [32]. Lam and Tatsuoka [15] 
and Yang et  al. [16] reported that traxial extension test results still displayed a check-
mark shape similar to b = 0.25, 0.5 and 0.75 tests. The range of φ values, Δφ values, were 
6°, 9°, 13°, 24°, and 18° for b = 0, 0.25, 0.5, 0.75 and 1.0 respectively. That implied that 
stronger anisotropic strength responses occurred at higher b values.

Fig. 2 Anisotropic strength of four sands in symmetrical triaxial tests
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Yang et  al. [16] performed a series of torsion shear tests on Leighton Buzzard sand 
under the constant mean effective stress pʹ = 200  kPa and constant stress ratios b = 0, 
0.25, 0.5, 0.75 and 1.0. The angle ϑ was changed from 0° to 90° while fabric normal f was 
kept parallel to the direction of intermediate stress σ2 (ξ = 90°). The relative density Dr 
was set as 76% for all the tests. The results were presented in Fig. 3b. The φ values dis-
played checkmark shapes for all the tests. The minimum φ values occurred at ϑ = 75°. 
The Δφ values were 4.3°, 5.5°, 9.8°, and 13.5° for b = 0, 0.2, 0.5 and 1.0 respectively. 

Fig. 3 Anisotropic strength of Nevada sand and Leighton Buzzard sand in torsion shear tests
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This agreed with Lade et  al.’s [14] results that stronger anisotropic strength responses 
occurred at higher b values.

A series of plane strain compression tests on Toyoura sand at various confining 
stresses and relative densities were performed by Tatsuoka et al. [13] as shown in Fig. 4. 
The specimen was cubical shape and the intermediate principal strain was restricted to 
create a plane strain testing condition. The ϑ was changed from 0° to 90° while the ξ 
was kept as 90° (structure 2 in Fig. 1c). The φ curves at both dense (Dr = 80–91%) and 
medium dense (Dr = 50–60%) conditions displayed a checkmark shape as shown in 
Fig. 4. The minimum φ values occurred at ϑ = 56°–67° and the maximum φ values were 
at ϑ = 0°. As will be shown later, the b values in the plane strain test were in a range of 0.2 
to 0.3, so the plane strain test results should be close to b = 0.25 triaxial tests.

Theoretically, larger confining stresses would depress anisotropic responses, result-
ing in flatter checkmark shape curves. However, checkmarks of 5  kPa and 400  kPa at 
the same density demonstrated the similar slopes, which implied the confining stresses 
smaller than 400  kPa had limited effects on anisotropic responses of sands. However, 
checkmarks at dense condition were clearly steeper than checkmarks in the medium 
dense condition. The Δφ was about  8o for dense condition while Δφ was about  4o for 
medium dense condition. Therefore, the stronger fabric anisotropy occurred at higher 
relative density Dr. This observation agree with Zheng and Hryciw [33, 34]. Anisotropic 
strength of sands for σ3 > 400 kPa and Dr < 50% are not clear because of no experimental 
data available.

The degrees of fabric anisotropy in soil also depend on alignment of particle long axes 
and particle shapes. The elongated soils tend to develop stronger fabric anisotropy [34]. 
To investigate such effects, Oda [5] performed plane strain compression tests on three 
specimens at dense state under σ3 = 200 kPa: Toyoura sand with cross anisotropic fabric, 

Fig. 4 Anisotropic strength of Toyoura sand in plane strain compression tests
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Toyoura sand with isotropic fabric, and Tochigi sand with anisotropic fabric as shown in 
Fig. 5.

Toyoura sand was more elongated than Tochigi sand. Therefore, Toyoura sand dis-
played a steeper checkmark shape than the Tochigi sand, which confirmed the elon-
gated sands can develop stronger anisotropic strength responses. The same observations 
reported by Lade et al. [14].

To create an isotropic specimen, Oda [5] used a hand plunger to plunge into the Toy-
oura sand specimen to destroy the initial cross anisotropic arrangement of particles 
generated by air-pluviation method, resulting in an isotropic Toyoura sand specimen. 
The test results of isotropic specimen for ϑ = 0° to 90° are shown in Fig. 5. Expectedly, 
a nearly flat line was found, which confirmed strength responses of isotropic specimen 
were independent of ϑ.

Lam and Tatsuoka [15] considered three structures (Figs. 1b to d) as shown in Fig. 6. 
Three common strain conditions were considered: symmetric triaxial test (b = 0), triaxial 
extension test (b = 1.0) and plane strain compression test (0.2 < b < 0.3). The confining 
stress σ3 was 100  kPa and relative density Dr was 74% in all the tests. For symmetric 
triaxial test (b = 0) at structures 2 and 3, the φ decreased as increasing ξ, which agreed 
with the observation in Fig. 2. It should be noted that at Lam and Tatsuoka [15] did not 
perform the symmetric triaxial tests at structure 1 but assumed a constant φ value which 
was equal to the φ value at ϑ = 90° and ξ = 90°. For plane strain condition, checkmark 
shape was found at structure 2, which agreed with the observations in Figs. 4 and 5. At 
structures  1 and 3, the φ monotonically decreased as increasing ϑ. For triaxial exten-
sion test (b = 1), the φ values displayed checkmark shapes at structures 2. The strength 
responses at structure 1 were the same as structure 2 because of the same boundary con-
ditions. Lam and Tatsuoka [15] did not perform the symmetric triaxial extension tests at 

Fig. 5 Anisotropic strength of cross-anisotropic Toyoura sand, isotropic Toyoura sand, and cross-anisotropic 
Tochigi sand in plane strain compression tests
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structure 3, but assumed a constant φ value which was the same as the φ value at ϑ = 0° 
and ξ = 90°. The anisotropic strength response was more pronounced at larger b values 
in structure 2. This agreed with the observation made from Nevada sand in Fig. 3a and 
Leighton Buzzard sand in Fig. 3b.

Development anisotropic failure criterion based on experimental observations
Formulation of anisotropic failure criterion

The checkmark relationships between ϑ or ξ and soil strength are comparable to strength 
variation of jointed rock mass as reported by Zhang [35]. The joints create planes of 
weakness in rocks. Therefore, rocks reached the lowest strength when failure plane over-
laps with the joints. The strength increases as the orientation of failure plane and the ori-
entation of joints depart from each other. We hypothesize that the same concept can be 
used in this study to develop the anisotropic failure criterion of sands. The deposit plane 
of sands creates a plane of weakness. Therefore, the strength of cross-anisotropic sands 
depends on the relative orientations between potential failure plane and deposit plane. 
Sands reach the minimum strength when the potential failure plane and deposit plane 
are overlapping with each other, and the strength increases when they diverge from each 
other.

A “Spatial Mobilized Plane” (SMP) developed by Nakai and Matsuoka [30, 31] is 
used in this study to define the potential failure plane. A typical soil specimen is 
shown in the three-dimensional stress space in Fig.  7a, where axes I, II, and III are 
the opposite directions of major, intermediate, and minor principal stresses (σ1, σ2, 
and σ3) respectively. Figure 7b shows the Mohr circles O1, O2, and O3 at failure state. 
The failure envelope using the circle O1 formed by σ1 and σ3 determines the mobi-
lized friction angle φ13

mob as shown in Fig. 7b. The failure envelope using the circle O2 
formed by σ1 and σ2 determines the mobilized friction angle φ12

mob as shown in Fig. 7b. 

Fig. 6 Anisotropic strength of Toyour sand in plane strain compression tests in three fabric configurations
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The failure envelope using the circle O3 formed by σ2 and σ3 determines the mobilized 
friction angle φ23

mob as shown in Fig. 7b.
Based on Nakai and Matsuoka [30, 31], knowing the mobilized friction angle φ, the 

inclination angle of failure plane can be determined as 45° + φ/2, also called “Mobi-
lized Plane” or the “Plane of maximum oblique”. Therefore, three mobilized friction 
angles φ13

mob , φ
12

mob , and φ23

mob determine three mobilized planes in Fig.  7c–e respec-
tively. The inclination angles of three mobilized planes are determined as 45° + φ13

mob

/2, 45° + φ12

mob/2, and 45° + φ23

mob/2.

Fig. 7 The spatial mobilized plane proposed by Nakai and Tatsuoka [30, 31]
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Nakai and Matsuoka [30, 31] integrated three mobilized planes in Fig. 7c–e to generate 
a SMP as shown in Fig. 7f. The Mohr–coulomb failure plane does not consider effects of 
intermediate principal stress while the SMP considered effects of three principal stresses.

Intersects of SMP with axes I, II, and III are proportional to the square roots of the prin-
cipal stresses. Nakai and Matsuoka [30, 31] showed that normal vector of SMP n = (n1, n2, 
and n3) can be computed as:

where I2 = the second stress invariant, σ1σ2 + σ2σ3 + σ1σ3; and I3 = the third stress invari-
ant, σ1σ2σ3.

The fabric direction is defined as:

Therefore, the relative orientation between deposit plane and SMP can be quantified by 
the spatial angle between f and n:

Based on our hypothesis, small δ values mean the orientations of deposit plane and fail-
ure plane are close and small strength (φ values) is expected, while large δ values mean 
deposit plane diverges from failure plane and large strength (φ values) is expected. We testi-
fied this hypothesis using Lade et al.’s [14] test results in Fig. 3a and Lam and Tatsuoka’s [15] 
test results in Fig. 6.

Using Eqs. (1) to (3), the δ values as a function of b and ϑ values of Lade et al.’s [27] tests 
are computed as shown in Fig. 8. The δ values display checkmark shapes as ϑ increasing 
from 0 to 90°. The δ values reach local minima at ϑ = 67.5°. This agrees with observation in 
Fig. 3 that Nevada sand reaches the minimum strength at ϑ = 67.5°. In addition, the check-
mark shapes tend to become steeper when b increases from 0 to 1. This well agrees with the 
observation in Fig. 3 that stronger anisotropic responses are observed at larger b values.

Using Eqs. (1) to (3), the δ values as a function of b, ϑ and ξ of Lam and Tatsuoka’s [15] 
tests are computed in Fig. 9. The shape of δ surface agrees with the shape of φ surface in 
Fig. 6. Figures 8 and 9 proves the hypothesis that anisotropic strength can be characterized 
by the concept of relative orientations between deposit plane and failure plane of sands.

The next step is to develop an anisotropic failure criterion based on the parameter δ. We 
proposed the following function is to correlate δ with strength of soils:

where f is a function of stresses to describe a failure criterion for quantifying strength 
of sands; δ quantifies the relative orientations between deposit plane and SMP which 
is computed from Eq.  (3); Ψ is a scalar describing slope of the checkmark. The term 
(1 + Ψδ) essentially maps the shapes of δ curves to the shapes of strength curves while 
the parameter η0 upscale the (1 + Ψδ) curves to match the measured strength curves.

(1)n =

[√

I3
σ1I2

√

I3
σ2I2

√

I3
σ3I2

]

(2)f =
[

cos (θ) sin (θ) cos (ξ) sin (θ) sin (ξ)
]

(3)

δ = acos(f · n)

= acos

(

cos (θ)

√

I3

σ1I2
+ sin (θ) cos (ξ)

√

I3

σ2I2
+ sin (θ) sin (ξ)

√

I3

σ3I2

)

(4)f = η0(1+ Ψ δ)



Page 10 of 22Sun and Zheng  Geo-Engineering            (2020) 11:7 

The well-known failure criterion proposed by Lade [17] is used as f in Eq. (4). There-
fore, the anisotropic Lade’s failure criterion is formulated as:

Fig. 8 The spatial angle δ of Nevada sand as a function of b and ϑ values from Lade et al.’s [27] tests

Fig. 9 The spatial angle δ of Toyoura sand as a function of b and ϑ values from Lam and Tatsuoka’s [15] tests
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where I1 = the first stress invariant, σ1 + σ2 + σ3; pa = atmospheric pressure in the same 
units of stresses. The value of I3

1
/I3 equals 27 at the hydrostatic axis. The parameter m is 

employed to describe curvature of the failure surface in the meridian planes.

Parameter calibration

There are three parameters in Eq. (5): m, η0 and Ψ. Evidently, if the mean effective stress 
pʹ is constant in the tests, m will not affect results and can be set as zero. Therefore, 
Eq. (5) can be rewritten as:

Determination of two parameters η0 and Ψ requires at least two experiments at two 
fabric directions. If more data points at different fabric orientations are available, all of 
the test data can be plotted in the space of ( I3

1
/I3 − 27) versus δ to determine a best fit-

ting line. The intercept of the best fitting line determines η0. Then, the slope of the best 
fitting line determines η0Ψ.

For example, the 25 torsion shear tests data from Lade et al. [14] are replotted in ( I3
1
/I3 

− 27) − δ space in Fig. 10. The two abnormal points under test conditions of (ϑ, b) = (0, 
0.75) and (0, 1.0) are not considered in the fitting. The remaining 23 points are used to 
fit a line as shown in Fig. 10. The intercept and slope of the best fitting line are 4.92 and 
27.16 respectively. Therefore, we have η0 = 4.92 and η0Ψ = 27.16. Then, η0 is determined 
as 4.92 and Ψ is determined as 27.16/4.92 = 5.52 as shown in Fig. 10.

If the mean effective stresses are not constant (usually different confining stresses are 
used), all the three parameters m, η0 and Ψ are required to be determined, which includes 

(5)

(

I3
1

I3
− 27

)

(

I1

pa

)m

= η0(1+ Ψ δ)

(6)

(

I3
1

I3
− 27

)

= η0 + η0Ψ δ

Fig. 10 Model calibration for constant mean effective stress condition
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two steps. Firstly, the Ψ can be determined by plotting ( I3
1
/I3 − 27) versus δ and fitting a 

line for each confining stress level. The results of Toyoura sand at dense condition in Fig. 4 
are used for an example as shown in Fig. 11a. Five Ψ values are obtained. These Ψ values 
are very close to each other, so they are used to compute an average Ψ value, Ψ = 4.35.

In the second step, the m and η0 can be determined by plotting ln[(I3
1
/I3 − 27)/

(1 + Ψδ)] against ln(pa/I1) for all the test data and finding a best fitting straight line. 
The intercept and slope are exp(η0) and m respectively. All the test results are replot-
ted in Fig. 11b. Therefore, the m and η0 are computed as 0.058 and 6.54 respectively.

Evaluation of the proposed failure criterion
Torsion shear tests

The φ values of Nevada sand by Lade et al. [27] in Fig. 3a are replotted in three dimen-
sional space in Fig. 12. Equation (5) is used to predict the φ values. The model parameters 

Fig. 11 Model calibration for general condition
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are determined as m = 0, η0 = 4.92 and Ψ = 5.52 as shown in Fig. 10. The predictions are 
shown in Fig.  12. The predictions exhibit the checkmark shapes and capture the mini-
mum strength at ϑ = 67.5°. The predictions generally agree with measurements except 
three points at the locations of (ϑ, b) = (67.5°, 0.75), (0°, 0.75), (0°, 1.00). Rodriguez and 
Lade [32] pointed out that the values at (0°, 0.75) and (0°, 1.00) are inaccurate due to test-
ing errors. No explanations were given by Rodriguez and Lade [32] for the low strength at 
point (67.5°, 0.75). The mean absolute difference between predictions and measurements 
(MAD) is computed as 2.3° considering all the points which reduces to 1.5° if three abnor-
mal points are excluded.

Rodriguez and Lade [32] proposed an anisotropic failure criterion by combining 
Lade’s isotropic failure criteria [17] and the fabric tensor proposed by Pietruszczak 
and Mroz [24, 25] which yield a five-parameter failure criterion. They evaluated their 
criterion using the same dataset from Lade et al. [14]. The formulation and parameter 
settings of Rodriguez and Lade [32] are not expanded herein. Their predictions are 
also presented in Fig. 12 as a comparison. As shown, the three aforementioned points 
also depart from Rodriguez and Lade’s [32] predictions. The computed MAD is 2.9° 
with three abnormal points whereas reduces to 2.0° without three abnormal points. 
Rodriguez and Lade’s [32] failure criterion yields slight higher MADs than this study 
because their failure criterion over-predicts five points at (ϑ, b) = (45°, 0), (45°, 0.25), 
(67.5°, 0), (67.5°, 0.25), and (67.5°, 0.5), where predictions of this study are closer to 
measurements.

Fig. 12 Comparison between torsion shear test results of Nevada sand and predictions by this study and by 
Rodriguez and Lade [32]
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For b = 0 tests, although both this study and Rodriguez and Lade’s [32] failure criterion 
predict a checkmark shape which disagrees the laboratory observation. However, this 
study still gives relatively better predictions than Rodriguez and Lade [32].

The φ values of Leighton Buzzard sand by Yang et al. [16] in Fig. 3b are replotted in 
three-dimensional space as cubes in Fig. 13. Equation (5) is used to predict the φ values. 
The m is set as 0 and other two parameters η0 and Ψ are determined by plotting ( I3

1
/I3 

− 27) versus δ and fitting a line. The computed η0 and Ψ values are 7.33 and 2.40 respec-
tively. The predictions successfully capture the checkmark shape presented by meas-
urements. However, the predicted minimum φ values are at ϑ = 60°, but the measured 
minimum φ values are at ϑ = 70°. Predictions well match the measurements with a MAD 
of 1.65° (Fig. 13).

Symmetrical triaxial tests

Equation (5) is used to predict the anisotropic strength of sands in symmetrical triax-
ial tests in Fig.  2. For Cambria sand, Leighton Buzzard sand, and Ham rive sand, the 
parameter m is set as zero and the rest two parameters η0 and Ψ are determined by plot-
ting ( I3

1
/I3 − 27) versus δ and fitting a line. The predictions and measures are shown in 

Fig. 14. For Toyoura sand, three parameters m, η0 and Ψ are determined by two steps as 
illustrated in Fig. 9. In the first step, Ψ is computed as 0.48. Then the Ψ value is used in 
the second step to determine m and η0 which are 0.106 and 41.79 respectively. As shown 
in Fig. 14, Eq. (5) predicts φ values at ϑ = 0°–60° while overpredicts φ values beyond 60°. 
However, such overpredictions are very minor, less than 2°.

Fig. 13 Comparison between torsion shear test results of Leighton Buzzard sand by Yang et al. [16] and 
predictions by this study
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Plane strain compression tests

For plane strain compression tests, usually σ1 and σ3 values are reported by literature 
but σ2 values are not. However, all of the three principal stresses are required when 
using Eq. (4). Therefore, a statistical b value will be determined based on existing testing 
results. This b value will be used to estimate σ2 values whenever they are not reported by 
original studies.

Figure 15 collects the computed b values at peak strength using the testing data of Oda 
et  al. [7] and Tatsuoka et  al. [13] in which all the principal stresses are measured. As 
shown, the b values span in a range of 0.2 to 0.3 with an average of 0.24. The same value 
is observed by Lam and Tatsuoka [15] in their plane strain compression tests. Therefore, 
b = 0.24 is used in this study.

Equation (5) is used to predict φ values of Toyoura sand tested by Tatsuoka et al. [13] 
using plane strain tests. For dense condition, the model parameters are calibrated as 
m = 0.058, η0 = 6.54 and Ψ = 4.35. The predictions and measurements are compared in 
Fig. 16a. The predictions agree with measurements at different confining stresses very 
well. The MAD of all the data is only 0.44°. For medium dense condition, the model 
parameters are calibrated as m = 0.03, η0 = 8.84, and Ψ = 1.52. Predictions and measure-
ments are shown in Fig. 16b. Predictions well match measurements with a MAD of 0.72°.

Toyoura sand was also used by Oda et al. [7] in plane strain compression tests. All 
the tests were performed at dense condition (Dr = 89–92%) and under four confin-
ing stresses σ3 = 50  kPa, 100  kPa, 200  kPa, and 400  kPa. The results are shown in 

Fig. 14 Comparison between triaxial test results of four sands and predictions by this study
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Fig. 17. Equation (5) is used to predict φ values. The model parameters are calibrated 
as m = 0.24, η0 = 14.38, and Ψ = 4.35. The predictions agree with measurements. The 
MAD is 0.85° for all the data.

Equation (5) is used to predict the plane strain compression test results of Oda [7] 
as shown in Fig. 18. Oda [7] did not provide the intermediate stress σ2 measurements. 
Therefore, the b = 0.24 is used herein to compute σ2. The Tochigi sand is more spheri-
cal than Toyoura sand. Therefore, the Ψ values for Tochigi sand is smaller than Toy-
oura sand. For isotropic Toyoura sand, the Ψ is set as zero which yields a flat line. The 
predictions generally agree with measurements with MADs of 0.43, 0.51, and 0.28 for 
anisotropic Toyoura sand, Tochigi sand, and isotropic Toyoura sand respectively.

Park and Tatsuoka [36] performed a series of plane strain compression tests on five 
different sands: Monterey sand, Hostun sand, Silica sand, Ticino sand, and Karlsruhe 
sand. All the tests are performed under the confining stress of 88  kPa and density 
condition (Dr = 80–90%). The results are shown in Fig. 19. The strength responses of 
the Hostun sand, Karlsruhe sand, and Hostun sand display the checkmark shapes. 
However, Monterey sand and Tichino sand do not follows checkmark shape at ϑ = 90°. 
Park and Tatsuoka [36] did not provide the intermediate stress σ2 measurements. The 
b = 0.24 is used herein to compute σ2.

The parameter m is set as zero in all prediction. The other two parameter η0 and Ψ 
are different for each sand and their values are shown in Fig. 19. Excellent agreements 
between predictions and measurements are observed, expect for the φ values of Mon-
terey sand and Tichino sand at ϑ = 90° and the φ value of Silica sand at ϑ = 60°.

Equation (5) is used to predict the φ values of plane strain compression test results 
of Toyoura sand from Lam and Tatsuoka [15] as shown in Fig. 20. They reported their 
b values were in a range of 0.2 to 0.3. Therefore, the b = 0.24 is used herein to com-
pute σ2. The parameter m is set as zero and other two parameters are set as η0 = 12.89 
and Ψ = 1.48. Good agreements are found between predictions and measurements. 
The overall MAD is computed as 1.3°.

Fig. 15 The b at failure in plane strain compression tests
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Discussion

1. The anisotropic strength of sands depends on both fabric direction and intermedi-
ate stress. For b > 0 tests, φ values displayed checkmark shape as increasing ϑ values, 
while for b = 0 tests, φ values monotonically decreases as increasing ϑ values. The 
proposed failure criterion successfully captures the checkmark relationship between 

Fig. 16 Comparison between plane strain compression test results of Toyoura sand by Tatsuoka et al. [13] 
and predictions by this study
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Fig. 17 Comparison between plane strain compression test results of Toyoura sand by Oda et al. [7] and 
predictions by this study

Fig. 18 Comparison between plane strain compression test results of cross-anisotropic Toyoura sand, 
cross-anisotropic Tochigi, and isotropic Toyoura sand by Oda et al. [7] and predictions by this study
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Fig. 19 Comparison between plane strain compression test results of five sands by Park and Tatsuoka [36] 
and predictions by this study

Fig. 20 Comparison between experimental results of Toyoura sand by Lam and Tatsuoka [15] and 
predictions by this study
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φ and ϑ, but does not capture the monotonic relationship between φ and ϑ. As 
shown in Fig. 14, Eq. (5) overpredicts φ values when ϑ > 60°. However, such overpre-
dictions are insignificant, less than 2°.

2. The slope of checkmark reflects the degree of anisotropy in sands, which depends 
on particle elongation and relative density. Elongated sands at dense condition will 
develop stronger anisotropy and steeper checkmark shape (Figs. 4 and 5). In Eq. (5), 
the slope of checkmark is controlled by Ψ. Larger Ψ values yield steeper checkmarks 
(Figs. 14 and 16). Therefore, it is possible to establish a correlation between Ψ values 
and particle elongations and relative densities. However, there is a lack of systemati-
cal data varying particle elongations and relative densities in the literature. This will 
be the research topic in the future when more data are available.

3. The confining stress (or mean effective stress) will also affect anisotropic strength of 
sands. Larger confining stress will depress anisotropic responses, and generate flatter 
checkmark shapes. However, the available data in Fig.  4 shows that similar check-
marks for confining stress in a range of 5 kPa to 400 kPa in plane strain compression 
tests and therefore the similar Ψ values are determined in Fig.  11a. It implies that 
small confining stress (e.g. 400 kPa in plane strain compression tests) have negligible 
effects on anisotropic responses of sands. If larger confining stresses are encountered 
by readers and different Ψ values are yielded in Fig. 11a, different Ψ values should be 
determined for different stress levels.

4. Existing experimental data in literature focused on fabric configurations of struc-
ture  1 (ϑ = 90° and ξ = 0–90°), structure  2 (ϑ = 0–90°, ξ = 90°), and structure  3 
(ϑ = 0–90°, ξ = 0°). There is a lack of data for generalized fabric: ϑ = 0–90° and 
ξ = 0–90°. However, this proposed failure criterion have the capability to determine 
anisotropic strength for generalized fabric. For example, the predicted φ values for 
b = 1 test under ϑ = 0–90° and ξ = 0–90° conditions are plotted in Fig. 21. The test 
results of b = 1 from Lam and Tatsuoka [15] are superimposed on Fig. 21. The φ sur-
face exhibits a cone shape with a global minimum at ϑ = 67° and ξ = 67°. In future, 
the accuracy and effectiveness of predictions should be validated when experimental 
data are available for generalized fabric.

Fig. 21 Predicted anisotropic strength surface (b = 1) for generalized fabric
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Conclusion
This paper reviews the experimental studies on anisotropic strength of various sands using 
symmetric triaxial tests, torsion shear tests, and plane strain compression tests. The results 
show that anisotropic strength depends on both intermediate stress and fabric direc-
tion. When fabric direction is perpendicular to intermediate principal stress (ϑ = 0–90°, 
ξ = 90°), it is observed that the stronger anisotropic responses occurred at higher b values 
(b = (σ2 − σ3)/(σ1 − σ3)). For b > 0, the φ exhibits a checkmark shape and reaches the mini-
mum around ϑ = 60° to 70°; and for b = 0, the φ decrease as increasing ϑ.

Based on analysis of experimental results, an anisotropic failure criterion is developed by 
this study. This criterion is formulated based on the spatial mobilized failure plane devel-
oped by Nakai and Matsuoka [30, 31] and isotropic failure criterion developed by Lade 
[17]. The new anisotropic failure criterion only contains three parameters, which can be 
determined by conventional laboratory tests. This criterion can predict anisotropic strength 
of sands in common fabric configures: structure  1 (ϑ = 90° and ξ = 0–90°), structure  2 
(ϑ = 0–90°, ξ = 90°), and structure 3 (ϑ = 0–90°, ξ = 0°). The proposal failure criteria is vali-
dated by various sands in symmetrical triaxial tests, torsion shear tests, and plane strain 
compression tests. The predictions agree well with experimental results, which demon-
strate the validity, effectiveness, and robustness of the new anisotropic failure criterion.

List of symbols
σ1: The major principal stress; σ2: The intermediate principal stress; σ3: The miner principal stress; I1: The firstly stress invari-
ant; I2: The second stress invariant; I3: The third stress invariant; f: Fabric direction or the normal direction of deposit plane; 
n: The normal of the spatial mobilized plane; ϑ: The angle between fabric direction f and major principal stress σ1; ξ: The 
angle between fabric direction f and intermediate principal stress σ2; φ: The angle of internal friction; m, η0 and Ψ: The 
model factors in the proposed anisotropic failure criterion; δ: The relative orientations between deposit plane and spatial 
mobilized plane; φ13

mob
 , φ12

mob
 , φ23

mob
: The mobilized friction angles in the spatial mobilized plane theory.
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