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Background
In Egypt, mostly the populated area was constructed over areas covered with flood plain 
clayey soils which concentrated on both sides of River Nile course and its two branches 
in the Delta Governorates. These clayey sediments of River Nile floodplain region were 
deposited during pre-construction of the High Dam. The average thickness of these 
clayey sediments is 10 m between Aswan and Cairo. These sediments are covered about 
4.6 of the total area of Egypt and are characterized by low strength and high compress-
ibility [3].

Mostly, the actual damage to structures due to swelling clayey-soils caused from 
attracts and absorbs water then swells. The main source of this water is drinking water 
or wastewater when these lines were broken. In Upper Egypt, the intense increase of 
population has created a critical need to expand dwelling areas besides the old cities 
were constructed by the private sector. The absence of a network of sewage in some 

Abstract 

In Upper Egypt, the settled areas were constructed on the flood plain clayey soils 
which situated on both sides of River Nile course. These clayey sediments are consist‑
ing of silts, clays and sands with average values of 47.4, 40.3 and 12.3% respectively 
and classified as inorganic clays (CL). The clay mineral composition of these inorganic 
clayey soils constitutes of montmorillonite, kaolinite, illite–montmorillonite mixed layer 
and minor percents of chlorite and illite. These populated old cities were extended 
during last three decades in the same time the sewage networks are not found in 
new extended areas. So that, the private sector was forced to storage wastewater in so 
called wastewater‑tanks below or near the houses. These tanks sometimes filled com‑
pletely or broken then the wastewater which rich in organic matter will saturate the 
clayey soils. The wastewater had been caused an increasing in original plasticity and 
swelling potentiality of these clayey soils. So that, serious damages such as wall cracks 
and foundation tilting were observed.

Keywords: Wastewater, Clayey soils, Plasticity, Swelling potential, Nile Valley, Upper 
Egypt

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

ORIGINAL RESEARCH

Seif  Geo-Engineering  (2017) 8:1 
DOI 10.1186/s40703-016-0038-3

*Correspondence:   
esmansor@kau.edu.sa 
1 Faculty of Earth Sciences, 
King Abdulaziz University, 
Jeddah, Saudi Arabia
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40703-016-0038-3&domain=pdf


Page 2 of 21Seif  Geo-Engineering  (2017) 8:1 

places and the existence of the so-called tanks for sewage down or near houses consid-
ered a serious problem especially when these tanks are broken or filled with wastewater. 
The wastewater will be absorbed by permeable clayey-soil. This will cause increasing in 
its natural swelling ability owing to richness of wastewater with organic matter which 
increases plasticity and swelling potentiality of these clayey-soils. Accordingly, a lot 
of geotechnical problems in these constructions such as horizontal and diagonal wall 
cracks and sometimes foundation tilting were recorded (Fig. 1).

Damage and foundation movements caused by expansive clayey soils usually gradually 
occurred and do not cause rapidly hazardous effects such as hurricanes and earthquakes 
but often they are much worse, even causing major structural distress [20]. The present 

Fig. 1 Types of wastewater clayey soil problems in Sohag Governorate: a, b tilting owing to differential soil 
expansion; c wastewater saturated clayey soil and d a schematic sketch shows enrichment of clayey soil with 
organic matter from tanks of wastewater
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study aims to evaluate the hazardous effects of wastewater on plasticity and swelling poten-
tiality of clayey soil and extended its impact on buildings which were built on this soil.

Location and geologic setting
The studied area is a part of the Nile flood plain of Upper Egypt and extends between 
latitudes 32°20¯ and 32°15¯ E and longitudes 26°10¯ and 26°45¯ N (Fig. 2). The geology of 
the study area can be summarized as followings:

1. Lower Eocene carbonates are the most famous and widely distributed rock units 
in Sohag Governorate, Upper Egypt. Lithologically and paleontological, the Lower 
Eocene sequences can be subdivided into two rock formations; Thebes and Drunka 
formations.

a. Thebes formation was first introduced by Said [36]. It is represented by thick bed-
ded and laminated limestone succession with flint bands.

Fig. 2 Location map (a) and geological map (b) of the studied area. Modified from CONOCO, [21]
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b. Drunka formation overlies the Thebes formation and it is easily differentiated by 
its snowy white colour and massive bedding. As well as, it covers more than 90% 
of the area around Sohag Governorate [29].

2. Madmoud formation [34, 35] represents the Early Pliocene transgression of the 
Mediterranean Sea and filling of the Nile canyon.

3. Issawia Formation of the Early Pleistocene [28, 34, 35] crops out along the margins of 
the Eocene escarpment. It consists of hard red breccias reaching about 10 m in thick-
ness and its breccia clasts ranging from 0.3 to 3 m in diameter [29].

4. Armant formation (Early Pleistocene, [34, 35]) represents in the studied area as 
coarse-grained sediment terraces of alluvial fans at different heights unconformably 
overlying Eocene succession. Both Issawia and Armant formations are laterally inter-
tonguing [28].

5. Qena formation [35] exhibits low-topographic hills and consists of a thick succession 
of sand-gravel association. West of Sohag Governorate, many quarries exploit Qena 
Formation for construction purposes [2].

6. Abbassia formation [34, 35] is represented by a gravel sequence overlying the Qena 
Formation on both banks of the River Nile.

7. Dandara formation [35] occurred closer to the cultivated lands and is presented by 
sand and silt intercalations.

8. Flood plain (cultivated lands) is are mainly restricted to the narrow tract of the River 
Nile Valley.

9. Recent Wadi Deposits are varying greatly in both the thickness and texture depend-
ing on the land morphology and the intensity and regime of the flashflood events 
forming them [33].

Methodology and test procedures
Forty undisturbed and disturbed samples were collected from four boreholes (I: Tahta, 
II: Sohag, III: Akhmim and IV: Aulad Toq Sharq, Figs. 2, 3). These samples were imme-
diately covered by wax in situ and kept in a cool place for short period until were used 
in different tests. The initial moisture water content was determined by heating to 
110 °C for 24 h according to ASTM D 2216 [11]. Specific gravity determined according 
to ASTM 854 [13]. The total organic matters (TOM) of both soil samples and waste-
water were calculated by using ignition methods according to ASTM D 2974 [10]. The 
grain size analysis (gradation) of soil samples was done according to ASTM C136 [9]. 
The consistency limits (liquid, plastic limits and plasticity index) were done according to 
ASTM D4318 [12] for both tap water and wastewater treatments. Consequently, swell-
ing behavior of the studied soil samples (swelling pressure and swelling percentage) was 
done by using odeometer testing [8] for both tap water and wastewater treatments. Also, 
the free swelling was carried out according to Holtz and Gibbs [26]. The chemical analy-
sis was done by standard methods [18] to determine the exchangeable cations (Na+, K+, 
Ca2+ and Mg2+) for both tap water and wastewater treated soil samples. X-ray diffrac-
tion of <0.2 μm was done for representative samples. All above tests (except grain size 
analysis and X-ray) were done for both the original soil samples and wastewater treated 
soil samples after soaking in wastewater for 10 weeks.
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Results and discussion
The obtained data of physical properties of the studied soils as well as the effect of waste-
water on their plasticity, cation exchange capacity and swelling potentiality will be used 
in the studied soil classification as the followings:

Fig. 3 Typical subsurface profile of the studied sites and sample numbers
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Grain size

The grain size distribution of clayey sediments plays a vital factor effecting on their 
swelling potential. The amount of swelling of clayey-sediments increases by increasing 
the amount of clay-size (<0.002 mm) materials, that due to increasing the specific sur-
face area of these materials. Based on grain size distribution, the soil sequence in the 
studied area can be subdivided into distinct three units (A, B and C, Fig. 3).

The studied soil samples are predominantly by more or less smoothed grading curves 
that produce a considerable amount of voids between their particles (Fig. 4). The stud-
ied soil samples are consisting of silts, clays and sands with average values 47.4, 40.3 
and 12.3%. Furthermore, the studied soil samples were classified as inorganic clays of 
medium plasticity, sandy/silty/lean clays (CL).

Dry density

The dry density of soil greatly affects volume changes. The initial dry density of the stud-
ied soil samples fluctuates from 1.833 to 1.993 gm/cm3 but the dry density of wastewa-
ter treated soil samples ranges from 1.795 to 1.965 gm/cm3 (Table 1; Fig. 5). It is found 
that, the dry density of the studied soil samples decreases when soil samples treated with 
wastewater which rich in organic matter. This observation agrees with many researchers 
(e.g. [17, 32, 25]).

Clay mineralogy

Both mineral constitutes and clay-sized fractions of fine-grained soil influence its cation 
exchange capacity, plasticity and swelling potentiality. Generally, the basal spacing of the 
2:1 clay minerals influences greatly on plasticity of the clayey soil. The larger the basal 
spacing of clay mineral species the higher its water adsorption capacity [7, 15, 37]. The 
water adsorption capacity of smectite-group is larger than kaolinite group owing to its 
different structure and its greater capacity of water adsorption [16].

The clay minerals composition of fine-grained soil is likely to be the most important 
controlling factor for many properties and knowledge of the composition may thus sim-
plify problems. Figure 6a shows X-ray diffraction pattern of the studied soil and indicat-
ing that montmorillonite (52%), kaolinite (26%) and illite–montmorillonite mixed layer 
(12%) are the most predominant clay mineral species in all samples. Chlorite (8%) and 
scarce amount of illite (3% Table 1; Fig. 6a, b) are recorded.
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Fig. 4 Grain size distribution curves of the studied soil samples



Page 7 of 21Seif  Geo-Engineering  (2017) 8:1 

Ta
bl

e 
1 

Ph
ys

ic
o-

ch
em

ic
al

 a
nd

 m
in

er
al

og
ic

al
 p

ro
pe

rt
ie

s 
st

ud
ie

d 
so

il 
sa

m
pl

es

Si
te

Sa
m

pl
e 

no
.

D
ep

th
 (m

)
Si

ze
 fr

ac
tio

ns
 

(%
)

In
iti

al
  

w
at

er
 (%

)
D

ry
 d

en
si

ty
 (g

m
/c

m
2 )

O
rg

an
ic

 m
at

te
rs

 (%
)

Cl
ay

 m
in

er
al

og
y 

sp
ec

ie
s 

(%
)

Sa
nd

Si
lt

Cl
ay

In
iti

al
A

ft
er

 w
as

te
w

at
er

 
tr

ea
tm

en
t

In
iti

al
A

ft
er

 w
as

te
w

at
er

 
tr

ea
tm

en
t

M
on

tm
or

ill
on

ite
Ka

ol
in

ite
M

ix
ed

-la
ye

r
Ill

ite
Ch

lo
ri

te

I
1

1.
5

12
54

34
6.

7
1.

87
3

1.
84

5
1.

84
3.

84

2
2.

5
13

51
36

9.
3

1.
85

3
1.

83
5

2.
11

4.
15

3
3.

5
14

51
35

9.
8

1.
86

3
1.

82
5

2.
01

3.
97

53
24

13
8

2

4
5

12
51

37
10

.3
1.

88
3

1.
84

5
2.

13
4.

18

5
6

13
49

38
10

.5
1.

87
3

1.
83

5
2.

24
3.

98

6
7

11
53

36
11

.5
1.

83
3

1.
79

5
2.

11
3.

78

7
8

13
49

38
11

.6
1.

87
3

1.
82

5
2.

19
4.

18
56

24
11

7
2

8
9

14
44

42
11

.8
1.

85
3

1.
82

5
2.

45
4.

22

9
10

15
48

37
12

.1
1.

85
3

1.
81

5
2.

11
4.

17

10
11

12
54

34
5.

8
1.

85
3

1.
81

5
1.

98
3.

91

II
11

0.
5

11
51

38
6.

3
1.

87
3

1.
83

5
2.

11
3.

58

12
1.

5
10

48
42

6.
9

1.
89

3
1.

85
5

2.
26

3.
94

13
2.

5
15

46
39

10
.5

1.
98

3
1.

94
5

2.
33

4.
19

53
23

12
9

3

14
3.

5
14

45
41

10
.8

1.
99

3
1.

96
5

2.
18

3.
94

15
4.

5
12

51
37

11
.2

1.
95

3
1.

92
5

2.
09

3.
78

16
5.

5
11

51
38

11
.5

1.
96

3
1.

92
5

2.
07

4.
14

17
6.

5
13

46
41

12
.3

1.
84

3
1.

81
5

2.
21

4.
18

52
26

12
8

2

18
7.

5
11

56
33

12
.5

1.
86

3
1.

82
5

1.
87

3.
64

19
8.

5
10

54
36

12
.5

1.
88

3
1.

85
5

1.
95

3.
91

20
9.

5
12

47
41

13
.2

1.
87

3
1.

83
5

2.
18

4.
22



Page 8 of 21Seif  Geo-Engineering  (2017) 8:1 

Ta
bl

e 
1 

co
nt

in
ue

d

Si
te

Sa
m

pl
e 

no
.

D
ep

th
 (m

)
Si

ze
 fr

ac
tio

ns
 

(%
)

In
iti

al
  

w
at

er
 (%

)
D

ry
 d

en
si

ty
 (g

m
/c

m
2 )

O
rg

an
ic

 m
at

te
rs

 (%
)

Cl
ay

 m
in

er
al

og
y 

sp
ec

ie
s 

(%
)

Sa
nd

Si
lt

Cl
ay

In
iti

al
A

ft
er

 w
as

te
w

at
er

 
tr

ea
tm

en
t

In
iti

al
A

ft
er

 w
as

te
w

at
er

 
tr

ea
tm

en
t

M
on

tm
or

ill
on

ite
Ka

ol
in

ite
M

ix
ed

-la
ye

r
Ill

ite
Ch

lo
ri

te

III
21

1
14

51
35

5.
4

1.
85

3
1.

81
5

1.
97

4.
13

22
2.

5
12

46
42

9.
5

1.
85

3
1.

82
5

2.
42

4.
31

53
27

12
6

2

23
3.

5
11

45
44

10
.5

1.
84

3
1.

81
5

2.
56

4.
74

24
5

13
46

41
11

.1
1.

85
3

1.
82

5
2.

68
4.

92

25
6

14
47

39
11

.5
1.

87
3

1.
83

5
2.

45
4.

22

26
7.

5
15

48
37

12
.3

1.
86

3
1.

82
5

2.
11

3.
98

27
9

11
50

39
12

.5
1.

85
3

1.
82

5
2.

13
4.

37
52

24
13

7
4

28
10

.5
12

45
43

12
.7

1.
84

3
1.

81
5

2.
46

4.
62

29
12

13
54

33
13

.2
1.

85
3

1.
81

5
2.

58
4.

69

30
13

.5
8

51
41

13
.7

1.
84

3
1.

82
5

2.
13

4.
79

IV
31

1
11

47
42

6.
4

1.
86

3
1.

83
5

2.
23

4.
13

32
2

10
45

45
8.

4
1.

86
3

1.
83

5
2.

74
4.

19

33
3

10
46

44
8.

7
1.

87
3

1.
84

5
2.

35
4.

16
52

26
11

8
3

34
4

11
42

47
9.

5
1.

86
3

1.
82

5
2.

61
4.

31

35
5

13
38

49
9.

7
1.

88
3

1.
83

5
2.

83
4.

56

36
6.

5
12

37
51

9.
7

1.
87

3
1.

86
5

2.
91

4.
81

37
7.

5
14

43
43

10
.2

1.
89

3
1.

85
5

2.
31

4.
22

53
26

12
7

2

38
8.

5
10

46
44

10
.3

1.
86

8
1.

82
5

2.
36

4.
12

39
10

15
38

47
12

.4
1.

86
6

1.
83

5
2.

46
3.

94

40
11

15
32

53
12

.5
1.

87
5

1.
83

5
3.

11
5.

21



Page 9 of 21Seif  Geo-Engineering  (2017) 8:1 

Initial moisture content

Geotechnically, the moisture water content of and fine-grained soil plays a very effective 
regulation in its capability to expand. The variation in moisture water content of clayey 
soil causes severe damage to the overlying structures [14, 40, 42–45]. When clayey-rich 
fine-grained soils are wet, the negatively charged surfaces of 2:1 clay minerals attract 
positively charged water molecules causing expansion of clay structure. The variation in 
moisture content is one of the most important factors affecting volume change of dry 
clayey-rich soil. The thickness of the unit cell structure of clay mineral is relatively small 
but when moisture water is absorbed into this structure, its thickness increases. The 
moisture water content of the studied soil samples varies from 5.4 to 13.7% (Table 1).
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Fig. 6 XRD chart of clay minerals (a) and relative abundance of clay minerals species (b)
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Consistency limits

From geotechnical point of view, the clayey-soil samples are not classified on the basis 
of grain size distribution, but according to their plasticity and compressibility. The plas-
ticity characteristics of fine-grained soil are used as fundamentals in classification pro-
cesses and indirect quantification of soil swell potential. The consistency limits were 
used as important indicators of engineering behavior and are correlating with the engi-
neering properties of fine-grained soils [24].

The original liquid limit of the studied soil samples is ranging from 39 to 63%, but 
the liquid limit of wastewater treated soil samples is varying from 66 to 82% (Table 2). 
That means the soil samples plasticity was increased when treated with wastewater and 
transformed from clays of medium plasticity (CL) into organic clays of high plastic-
ity (CH, Fig. 7a). The plasticity index of the wastewater treated soil samples is ranging 
from 34 to 53% (Table 2), so these clayey soils will behave as very high swelling capabili-
ties [19].

Consequently, based on the plasticity index (PI) and clay content (%) values in 
the Williams [39] chart, the studied flood plain soil samples lie in field of medium 
exρpansion whereas the wastewater treated soil samples lie in high expansion field 
(Fig. 7b). The modifications which were took placed in the initial consistency limits of 
the studied soil samples owing to increasing of organic matters which absorbed from 
wastewater.

Cation exchange capacity (CEC)

The clayey-rich soils usually carry negative charges these charges owing to occurrence 
clay particles and organic materials. These negatively charges due to isomorphous substi-
tution of aluminum or silicon atoms of clay mineral particles and balanced by positively 
cations which present in the water in the void space being attracted to the clay mineral 
particles. The cations are not held strongly and, if the nature of the water changes can 
be replaced by other cations, a phenomenon referred to as cation exchange [22]. these 
positively charged ions (e.g. Ca2+, Mg2+, K+, Na+, H+ and NH4

+) required to balance 
the charge deficiency on the surface of the clay particles [31]. The type of exchangeable 
cation of a fine-grained soil has a great influence on its swelling potential [6].

Figure 8 illustrates the results for CEC of both untreated and wastewater treated soil 
samples. Is it clearly found that, the total CEC was increased with treatment processes 
with wastewater which rich in organic matter and exchangeable cations (Table 2; Fig. 8).

Organic matter

Organic matter plays an important role in soil engineering and physical properties. The 
increase of organic content increases the soil plasticity as well as increases the cation 
exchange capacity owing to large surface area [30, 32]. The initial organic matter con-
tent of the studied soil samples varies from 1.84 to 3.58% but after wastewater treatment 
the organic matter content ranges from 3.11 to 5.21%. The humus organic substances of 
wastewater have a high specific surface and increases initial the plasticity of the studied 
soil samples (Table 2).
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Fig. 7 Plasticity chart of the studied samples based on Dakshanamurthy and Romana, [23] and swelling 
potential classification (after [39]) (a and b respectively)
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Swelling characteristics

Swelling pressure

The swelling pressure of the studied undisturbed soil samples was measured directly by: 
axial free swelling, percentage of swell using the standard one-dimensional odometer 
apparatus using the following equation:

where PS = swelling pressure (kN/m2), P = load (kg), A = cross sectional area (m2).
The swelling pressure of both untreated and wastewater treated soil samples was found 

to be (196.1–348.1 kN/m2), and (382.5–549.2 kN/m2) respectively (Table 3; Fig. 9a).

Swell percent

The swelling percentage is defined as the percentage ratio between the increasing in 
specimen height (ΔH) under a standard stress to the initial height of specimen (H0). The 
swell percentage is calculated as follows:

where S = swelling percentage, H0 = initial height of the sample (mm), ΔH = increasing 
in the height of the sample (mm).

The swelling percentages of the studied soil samples are ranging from 21 to 26%, 
and 37 to 47% for untreated and wastewater treated soil samples respectively (Table 3; 
Fig. 9b).

Free swelling

The free swell test was carried out as described by Holtz and Gibbs [26]. The free swell 
test value is given by:

where V2 is in cm3.
A significant higher free swelling value was observed in experiments carried out using 

wastewater treated soil samples. The free swelling values of the studied soil samples are 
64–73%, and 81–92% for untreated and wastewater treated soil samples respectively 
(Table 3; Fig. 9c).

(1)PS =
P

A

(2)S =

�H

H0
× 100

(3)Free swelling value (%) =
V2−10
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Fig. 8 Initial CEC versus wastewater treated CEC (meq/100 g) (a, b and c respectively)
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When the values of swelling pressure of untreated soil samples were compared with 
the values of treated soil samples, it was found that, a significant higher swelling pressure 
was observed in experiments carried out using wastewater treated soil samples (Fig. 10). 

Table 3 Effect of wastewater on swelling properties of the studied soil samples

Tap water (pH = 7.2, TDS = 678 ppm) and wastewater (TDS = 2340 ppm, organic matter = 4.74%)

Site Depth 
(m)

Sample 
no

Swelling characteristics

Free swelling (%) Swelling pressure  
(kN/m2)

Swelling percent

Tap water Wastewater Tap water Wastewater Tap water Wastewater

I 1.5 1 67 84 205.9 407.0 22 39

2.5 2 69 87 210.8 423.6 24 43

3.5 3 71 89 215.7 413.8 25 45

5 4 72 91 221.6 436.4 26 47

6 5 65 82 225.6 426.6 22 39

7 6 68 86 220.6 398.1 23 41

8 7 64 81 230.5 436.4 23 42

9 8 69 87 255.0 460.9 23 43

10 9 69 87 225.6 433.5 24 42

11 10 67 84 220.6 419.7 24 44

II 0.5 11 70 88 235.4 423.6 24 43

1.5 12 71 89 255.0 436.4 22 39

2.5 13 68 86 245.2 402.1 24 42

3.5 14 68 86 249.1 416.8 22 39

4.5 15 69 87 231.4 404.0 23 41

5.5 16 71 89 239.3 423.6 24 42

6.5 17 72 91 250.1 436.4 24 44

7.5 18 71 89 196.1 382.5 22 40

8.5 19 71 89 217.7 419.7 21 37

9.5 20 72 91 249.1 460.9 22 38

III 1 21 71 89 217.7 452.1 22 39

2.5 22 69 87 255.0 470.7 24 42

3.5 23 69 87 264.8 509.9 23 43

5 24 68 86 259.9 485.4 25 45

6 25 68 86 245.2 462.9 23 41

7.5 26 67 84 229.5 421.7 23 39

9 27 67 84 239.3 485.4 24 41

10.5 28 68 86 258.9 496.2 24 42

12 29 68 86 199.1 465.8 24 42

13.5 30 71 89 245.2 480.5 23 43

IV 1 31 72 91 255.0 451.1 26 45

2 32 73 92 269.7 462.9 24 41

3 33 73 92 264.8 463.9 22 38

4 34 68 86 284.4 474.6 23 40

5 35 68 86 294.2 487.4 22 39

6.5 36 68 86 304.0 534.5 23 41

7.5 37 67 84 255.0 462.9 23 42

8.5 38 67 84 264.8 452.1 22 40

10 39 67 84 284.4 436.4 23 39

11 40 71 89 348.1 549.2 23 41
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Fig. 9 Effect of waste water on swelling properties; swelling pressure, swelling percent and free swelling and 
respectively of the studied soil samples (a, b and c respectively)
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Fig. 10 Swelling pressure versus time obtained from the swell tests of some selected samples (a and b 
respectively)
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Similarly, respective swell percents were increased (Fig. 11). The swelling of clayey soil 
when it is subjected to moisture increase is a complicated process found to be influenced 
by several factors. The swelling percent will be insignificant for initial moisture content 
slightly higher than the optimum moisture content [19]. As noticed in Figs. 10 and 11, 
the swelling pressure and swelling percent of the studied clayey soil samples increased 
when moisture and organic matter content increase.

Correlations between some properties

In the last decay, many researchers were performed to correlate the physical properties 
with the mechanical properties of soils [1, 4, 5, 27, 38, 41]. This approach was adopted from 
the earlier researcher in the field of soil mechanics and foundation engineering. These cor-
relations have been considered as a significant part of this work for better understanding of 
the controlling parameters of plasticity and swelling potentiality of the studied clayey soils. 
It is clear that, the swelling pressure (kg/cm2) of both initial soil samples (ISS) and waste-
water treated soil samples (WTSS) had significant correlations with clay-sized materials 
percent, organic matter content, liquid limit (%) and CEC (Fig. 12). Furthermore, the CEC 
has a significant correlation with clay-sized materials percent, organic matter content and 
liquid limit (%) respectively (Fig. 13).

Fig. 11 Swelling percent versus time obtained from the swell tests of sample No. 4 and 28 (a and b respec‑
tively)
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Fig. 12 Swelling pressure versus clay‑sized materials, organic matter content, liquid limit (%) and cation 
exchange capacity of both initial soil sample and wastewater treated soil samples (a, b, c and d respectively)
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Conclusions
The current work can be considered as a model for the effect of wastewater on the plas-
ticity and swelling behavior of clayey soil. The above mentioned results allow getting the 
following conclusions:

1. The flood plain sediments in Sohag Governorate, Upper Egypt can be subdivided 
into three distinctive units: inorganic clays (CL), well-graded sand (SW) and channel 
gravels (GW).

Fig. 13 Cation exchange capacity versus clay‑sized materials content, organic matter content and liquid 
limit (%) of both initial soil sample and wastewater treated soil samples (a, b and c respectively)
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2. Mineralogically, the studied soils are composed mainly of montmorillonite (52%), 
kaolinite (26%), illite–montmorillonite mixed layer (12%) chlorite (8%) and illite (3%).

3. The original plasticity and swelling plasticity potentiality of these clayey soils are 
strongly correlated with clay-sized materials percent, organic matter content, liquid 
limit (%) and CEC.

4. The wastewater has great effects on both original plasticity and swelling plasticity 
potentiality of these clayey soils and changed these soil from medium plasticity and 
swelling potentiality into highly potentiality.

5. To reduce the geotechnical hazardous effects of municipal wastewater a good sewer 
net must be done beforethe beginning construction processes.
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