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function on the space of 7.
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1 Introduction

Let F be a number field, let G be a connected reductive group over F, and let Ag < G(Fwo)
be the connected component in the real topology of the R-points of the greatest Q-split
torus in the center of Resp/pG. For f € C°(AG\G(AF)), let

R(f) : LA(AGG(F)\G(AF)) — L* (AGG(F\G(AF))
be the usual operation induced by the action of G(AF) on the right. We let

K£*(69) == D Ku(p)(% )
/g
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be the kernel of R(f) restricted to the cuspidal subspace. Here the sum is over isomorphism
classes of cuspidal automorphic representations 7w of AG\G(Af) (i.e., cuspidal automor-
phic representations of G(AF) trivial on Ag). Moreover, K (r)(x, y) is the unique smooth
function with L?-expansion

Krpy) = D 7 ea0),
peB(r)
where B(rr) is an orthonormal basis of the space of .
The starting point of any trace formula is a geometric expansion for I(; “P(x, y), namely

K" (%, 9) = Kp(%,9) — K, 9),

where K¢ (x, y) = ZyeG(F) f(x~1yy) is the kernel function for R(f) and Kfis(x, y) is the
contribution from Eisenstein series (which we will not explicate). Integrating KfC P, y)
along various subgroups of (AgG(F)\G(AF))*? yields various trace formulae. The canon-
ical example is integration along the diagonal copy of AgG(F)\G(Ar); this leads to the
usual trace formula.

Other subgroups can be used, and this leads to trace formulae that isolate represen-
tations having particular properties. For example, integrating along a twisted diagonal
isolates representations isomorphic to their conjugates under an automorphism, and
by Jacquet’s philosophy that has been made more precise in work of Sakellaridis and
Venkatesh [14], integration along spherical reductive subgroups ought to isolate repre-
sentations that are functorial lifts from smaller groups.!

There are natural limits to what sort of representations can be isolated via these methods.
As mentioned above, integration along a twisted diagonal isolates representations whose
isomorphism class is invariant under a cyclic subgroup of the group Outr(G) of outer
automorphisms of G, and integrating along a pair of spherical subgroups seems usually
to detect representations whose isomorphism class is invariant under a pair of involutory
automorphisms, which can at most generate a dihedral subgroup of Outg(G). As the
author has advocated in [5,8], for applications to nonsolvable base change, it would be
useful to develop trace formulae that isolate representations whose isomorphism class is
invariant under nonsolvable subgroups of Outr(G).

Let fi,fo € C°(AG\G(AF)) and let g1, g2, 11, iy € G(AF). One way of approaching the
problem of isolating representations invariant under more automorphisms is to build

geometric expressions for

ZKn(ﬂ)(gbgz)KnV(fz)(hb ha)w(r), (1.1)

where the sum is over isomorphism classes of cuspidal automorphic representations 7 of
AG\G(Ar) and w(r) € C is some weight factor. One could then integrate this kernel over
two twisted diagonals and isolate representations whose isomorphism class is invariant
under a subgroup of Outr(G) generated by two elements. We recall that any finite simple
nonabelian group is generated by two elements (see [9, Theorem 1.6] and the paragraph
after it), so this is a quite general setup.

!Many important cases have been worked out, some by Jacquet himself, but the literature is too extensive to adequately
cite here.
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In this paper, we develop a geometric expression for (1.1) for a particular weight w(r)
in the special case where G = GLo.

1.1 The case at hand
We now let G := GL3 and A := Ag. Let S be a set of places of F including the infinite
places such that F/Q is unramified outside of S and (’)g has class number 1.

Let fi,fo» € CX(A\GLy(Fs)), let My, M, < GLj be the split tori whose points in a
Z-algebra R are given by

):={(*):x € R},
M, (R) := {(1x) (X € Rx},
let
g = (g1,92 11, h) € GLa(AF)*? x My(Ap) x My (AF)

and let

TP (g) := Z1<71(f11lGL2(6§))(g1;g2)1(nv(fg]lGL2<(§§))(h1x ha)Ress—1L(s, w x 7¥5).
T

where the sum is over isomorphism classes of cuspidal automorphic representations of
A\G(AF). Let gl,, denote the affine Z-scheme of n x n matrices and let

V=gl x G, x G,
V' = gly x G,y x Gy, (1.2)

viewed as affine schemes over Z. We also let W C G,,, x V' denote the closed subscheme
whose points in a Z-algebra are given by
W(R) :={(b, T, t1, 1) € R* x V'(R) : b~ det T = t1t}.

We note that there is an action
GLY? x My X My X Gy X V —> Gy X V (1.3)

given on points by
1, @2 b3, ha).(b, T, t1, t2) = (bdetgigy “hz *ha, gy  Ta, t1 det b3, ty det i b).
2 M3 2 4

This action preserves V. By forgetting the G,, factor, we also obtain an action of
GL;<2 x My x M, on 'V that preserves VV'.
Define

() :VR) x V(R) — R
(8, a1, a2), (T, t1, ) —> tr(8T) + ar1t1 + asts. (1.4)

Writing T' = (t;7), we give V(Ar) the additive Haar measure

dv := dt11dt1ader diyadt dey
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where dx = [], dw, is the Haar measure on A such that

dx, is the Lebesgue measure if v is real,
dx, is twice the Lebesgue measure if v is complex,

dx,(Of,) = 1if v is nonarchimedian.

In general, all Haar measures in this paper are normalized as in [8, §2, (3.1.1)]. We let
Y i=1yYgo trp/Q where Yo = Yo H ¥p is the unique additive character of Q\Ag that
is trivial on Z and satisfies Yr(x) = e 2% (it is given explicitly in loc. cit.). Our choice
of measure is not self-dual with respect to v, which leads to the appearance of powers of
d;/ % in our formulae.

For B = (b, o) € W(Fs), fi, fo € CF(A\GLy(Fs)), and V' € CZ°((0, 00)), we define an

integral transform

Is(f B) :=

bdetT—t1ty )

1
V(detT T —h [3
¢rs (1) Fs(/v(Fs) (| decTls) it )fz( Loon
(o, v) dv dt
v (% )W)W 5

The convergence of this integral is proven in Propositions 3.1 and 3.2 below.

Remark The function V has no relation to the scheme V.

Let
g € GLa(AF)? x Me(Ap) x M,(Af).
The following is the main theorem of this paper:

Theorem 1.1 IfR(fi) and R(f>) have cuspidal image, then

| det hy 3|
Ecusp(g 7/22 Z z |C|Sls(f;g.(b, Ca))]lagxxv(@;) (g(b, Ol)),

¢ p=(ba)eW(F)

where the sum on c is over a set of representatives for the nonzero ideals of (’)f-. This sum
converges absolutely.

Remark The assumption that R(f}) and R(f2) have cuspidal image is only invoked to
simplify the spectral side of our expression. In fact, the only place in the paper where the
assumption is used is in the assertion (1.7). In principle, this assumption should be no loss
of generality spectrally [13].

Originally, we hoped to integrate this kernel over an appropriate subgroup of
AGLy(F)\GLy(Ar)** to isolate representations whose isomorphism class is invariant
under a simple nonabelian subgroup of Autg(F). This would necessarily involve some
truncation and some sort of version of the Rankin—Selberg method. Later we found
an alternate expression for the kernel that will make this process easier [6]. How-
ever, Theorem 1.1 can be put to other use immediately. As a concrete example, let
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X1 X2 X3 X4 : F*\Aj — C* be a quadruple of characters. By integrating over appro-
priate split tori and twisting over characters, the formula could be used to study the
asymptotics of sums of products of L-functions of the form

L(3 7 @ x1)L(5 7 ® x2)L(5, ™ @ x3)L(5, T @ xa)

as the analytic conductor of 7 increases. W. Zhang has also pointed out to the author the
possibility of using the main theorem to prove a new Waldspurger-type formula (compare
[15, §4.2]) involving products of L-functions as above.

Remark In [8], the authors provided an absolutely convergent geometric expansion of a
trace formula that isolates representations whose isomorphism class is invariant under a
simple nonabelian group. However, it is not clear how to write the resulting trace formula
as a sum of terms that factor along places of G(Ar). We hope that the present approach
and its refinement in [6] will allow us to work around this difficulty.

1.2 Outline of the proof
Form € Og let

L = geqi(0f)tdet )0 =mOg

Linm = 1,61,(63)

be the usual unramified Hecke operators. For ? € {{J, cusp} let

/(=

E?(X) = 2?(X;g1,g2, h, hz) = Z Z Wl(f?lﬂaﬂ*ﬂm(gl,gz)
@M yy,yy€F> S
X K} Loy by, (1 2) ) W (y1t1 + yata)dtr dey, (1.6)
/(F\AF)EBZ fl]la,a*]lm (( 1 ) ( 1 ) ) ()I y

where the sums on a and m are over a set of representatives for the (principal) nonzero
ideals of (92.

The sums over a and m are finite for each X, and sum over y;, y2 € F* of the integrals
over F\Ar is part of the Fourier expansion of the smooth function

(F\Ap)®? — C
(1, 2) > drKpyn, en,, (1) 1 (1) 2)

evaluated at (1, t2) = 0; hence, the sums over y, y, are rapidly decreasing.

Remark The motivation for introducing this partial Fourier expansion is that it has no
effect on the cuspidal part of the kernel (compare Proposition 5.1), but eliminates the
nongeneric spectrum. If the nongeneric spectrum were included, its contribution would
be of size O(X), whereas the cuspidal terms in which we are interested are of size O(1)
(since we are dividing by X). In principle, this should be unnecessary, as our assumption
that R(f1) and R(f;) have cuspidal image also eliminates the nongeneric spectrum, but we
do not know how to use the assumption that R(f;) and R(f;) have cuspidal image when
working with the geometric side of the formula.
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By our assumption that R(f1), R(f2) have cuspidal image, we have
TUP(X) = T(X), (1.7)

and the proof of Theorem 1.1 boils down to computing the limit as X — oo of both sides
of this expression. Regarding ¥ **P(X), the function of taking a sum over m and taking a
limit as X — oo is to isolate the pairs of representations 7, 72 occurring in the product
K3 (1, @2)K; P (1, h2) = D Koy ()€1 82) Koy 1) U, o)
7,7
such that 7o = m,". We use Rankin—Selberg theory to make the precise and compute
limy_ 50 Z%P(X) in Sect. 5.

The majority of this paper is devoted to computing limy_, o, £ (X) geometrically. The
sum X(X) is divided into two contributions in Sect. 2, namely ¥;(X), corresponding to
the first Bruhat cell, and ¥5(X), corresponding the second Bruhat cell (both in the sec-
ond kernel). We analyze X(X) in Sect.3. The main result is Theorem 3.6. The limit
limy_, oo X1(X) turns out to be zero, as proven in Sect.4. We note that the reason we
can execute the limit of the geometric side is that the relevant exponential sums have
the same length as the relevant modulus, just as in the beyond endoscopy approach to
Rankin—Selberg L-functions exposed in [11] [compare the remark after (3.2) below]. In
fact, one could probably use the geometric estimates of X(X) we give in this paper to
prove, independently of Rankin—Selberg theory, that a certain sum of Rankin—Selberg
L-functions has an analytic continuation to Re(s) > 1 — § for some § > 0, but we do not
pursue this as it is not our purpose here.

2 First manipulations with the geometric side
We consider, for X € R. g,

V(Imazls
X
20=2> 2 Xl itaartn @1 82)

a,m yLY2 eFX* S

x / Kiy 1,0, (150) i (112) h2) Y (0nty + yat2)dty de.
(F\AFp)®?2

Let B= MN < GL; be the standard Borel subgroup of upper triangular matrices, with
M the diagonal matrices and N the unipotent radical. The Bruhat decomposition is

GLy(F) = B(F) LI N(F)woB(F), (2.1)

where wg = (1 1 ) Here B(F) (resp. N(F)woB(F)) is referred to as the first (resp. second)
Bruhat cell. We apply this to write £(X) = X1(X) + ¥2(X) as the sum of the term
corresponding to the first Bruhat cell:

ma?|
v(’”;’(s

21(X) I=Z Z W&anm*nm(gbgz)

B yy,y0€F>

—1(1—¢ 1t
x /(F\AF)M > fol (ashi (11)8 (V%) h) wats + yata)dts d

SeB(F)

and the second Bruhat cell:
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v (Imﬂ2\s)
¥r(X) —Z Z Kf1,,51,,(81 &2)

a,m J’l yzepx
X/ Z fly (tlgh;l (lfltl)g(ltlz)hz)
(ENAF)®? 5 N (FywoB(E)
X Y (y1t1 + y2t2)dt dey. (2.2)

There is a somewhat confusing point hidden in these formulae which we now elucidate.
First

-1 s\t
Tg0x 1,0 = 1a @)L, y)dx =1, (a ) y).
GLy(A3)

To arrive at the expressions for ¥1(X) and X2(X) above one uses this and then a change
of variables § — a8.

We will compute the limit of these expressions as X — oo in the following sections,
starting with (2.2). Throughout the remainder of this paper, any unspecified constants are
allowed to depend on the quantities F, S, f1, fo, V; g1, g2, I, ha.

3 The second Bruhat cell

We study the contribution (2.2) of the second Bruhat cell. Under the action of N x N on
GL, via (n1, m2) - g == nfl gny, the stabilizers of elements in the second Bruhat cell are
trivial, and each is in the orbit of a unique element of woM (F). We therefore have that

V(\ma ls
So(X) = Z Z Ximls Kp1,,.+1,,(Q1 &)
DM y1,y2€FX
X Z /fZ]1 ashi' (1718 (ltz)hz)W(Vlt1+y2t2)dt1dt2
SewoM(F)
(3.1)

We write § = (C b/c) and take a change of variables (t1, &) +— (¢~ 't1, ¢~ !t,) for each ¢
to obtain

Z Z fzﬂm (dsh;l (1 71t1 ) 8 (1 tzl) hz) Y (y1t1 + yat2)dty dty

y1,y2€F* 8ewoM(F)

= Z /@2f'z]lm (ﬂsh;l (*lel b’:f;z ) hz) " (M) dty s,
F

b,cy1,y2€F*

Substituting this into (3.1) and solving for m, we have

v (Ima Is)
LX) =) ———= Ximl > D Alulasg 'Be)
a,m s BeGLy(F) b,¢,y1,y2€F*

1t t t:
/fz]l (asmi* (- htjz)hz)xb(y—lljyzz)dtldtz

|a? det Bls| detg1g; ' |5
v (—X

=2 2 2

a BeGLy(F) bey1,y2€F>

1, s (asg ‘B )
X det Bls et gugy 1o 1 o@D @58 2

Page 7 of 26
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1 b 1 h_l —n bdetB—t1ty I
x detgflgzhlhgléﬁx( ) A®2f2 alx(03) (“S 1 ( c : ) 2)
F

2

t t
<y (yi) Aty dos, (32)
C

We hope the use of the symbol B for an element of gl,(F) and for the Borel subgroup
of GL; does not cause confusion. Here we have extended the domain of @ from (0, 00)
to R by taking it to be zero outside of (0, c0) (it remains smooth upon extension because
V e C((0, 00)).

Remark Assume for simplicity that g1 = go = &1 = hy = I. The moduli in the sum above
are the c. Considering the support of fy, we see that |c|s <« +/X and the sumon B € g[z(Oé)
is over matrices whose entries b;; satisfy |b;j|s < +/X. Thus, Poisson summation in B has
a chance of being profitable, and indeed it is, as we will see in the next subsection.

3.1 Poisson summationin B
Forn > 1land ¥ € C°(gl,(AF)) let

U(X) = / U (Y)y (tr(XY))dY (3.3)
al,(AF)

be the Fourier transform of W. We use the analogous notation in the local setting. Note
in particular that

Ly =1

al, (O3
For g1, g2 € GL,(Ar) and a € A}, the Fourier transform of

x > V(agixg)

Ial_”zl detglggl_”a(a_lgglngl).

We also note that the Poisson summation formula holds in the form
S v =4"" > ).
Begl,(F) Begl,(F)

We apply Poisson summation in B € gl,(F) to (3.2) to see that ¥, (X) is equal to

X

dp* / —fily, 68 (asg Ten)
z,,zp: WZ(F) Vi) X|det T|g| detgigy 'S %)

v <|a2 det Ts| detgig; 'S

9]

1 { _, bdeT-t1 (o, v)
T o/ e CUl (i )hz)w( c )dV' 64

Here V is defined as in (1.2) and (-, -} is defined as in (1.4).
Taking a change of variables

(T, 11, 12) — (@ Tg; ', t1 det hy, £ det by ')

Page 8 of 26
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the above becomes

|a® det T'|s| det g1g; |

| detgig; 'y | / ( 2l
dp a peeF* acV'(F) V(AF) Xl det T|S al(Op

bdet(grgy "hT iy T)—t1 8y (ga, v)
*Letg; i 03 P21 g1, 69) (ﬂs (_ctl I )) v ( c )¢
(3.5)

where we have set g = (g1, g2, /11, /12) and (as in the introduction)

2(T 11, 1) = (g5 ' Tagr, tr det g, o det iy ).

3.2 Bounds on archimedian orbital integrals
In Sect. 3.5, we will apply Poisson summation in ¢ € F* to X2(X). In order to work with the
resulting sum, we require some bounds that are collected in this section. The archimedian
bounds in Proposition 3.1 and the nonarchimedian bounds in Proposition 3.2 are obtained
via the stationary phase method.
If wis a place of F, let
‘ (bu b1a ) ‘W = max(|byj ). (3.6)

by by
Moreover, if a € gly(Foo) Or a € Fy let
lalloo = maxyoo(|@w). (3.7)

Proposition 3.1 Let fi € C°(GLy(Fx)) and fo € CP(A\GLy(Fx)). Assume b € FZ
satisfies |bls =< 1. The function

FX xV'(Fx) — C
—f bdet T—tyty (Ol, V)
be)r— /vuroo)ﬁ(T)f2 ( ‘ ) Voo ( t )dv

t
5]

vanishes if b lies outside a compact subset of FZ depending only on fi, fo and the bound on
5] oc-

Moreover, for any N € Zxo, B € Roo, (unitary) character x : FX — C*,ands € C
with B > Re(s) > —3 the integral

_p bdetTonn (o, v) .
/F;o ( v(FDO)ﬁ(T)ﬁ( S )‘/“’O( t )dv) x(0)|¢°de

is bounded by a constant depending on f1, f2, N, B times

max(||y1/loos [1921loos [1Bllocs C(t, Im(s))) ™ T | min(ly1lw, 172

w|oo
where o = (B, y1,¥2) € V'(Fxo).

In the proposition, C(, ¢) is the analytic conductor of x normalized as in [3, §1].
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Remark To clarify the assumptions in the proposition, note that if F has more than one
infinite place then the set of b € FZ with ||« =< 1 is noncompact.

Proof Choosefz € C°(GLy(Fx)) such that [ Afg(zg)dzX = f2(g). Then taking a change of
variables (¢1, &) — z~1(t1, t2), we see that the function in the proposition is equal to

~ 22bdet T—t1ty yit1 + yal2 + ztr(BT)) dvdz*
T -t ————= 3.8

when evaluated at (z7%, y1, ¥, B). The functionfz is evaluated on an element of determi-
nant —z?b det T, and hence for the integral to be nonzero b and z must lie in a compact
set depending only on fl,fg We may therefore fix b and z and drop the integral over A in
the ensuing argument and consider instead of (3.8) the integral

V(Eso ¢

where o := (2B, y1, y2)-
We now employ an idea from [12] to rewrite this as an integral to which we can apply
the stationary phase method. Write

S(@Gias) = | (@) Vooltar)ds
Feo

it is a partial Fourier transform offz. Let
Frz (V) := {0z, v) — 22x3(bdet T — x1%2).

By Fourier inversion, we have that (3.9) is equal to

Lo A ) e
FooxV(Foo)

Here we have renamed variables (so dv = dxj dxp dT'). Thus, we are tasked with bound-

Fr) dv dxs
; .

ing, for each w|oo and each character x : F; — C*, the integral

/ ( / fl(T)fs(_flii)ww(FxB—(V))dvdxs)x(t)ltlsdtx- (310)
EX \ JE,xV(E,) 1

Let D := t% and, if w is complex, D= Za%' We view these as differential operators on
Fy . Letfy € C*(gly(Fy)). Suppose that for all N > 0, i > 0 (and if w is complex j > 0)

one has
—x1 X3
i—j F,
/ ﬁ(T)DlD/ .ﬁL( thZ)ww( x3(V)) ddeg
FuxV(Fy) I£15, t
i fuiiN 12261 max(y1lus [y2lws 1(02) "' Bl 1)~ min(ly1fu, 1) 7> (3.11)
for all ¢ in the support of f3 ( ;" iz ) (this is a compact subset of F,,). Here we take j = 0 if

w is real. Assuming this is the case a repeated application of integration by parts in ¢ (and
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t when w is complex) implies that (3.10) is convergent for Re(s) > —3 and moreover that
(3.10) is bounded by

Of fun, (Max([91 s [¥21ws [(52) "' Bly, C(x, Im(s))) ™) min(|y1|w, 1)~

for B > Re(s) > —3, and this implies the proposition. But, since f; and f3 were arbitrary,
it is not hard to see that the estimate (3.11) follows in general from the special case when
i =j = 0. In other words, we have reduced the proposition to proving that for all N > 0
one has

—X1 X -7:x
/ AT ( tlxi)ww( 3(v))dvdx3
FyxV(Fy) t
3
max (191w 1921w 1(62) " Bly, 1) min(|y1 [, 1) (3.12)

<Lf fuN

b2z4

foreacht € F,;.
We now apply the stationary phase method to estimate this sum. We view it as a family
of phase integrals indexed by x3. We will estimate, for each x3 € F,, the integral

Fs
)ﬁ(T) 3 () Y ( t(v)) dv. (3.13)

V(Fy

Let Dy, C V(F)) be the singular locus of F,(v). We have

zb11 — Zszgtgz
zbyy + Zszgtm
zby1 + 2%bxsty;
zbyy — Zszgtn
J1 + x3%2
Y2 + X3%1

VFy(v) = (3.14)

So Dy, is empty if ¥3 = 0 and otherwise D,, consists of the single point

by by bia bu  y1 »
zbxs’  zbxs'  zbxs’ zbxs' x3’  xs

and the determinant of the Hessian matrix of F, (v), evaluated at the only point in Dy, is
+x528D%.

Now if D, is not in the support of fi(T')fa (_xl 3 ), then (3.13) can be estimated using

t x2
the Riemann-Lebesgue lemma. On the other hand, if Dy, is in the support, we obtain a

bound on (3.13) of the form O, , (| 9#;2 |W) by the stationary phase method. Thus, we
3

obtain a bound

A
FyxV(Fy)

Kffa

2 ’“(")) dv dxs
t
Sf5(x3)dx3

3
/ - (3.15)
w e3>, g max((yt 2l [(02)1Blw) 315

b2gh
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where f5 is a Schwartz function on F,. This in turn is bounded by
oo

3.3 Bounds in the ramified nonarchimedian case

3

b2z4

mmmmmwmmwm*Bmermmmmmnﬂ).

w

For this subsection, let w be a finite place of F. We omit it from notation, writing F := F,,,.
We write o for a uniformizer of Or and set g := || ~!. Welet § € OF be a generator of
the absolute different D of OF. Finally for ideals m C Of we write

O (m) :== 14+ mOf
and OF (Of) = Of . For m € Op — 0 we also write O7 (m) := OF (mOF). Write
o= (B7 i y2) and B= (bl])

In this subsection, we prove the following proposition:

Proposition 3.2 Let x : F* — C* be a (unitary) character, let fi, fo € C2°(gly(F)) and
assume that b € F*. The integral

_py betTonn (o, v) .
/FXXV(F)fl(T)fZ< tt ttz )w( t )dVX(t)ItI dt”,

is absolutely convergent for Re(s) > 0. For a € V'(F) in the expression

/>< ( V(F).fl(T)fé (_ttl bdﬁ:%) w (<a;v>) dV) X(t)|tlsdtxl (316)

the integral over F* is bounded in absolute value by a constant depending on fi, fo, |b|, w
times 1+¢®™in0(Gy)v () >y q "3 forRe(s) > —3. Moreover, it vanishes if |y1], |y2|, | B|
or the absolute norm of the conductor of x is sufficiently large in a sense depending only on

fi, fo, and |b|.

Proof Itisnothard to see that the integral over F* x V(F) in (3.16) is absolutely convergent
for Re(s) > 0. We therefore assume that Re(s) > 0 until otherwise stated to justify the
ensuing manipulations.

Consider

—4 bdet T—t]ty {at, v)
V(F)fl(T)fz( L )w( t )dv. (3.17)

t

We claim that if u € OF (w*) and k > 1 is large enough in a sense depending only on
fi, /o then

4 bdet T—tyty (Ol, V)
Amﬁwm(;g)w(ut)w

is equal to (3.17). Indeed, this follows from a change of variables v > uv. We conclude

that the integral (3.16) vanishes if x |O; (wky is nontrivial for k sufficiently large in a sense
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depending only on f; and f5, in other words, if the conductor of y is sufficiently large in a
sense depending only on fi, f>.
After a change of variables v — tv in (3.17), we see that it is equal to

AT (T ) e ) el
V(
Notice that

AET) ( —ty t(bdettz; tltz))

is invariant under v - v + @*v/' for any v/ € V(OF), provided that k is sufficiently large
in a sense depending only on f}, f and |b|. Thus, (3.17) (and hence (3.16)) vanishes if [y1],
ly2| or | B is sufficiently large in a sense depending only on f1, 2> and |b|.

Thus, we are left with proving the bound claimed in the proposition. As in the proof of
Proposition 3.1, we employ a partial Fourier transform as in [12], writing

an ﬂlz — a t
ﬂ21 ﬂ22 = /fZ aﬁ a22 ¥ (tayz)dt.

Let dr € Z-¢ be the absolute discriminant of F. By Fourier inversion, we have that

(3.16) is equal to d;l times

/ (/ AT (—;Cl iz) ((a, v) —x3(bdet T —x1x2)) dxs dv)x(t)|t|sdtx.
Fx \ JFxV(F) ¢

We can assume that fi = 1, - kg (0p) @0 f2 = g yomy kg1, (op) fOr some y, B €
gl,(Or) and m, k > 0. Thus, the above becomes

—x1 X3 —m
/x (\/FXV(F) 1 kE[Z(OF)(T )/LU )Ikag[z(Op) (( t x2) — ﬂw‘ )

y w((“’) x3(bdetT — xm))dxgdv)x(t)lﬂsdtx'

t

Applying a change of variables (v, x3, t) — @ (v, x3, t), we arrive at

— 7 —
x(@ " +S)m/x (/F V(F)ﬂkarmB[z(OF)(T_ V) iimgiyiop (71 5) = B)
X

2m _ —
< (w (o, v) —x3(bdet T xm))dxgdv)x(t)ltlsdtx.

wmg

The factor (e ~")g7+9" is inessential for our purposes so we drop it.
Now let £ > 0 be the smallest integer such that wtb € Or. We can then write the above
as

—X1 X3
/X (/va(F)]lwﬂmg'Z(oF)(T — P kimgiyiop (71 3) — B)

2+t _ Cdet T — ot
y w (w (a, V) x3(fw det w xle)) dxg dV)X (t)|t|sdt>< (318)
w2m+ly

Page 13 of 26
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To bound this integral, we can and do assume x = 1. Write y = (y;;), 8 = (B;). To ease
notation, let

Fry () = 82, v) — Sx3(bwr* det T — wlo1x7)

where § € Or is a generator for the absolute different of F. Then, (3.18), in the special

case y = 1,is
— —x1—Bu x3—P12
/X (/va(F) 1wk+mg[2(OF)(T V)]lwkﬂ"g[z(OF) ( t—poa1 xz—ﬂzz)

Fas(v) § 45X

We first observe that if okt { Bo1 then |t| = |B21] for all ¢ in the support of the
integrand, and it is easy to obtain the bound asserted in the lemma in this case. If %+ |

Ba1, then the integral above is equal to

—x1—Bu x3—P12
/X (/va(l-") ]lmk+mglz(OF)(T o V)]lwk+m9[2((9p) ( t xz—ﬂzz)

Fas(v) 55X

We claim that is bounded by a constant depending on &, m, ¢, |b|, B, y times

1 + g&min(w)w(by) iqfn(s%)
n=2
for Re(s) > —3; establishing this claim will complete the proof of the proposition. To
prove the claim, it suffices to show that

—x1—B11 ¥3—P12 ]:xg (v)
/wap) Lapttmgiy0p) (T = V) gpkimgi(op) ( t x2—522) v (—8w2m+‘3t dxz dv

(3.19)

is bounded by a constant depending on k, 1, £, |b|, B, y times |¢|, provided that w(t) >
max(2k, 2) (for 0 < w(t) < max(2k, 2) we can just bound the integral trivially).

For this, we can apply the stationary phase method in the nonarchimedian setting as
developed in [4]. In more detail, let p be the rational prime lying below w and let

6[F:
Dy, := Resoy/z,Spec ((’)F [x1, %0, T1/ (V.?-'x3)) - AZL Qp] (affine 6[F : Q,]-space)

where (VFy,) is the ideal generated by the entries of the gradient VF,,. This gradient is

@by — bxsty

@2 b1y + bastin
2m

w"b bxst

fo:’,(xl) X2, T) = aw_e 2 2t s

@ "byy — bxstin
wz’"yl + x3%2

@ 2Myy + x3%1

Page 14 of 26
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Since w(t) > max(2k, m), we have
w(t) + 2m + £ > max(2(k + m), 2).
Therefore, by [4, Theorem 1.8(a)] we have that (3.19) is bounded by a constant times

q% max |Dy,(Z,/p"),
OF

X3€

where a = LMJ But

maxxgeOF|Dx3 (Zp/p“” Lk q6min(w(yi),w(bi1,)),

so we deduce the proposition. O

3.4 The unramified computation

Fix a (finite) place w ¢ S of F. As in the previous subsection, in this subsection we omit w
from notation, write F := F,, let @ be a uniformizer of F and set q := |Of/@|. We fix
b € O for the section. Let x : F* — C* be a (unitary) character. Moreover, let

P(b,v) :=bdetT — t1ty.
In this section, we prove the following proposition:

Proposition 3.3 The integral

/ / ntopw(b,v»w(<“’V>)dvx<t)|tvdt*
or JV(OF) t

is absolutely convergent for Re(s) > —3. It vanishes if x is ramified. If x is unramified, it is

equal to
L@A+sx 12 klﬂ)nv(op) (w ka) /O 1B, & a) x ()11 H3de™.
F

We start with two preparatory lemmas:

Lemma 3.4 Fort € OF one has

/ " (P(b’ V)) dv = |3,
V(OF) t

Proof Assume first that w(¢) = 1. Then writing v = ((2 o ) z1, Zg),

P(b,
fron ¥ (°57)
V(OF) t

— |t Z v (b(x1x4 —x;x?,) - 2122)

X1,%2,%3,%4,21,22EOF [0
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Let PV be the projectivization of the Or-module V. Then grouping elements of
V(OF /@ )\0according to their image in PV(OF /o ) and evaluating the resulting Ramanu-
jan sums, we see that the above is equal to

g1+ > q- > 1

(x1,%2,%3,%4,21,22) EPV(OF /) (x1,%2,%3,%4,21,22) PV (OF /)
b(x1x4—%2X3)=2122

-1
—g1-1T "2 4 > q (3.20)
(%1,%2,%3,%4,21,22) EPV(OF /@)
b(x1x4—x2x3)=2122

To count the points

(xl, X9, X3, X4, 21, 22) € IP’V((’)F/w).
satisfying

b(x1x4 — x3%3) = 2122,

we observe that there are g% points with z; # 0, ¢ points with z; = 0, x; # 0, ¢ points
3_
with z1 = x; = 0, x2 # 0, and qqfll points with z; = x; = xy = 0. Thus, we end up with

P27 +q+1

points. We deduce that (3.20) is equal to g 3.
We now consider the case w(t)>1. Let

bx4
—bx3
—b
VP(b,v) = bx’l‘z
—2
—z

be the gradient of P(b, v) and let

b
—b
H(b,v) := ) —b
-1
—1

be the Hessian matrix of P(b, v). Let p be the rational prime below w and let
D := Resoy/z, (Of[V)/(VP(b,v))) € ASF),

where (VP(b, v)) is the ideal generated by the entries of VP(b,v). Thus, D is a closed
affine subscheme of A®IF*@] that is étale over Zy since H(b, v) € GLs(OF). Applying [4,
Theorem 1.4] (a result which the authors attribute to Katz), one has

/v on? (P(z;, v)) =1t > v (P(zz, v)) G (H(bv)), (3.21)

veD(Zy)
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where

1 if 2|lw(t),

: . (3.22)
47> 2 xe(Op s ¥ (%) i 21 w(t).

Gi(H(b,v)) = l

Now D(Z,) = 0, and for 2 { w(¢), one has

GuH (b, v) = qB/(O v (P(ZV)) =1
V(Of

Thus, altogether we deduce that (3.21) is equal to |£)3 as claimed. O

Lemma 3.5 Assume that x € OF. The integral

/ " (xP(b, V) + (o, v)) dv
V(OF) t

vanishes unless o € V(Of) and x is unramified, in which case it is equal to

-1
Ity (M) (3.23)
Xt

Proof Tt is easy to see that the integral vanishes unless « € V(OF). We henceforth assume
a € V(OFf). We observe that

P(b,v+V) = P(b,v) + P(b, V) + {f(V), v), (3.24)
where f is the Of-linear isomorphism

f :V(Of) — V(OF)

((88)0) > (5 224,

Thus,

/ v (xP(b, V) + (@, V)) dv
V(OF) ¢

:/ " (xP(b, v—ax YY) + (o, v) — (o, x_lf_l((x))) &
V(OF) t

/ (xP(b, v) +xP(b, —x'f Ha)) — (Ot,x_lf_l(a)))
— v dv
V(OF)

t

_ —P(b~ 1 @) xP(b, v))
_1/’( xt )/woF)'[’( c )"

Invoking Lemma 3.4, we see that this is equal to

-1
1Py (—P(" ’“)),
Xt

Page 17 of 26
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Proof of Proposition 3.3 One has

/ / Lop(P(b,v))w(“’”)dvx(t)nwdrx
Or JV(OF)

t
:/ / / w(w) de dvy (0)]]f de
Of JV(OF) J OF t

(¢)
/ v / lp(xwkp(l?, V) + (o, V>)dvx(t)|t|5+1 dr™
OF k=0 "V(OF) L0 /tw’k)x ‘

We take a change of variables t — @ * to arrive at

P(b, Ko,
Xk((f:l / / (x ( V) +t<w (04 V>)dVX(t)|t|s+ldtx,
V(OF) xe((? /£)x

We now invoke Lemma 3.5 to see that this vanishes if x is ramified and otherwise it is

equal to

Xk((il) /Op xE(OZ:F/t)X Tyop (w—ka) W (M) x(t)|t|3+4 dr*
Xk(gl von (77a) (/op Liop (PO, @ Fa) x (Ol de™
_qfl/ Ly (P67 wka))x(t)|t|s+3th)
wOF
- ,i %1‘/(@) (w*ka) (1 - x(w)q‘”)

x / 1P~ Y, @ %) x ()| H3de ™.
OF

O
3.5 Poisson summationinc
Recall that (3.5) gives us the following equality:
v la® det T[s| det g1, '|
| detglgz h1h2 | X
(%) = /
§bz Z V(Ar) X|detT|g
ceF* aeV/(F)
Xflﬂg[z(ﬁg)(“ST)
bdet(grgy h Vi T)—t1 8y
X ]ldetgl_lgzhlhgl(agx (b)fﬂlg[z(@f;) (ag (Ctl 20818 ;2 ))
" (<g'“’ V)) dv. (3.25)
¢

where we have set ¢ = (g1, &, /11, /12). In this subsection, we apply Poisson summation in ¢
to this expression and asymptotically evaluate the resulting sum. The main result follows:

Page 18 of 26
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Theorem 3.6 The limit limx_, , 22(X) exists and is equal to the absolutely convergent
sum

| det bk, !
d5;22 Z Z lclsIs(f g.(b, C(X))]l@;xxv(ég) (@b a)).
¢ (ba)eW(F)

Here I5(f, B) is defined as in (1.5).

Proof We apply Poisson summation in ¢ € F* to (3.25) to arrive at

|detgig, iy |

LX) =—p—
dy “2miRess—1{7°(s)

a2 det Ts]| detg1g21|)

v( |
X
Z z /Re(s) Z/X (/V(AF) X|detT|g

a (ba)eF*xV'(F) X

Xflllg[z(ag)(ﬂsT)

bdetgygy iy i T-t11
_ 1A ~ —t
X ]ldetgl 1g2h1h21(9;>< (b)fg]lg[z(og) (ag ( tl 7

t

X (M) dv)x(t)|t|sdtxds (3.26)

Here the sum on y is over (AF*\A;)". A convenient reference for this multiplicative
version of Poisson summation is [1, §2]. We warn the reader that there is a difference of
measure; if dxj, is the measure used in [1, §2], then

dejp = Croo(Dd Pde”

where dx* is our measure. We will discuss justifying this application of Poisson summation
in just a moment. The nonarchimedian integral

bg1gy T Vg det T—t 2y
1. sy, - 1 (D)L msy | -0 22—
/Agx /Mf:) 0009 D ety e 03 a0 | ]

5]
X Y ((goi V)) dv)x(t)|t|sdtX

was computed in Proposition 3.3; it vanishes unless x is unramified outside of S, in which

case it is equal to

XS(C)]l b Lo [S(s 4 )]
Z |C|1+s O xV(03) (g( ) € Ol)) (s+4 x)
c S

§ / LY (@b, o)k (0)(121) e

O

where the sum on ¢ is over the nonzero ideals of (’)g and PV (b, @) := P(b™ 1, ).
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For o € V/'(Fs) let
IS(f b Ol X8

V(ldetT|s) bdet T—tyty
T i ;
fpg 1)/ (/V(FS) |det T'|s TdetT]s N )f2<t t )

1 (<""tv>) dv)x(t)ltlfgdtx

Dy bals) = L3(s +4, x) 7" /@ LY (@b o)) P (e e, (327)

F

and

We note that for Re(s) > —3 the transform Is(f; (b, @), x, s) is rapidly decreasing as a func-
tion of @, x and the analytic conductor of x| - |* in a sense made precise by propositions 3.1
and 3.2.

Let

A :R>0 — Fgé
z s ZFQ (3.28)

where zIFU™" is embedded diagonally. Taking a change of variables

X _
((tv),a) — (A ( m)% Lt v), ca),

using the A-invariance of fi, f2, and bearing in mind the nonarchimedian computation just
mentioned, we see that

d-°"?| det hyhy |

Yo (X
2 = 2mResS 1§F (s)

x5(@)x5(c)
XX N s

(bayeF v (F) 1 Re®=0 lalglels

14s/2
X
x Is(f, g.(b, cat), X, 5) (W) Dyba($)L s s @b @) ds

where the sum on y is over characters of F*\Af / (’)}iX . We note that we have used the fact
that Xs(agl) = x5(a) to simplify the expression above. We now can justify our application
of Poisson summation in ¢ by noting that

1D, b (8)] < ¢5(s +4)¢5(s + 3)

for x, b, o contributing to the sum and applying the estimates of Propositions 3.1 and 3.2.

We now move the contour of the integral over s to the line Re(s) = —g. The integral
D, 1,(s) is absolutely convergent in this range unless P(b~1, @) = 0 (which occurs if and
only if P(b~! detg; 'g2h1h, ', ga) = 0). On the other hand, if (b=}, &) = 0, which is to
say that (b, o) € W(F), then

L5(s+3, )
D = -T2 A
X,b,a(s) LS(S i 4, X)
which is meromorphic in Re(s) > —3, in fact holomorphic apart from a possible simple
pole at s = —2. The simple pole only occurs if x is trivial, in which case it has residue
Res;—1£5(s)
L7 (2)

Thus, we X9(X) is equal to the contribution of the residues plus a remainder term. The
contribution of the residues is
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Res;—1 7 (s)
25(2)

d-°"* det hyht 1
L 2 | > Is(hgb ca) 1, —els
ResszlgF (S) ac |(l|S ﬂ:(b,a)eW(F)

X]].@Sx xV(@S) (gOl)

|deth1h L
5/22 D D lelsks(Egb cal s, o) @b @),
¢ (ba)eW(F)

where we have set
Is(f (b, &) = Is(f, (b, @), 1, —2) (3.29)

as in the introduction. Here we are using the fact that dtg\co = é‘Fg\oo(l)_ldt;\ o
This is precisely the expression for limy_, o X2(X) asserted in Theorem 3.6. The sum on
¢ b, a is absolutely convergent by Propositions 3.1 and 3.2. Thus, to complete the proof

of Theorem 3.6 it suffices to prove that the remainder term mentioned above is indeed a
5/2
| det iy |

ZmRess 1§F (s) times

remainder term. This remainder term is

2 2 2

ac (ba)eF*XxV'(F) X

s 1+4s/2
/ 1) e ca) 9 —
X ————IL(fgbca), , s )| ————
Re(s)=—3 lalt]cl 1 | detgig; |

X Dy pols )]l@;xxv@g) (g.(b a))ds. (3.30)
Notice that the sum over a causes no problems since it only appears via the factor » l;ﬂ
S
and >, |a|5_4_s converges absolutely for Re(s) = —7. Moreover, as mentioned above,
Is(fg(b, ca), x, ) (3.31)

is rapidly decreasing as a function of b, ¢, ¢ and the analytic conductor of x| - |* is a sense
made precise in Propositions 3.1 and 3.2. As for the factor D, 5, , we observe that in view of
(3.27) there isan A > 0 such that if b, o, x contribute to the sum above and P(b~!, &) # 0
and Re(s) = —% then

1D, b (8)] < |P(B™Y, )4

If P(b,a) = 0, one has D, ;,(s) = LS(s + 4, x)"'L(s + 3, x) as mentioned above.
Combining these observations, we easily deduce that (3.30) is Ogy; (X* ~1/4) forany e > 0.
This completes the proof of Theorem 3.6. ]

4 The first Bruhat cell
In this section, we study the contribution of the first Bruhat cell:

(\ma ls
0= > il it @0 &)
DM y1,y2€F

X fHrl aghil L-t)s(lt hy ) Y (y1t1 + yat2)dt; dty.
~/(F\AF) zaeBZ(;:) m( ! ( ! ) ( 1) )
(4.1)
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The main result of this section, Lemma 4.1, asserts that limy_, o X1(X) = 0.
Under the action of N(F) x N(F), every element of B(F) is in the orbit of a unique
element of the form

s=(".)

and the stabilizer of such an element is
t
Ny (Ap) = {((1 ), (1 ?)) € N(Ap) x N(Af) : ¢ € AF},
We give N}, (Ar) a Haar measure via the isomorphism
Ar — Ny (AF)
t— | Ct)
) b .

One says that § is relevant if the character

N(Af) x N(Ap) —> C*
(1), (13)) = vt +2202)

is trivial on this stabilizer; thus, § is relevant if and only if —bc~'y; = y,. Only relevant
elements can contribute to X1 (X). Thus,

()

a2l
D) =Vdr Y. > Wl(ﬁﬂﬂ,a*nm(gbgz)

X
am yeFX

<> f i (ash (4 )

beepx  beb™ 0t eAr\AR

dt; dty

x Y(yt1 — beyty) "

We compute

n — dt; dtp
1. (ach™! (bb2—ct1 )} f — be Lyt
/{(t,cb—lt)iteAF}\A;‘_?zf2 " ( $™ ( c ) 2) LAC yt3) P
T (t1 — 1)\ dey dy
- L (ashyt (Pst)h (y
/{(t,t):teAF}\Angz m( ™ ( c ) 2) 14 p &

= | Al (ashTt (1) ) (—2) a
i ) v (=

Substituting this into the expression (4.2) for ¥1(X) and simplifying, we arrive at

la det Bls| det g1g;, |5
v (—X

iX) = \/Zipz X

x D filg,olasg; 'Be)

|det Bls| detgig; ' 4

—1 -1 st
X Z ]ldetgl"lgzmhz_l@ﬁx (b) Z /Apfg]lglz(ég) (ashl (bc detB é) hz) V¥ (?) dt

b,ceF> yeFX
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v (\az det Bls| detglgglls)

_ Vir Sillg,@p(asgr Be)
- L,(OF) @581 g2
g’ X| det B|s| det g1g; ' Begzrz:() oo
X Z ]ldetgl ohihy losx Z/ f2]19[ 03) “Sh ( 1detBé)h2)1//(yt)dt.
bceF* yeEx

Let So 2 S be a finite set of places such that g1 , g2 , h“lgo, hgo € GLZ(O %9). Then the
above is equal to

|a® det Bg| det g1g, |5
v (—

X| det Bls| detgig, |5

fFZZ

z ﬁ]lg[2(@§)(a5gl_13g2)

Begly(F)

X Z Z L et gy goiniiy O b)/ Algy o, (“Sh (b 1det3§)h2) s, () dt.

beF* CGOSO 0
c| detBO

Notice that multiplying our representative a for an ideal in Of: by an element of ng
does not affect the sum, as it simply permutes the ¢, b, y and B sums. Therefore, we can
and do assume that our representatives a for ideals in Og are chosen so that

jaly = |aly/ " (4.3)
for w|oo and
lalw < 1 (4.4)

for w € S\oo.

1
Lemma 4.1 Forany e > 0 one has £1(X) <, X° 2.

Proof Choosefg € C°(GLy(Fs)) such that fAfg(zg)de = fo(g). Then,

[ Pt (osis? (" 4am ) 1) s, 00

/F / Py, )<za5h (b detB £) Iy ) wrs, (yt) dt dz™
S

0

= f 5 —1 (AWK HbedetB AWK )
_/Fso /ﬁﬂgrz(ogso) (zashl ( AT e )hz) Vs, (yt) dt dz*

= 1 ((asAWX Dbt dee t i
ls lals /f2 alz Oﬁs ) (Z ( asAX e 2

<P, (%) de de”. (4.5)

Here A is defined as in (3.28).
By considering determinants, we see that in order for the integrand to be nonzero we
must have

|z22a® det B|s < X.

For a, B to contribute to £(X) we must have |a? det B|s =< X, and hence, for z in the
support of the integrand in (4.5) one has

lzlw < 1

Page 23 of 26



Getz Res Math Sci(2016)3:20 Page 24 of 26

for w|oo. Thus, we can essentially ignore the integral over z. It also follows similarly that
[blw < 1

for all w|Sp, so we may fix b and ignore the sum over b.
We also observe that for ¢ to contribute to 31 (X) we must have

lclw K

AWX) 6)
as

w

lals
The integral (4.5) vanishes if [y|,, > |al, for w € Sop — co. Applying integration by parts

in t,, for w|oo to (4.5) implies that for all N > 0 it is bounded by a constant depending on

for all w € Sp. There are at most O (‘/—Y) such ¢ € (91“30 —0.

N times
-N
VX /(Dﬁ)l o (g (#sAWX Db deen Iy AWX)y 4.7)
lals |Ja 86O, \ ™71 asA(VX e a
w

for an appropriate differential operator D.
Given our conventions (4.3) and (4.4), we deduce that if ¢ > 0 and |a|s < X1/27¢ then
for any N > 0 one has

|a® det B|s _
S v () S ity s e

ye0® 0 Begly(F)

X z Z ]ldetgl_lgzhlhz_laix (b)

beF> ceOiO 0
c| detBOf-O

x /F fz]lgfz(@fgo) (ﬂshl_l (bc’ldetB 5) h2) Ys, (t) dt Lg N XN,
So

Here we are using (4.6) to obtain a bound of +/X for the number of contributing c.
We are left with the case |a|s > X 1/2=¢ For this case, we observe that any B contributing
to the sum satisfies

x[FQl™!

Bl < « x%IFQ™

lal?,
for w|oo and |B|,, < 1 for w|Sy — oo. Here |B|,, is defined as in (3.6).

Let the box norm || - || be defined as in (3.7). Then, for a small enough nonzero ideal
91 € Or the contribution of these a to £1(X) is bounded by a constant times

1 ja’ls X
X 1 2vz X |a?|s 12 Zl 1
VX T <lals<VX Bem gl (OF)  yemlOp
[1B]o0 <X 2/ EQ ||| 1 X 26/ 1FQ]

1
< )l(\/)_(XSSXZS — Xlosfi’

where one factor of I\z{_\f comes from the sum over ¢ and the other factor of “é—fg comes
from the bound (4.7), which has also been used to bound the sum on y. O
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5 The cuspidal contribution and the proof of Theorem 1.1
Theorem 1.1 follows immediately upon combining (1.7), Theorem 3.6, Lemma 4.1, and
the following proposition:

Proposition 5.1 The limitlimy_, oo XUP(X) exists and is equal to the absolutely conver-
gent sum

= s
dFV(l)ZIQT(ﬁ]IGLZ(@g))(gLgZ)I(ﬂV(fz]lGLz(ég))(hb ha)Ress—1L(s, w x 7).
T

Here the sum on 7 is over isomorphism classes of cuspidal automorphic representations
of A\GLs(A).

Proof We first observe that since K;z “*P(x, y) is cuspidal

> /(F Ker? v, (M5 b (M%) o) vty + yato)der de

YLY2 eFX% \AF)EBZ

is the Fourier expansion of dp](?jlsfa*]lm ((1 "11 ) h, (1 "12) hz) evaluated at x; = xp = 0.
Thus,

lma?)s
v ( X )I(CUSP
X|m|s Silgaxlyy,

ECUSP(X) = dF Z

a,m

=dr nzn Km(ﬁnGLz(@g))(gbg2)1<n2(ﬁnGL2(@§))(h1, h3)
1,772
lma?|
()

X ; Wtr Nf(]].a,ﬂ k ]lm)tr ﬂﬁg(]].a,a * ]lm)

@u gz)fgffa*]lm (h, ha)

Here the sum on 7y, 7y is over pairs of cuspidal automorphic representations of
A\GLy(Af). By Mellin inversion and standard preconvex estimates [3, (10)], there is a
81 > 0 such that

5 ()

Ximls tr nf(lm * 1,,)tr 7'[25(1&“Z *1,,)

a,m

% C 1
= V(DRess=1L3(s, 11 x 72) + O (M)

X

where C(mr; x m) := C(m1 X 7o, 0) is the analytic conductor of 71 X 7y (compare, e.g., [2,
§3]). By Rankin—Selberg theory, the residue is nonzero only if 71 = 7/, in which case it is
bounded by C(z x V)% for some 8 > 0 [3, (10)]. We also recall that

C(m1 x mp) < C(m1)*C(rma)?

by [3, (8)].
Thus, by dominated convergence, to complete the proof it suffices to show that

N N
2 CrN Clma IKn(ing, o) @1 8Kt gs) Ui 1)
1,72
isbounded forany N > 0.Byastandard argument (compare the proof of [7, Theorem 3.1]),
to prove this it suffices to show that for any N > 0 and f € C°(A\GL2(AF)) the sum

> COWNKa(rapn) (9 9)
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isbounded. Here f*(g) := f(¢g™!). But this is implied by [10, (15")] (stated in adelic language
in [7, Theorem 3.5]) and the fact that tr 7 (f * f*) is rapidly decreasing as a function of
C(m) [5, Lemma 4.4] (compare the proof of [7, Theorem 3.1]). O
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