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Abstract

1 Introduction and statement of results

Monstrous moonshine relates distinguished modular functions to the representation the-
ory of the Monster, M, the largest sporadic simple group. This theory was inspired by the
famous observations of McKay and Thompson in the late 1970s [18,51] that

196884 = 1 + 196883,
21493760 = 1 + 196883 + 21296876.

The left-hand sides here are familiar as coefficients of Klein’s modular function (note
qg:=e

Zm‘r),
oo
J(t) = D cln)g" =j(r) — 744 = g~ + 196884q + 21493760q> + - - -.
n=-—1
The sums on the right-hand sides involve the first three numbers arising as dimensions
of irreducible representations of M],

1, 196883, 21296876, 842609326, ..., 258823477531055064045234375.
Thompson conjectured that there is a graded infinite-dimensional M-module
oo
vi= P Vv
n=-—1

satisfying dim(V;)) = ¢(n). For g € M, he also suggested [50] to consider the graded-trace
functions

Ty(1):= D te(glViq",

n=-—1
now known as the McKay—Thompson series, that arise from the conjectured M-module
V4. Using the character table for M, it was observed [18,50] that the first few coefficients
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of each T, () coincide with those of a generator for the function field of a discrete group
I'y < SLa(R), leading Conway and Norton [18] to their famous Monstrous Moonshine
Conjecture: This is the claim that for each g € M there is a specific genus zero group I'y
such that T,(7) is the unique normalized hauptmodul for I'y, i.e., the unique I'g-invariant
holomorphic function on H which satisfies T,(7) = q '+ 0(q) as 3(r) — oo and remains
bounded near cusps not equivalent to the infinite one.

In a series of ground-breaking works, Borcherds introduced vertex algebras [2], gen-
eralized Kac—Moody Lie algebras [3,4], and used these notions to prove [5] the Mon-
strous Moonshine Conjecture of Conway and Norton. He confirmed the conjecture for
the module V7 constructed by Frenkel, Lepowsky and Meurman [30-32] in the early
1980s. These results provide much more than the predictions of monstrous moonshine.
The M-module V' is a vertex operator algebra, one whose automorphism group is pre-
cisely M. The construction of Frenkel, Lepowsky and Meurman can be regarded as one
of the first examples of an orbifold conformal field theory (Cf. [23]). Here, the orbifold
in question is the quotient (R24/A24) /(Z/27), of the 24-dimensional torus Ajy ®z
R/Agy >~ R24 /A4 by the Kummer involution x +— —x, where Ag4 denotes the Leech
lattice.

We refer to [24,32,35,36] for more on monstrous moonshine.

In 2010, Eguchi, Ooguri and Tachikawa reignited moonshine with their observation
[28] that dimensions of some representations of Moy, the largest sporadic simple Mathieu
group (cf, e.g. [20,21]), are multiplicities of superconformal algebra characters in the
K3 elliptic genus. This observation suggested a manifestation of moonshine for Myy:
Namely, there should be an infinite-dimensional graded Mas-module whose McKay—
Thompson series are holomorphic parts of harmonic Maass forms, the so-called mock
modular forms (see [45,54,55] for introductory accounts of the theory of mock modular
forms).

Following the work of Cheng [10], Eguchi and Hikami [27], and Gaberdiel, Hohenegger,
and Volpato [33,34], Gannon established the existence of this infinite-dimensional graded
My4-module in [37].

Itis natural to seek a general mathematical and physical setting for these results. Here we
consider the mathematical setting, which develops from the close relationship between
the monster group M and the Leech lattice Ag4. Recall (cf., e.g. [20]) that the Leech
lattice is even, unimodular and positive-definite of rank 24. It turns out that My is closely
related to another such lattice. Such observations led Cheng, Duncan and Harvey to
further instances of moonshine within the setting of even unimodular positive-definite
lattices of rank 24. In this way, they arrived at the Umbral Moonshine Conjectures (cf.
Sect. 5 of [15], Sect. 6 of [16], and Sect. 2 of [17]), predicting the existence of 22 further,
graded infinite-dimensional modules, relating certain finite groups to distinguished mock
modular forms.

To explain this prediction in more detail, we recall Niemeier’s result [43] that there are
24 (up to isomorphism) even unimodular positive-definite lattices of rank 24. The Leech
lattice is the unique one with no root vectors (i.e. lattice vectors with norm-square 2),
while the other 23 have root systems with full rank, 24. These Niemeier root systems are
unions of simple simply-laced root systems with the same Coxeter numbers, and are given
explicitly as
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24 412 48 46 44 42
A% A2 A8 A6 A% A2
A2Dy, A2DE A% ADg, A11D7Es, A15Do, A17E7, Asa, (1.1)
Dg» Dg) Dg: DIOE%) D%z; D16E8) D24) Eg; Eg’:

in terms of the standard ADE notation (cf., e.g. [20] or [39] for more on root systems).

For each Niemeier root system X, let NX denote the corresponding unimodular lattice,
let WX denote the (normal) subgroup of Aut(N X) generated by reflections in roots, and
define the umbral group of X by setting

GY = Aut(NY)/ WX, (1.2)

(See Sect. A.1 for explicit descriptions of the groups G*.)

Let mX denote the Coxeter number of any simple component of X. An association of
distinguished 2m* -vector-valued mock modular forms HgX (r) = (ng(‘()) to elements
g € GX is described and analyzed in [15-17].

ForX = A%‘L we have GX ~ Mys and m* = 2, and the functions Hg1(f) are precisely the
mock modular forms assigned to elements g € My4 in the works [10,27,33,34] mentioned
above. Generalizing the M>4 moonshine initiated by Eguchi, Ooguri and Tachikawa, we
have the following conjecture of Cheng, Duncan and Harvey (cf. Sect. 2 of [17] or Sect.
9.3 of [24]).

Conjecture (Umbral Moonshine Modules) Let X be a Niemeier root system X and set
m := mX. There is a naturally defined bi-graded infinite-dimensional G*-module

=@ B Kpum (1.3)

relX  DeZ, D=0,
D=r? (mod 4m)

such that the vector-valued mock modular form Hg = (ng) is a McKay—Thompson series
for KX related" to the graded trace of g on KX by

ng(l') = —2q_1/4m8r,1 + Z tr(g“v(j’(_D/;;m)q_D/élm
DeZ D<0, (1.4)
D=7r?> (mod 4m)

forr e I,

In (1.3) and (1.4), the set I C Z/2mZ is defined in the following way. If X has an A-type
component then IX := {1,2,3,...,m — 1}. If X has no A-type component but does have
a D-type component, then m = 2 mod 4 and X = {1,3,5,..., m/2}. The remaining
cases are X = Eg and X = Eg. In the former of these, I* := {1, 4, 5}, and in the latter case
=07

Remark The functions H, gx (7) are defined explicitly in Sect. B.3. An alternative description
in terms of Rademacher sums is given in Sect. B.4.

Here, we prove the following theorem.

!In the statement of Conjecture 6.1 of [16], the function Hng in (1.4) is replaced with SHg, in the case that X = A3. This
is now known to be an error, arising from a misspecification of some of the functions H;f for X = Ag. Our treatment
of the case X = Ag in this work reflects the corrected specification of the corresponding H;( which is described and
discussed in detail in [17].
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Theorem 1.1 The umbral moonshine modules exist.
Two remarks

1. Theorem 1.1 for X = A%‘L is the main result of Gannon’s work [37].

2. The vector-valued mock modular forms HX = (H. g,) have “minimal” principal parts.
This minimality is analogous to the fact that the original McKay—Thompson series
Tg(t) for the Monster are hauptmoduln, and plays an important role in our proof.

Example Many of Ramanujan’s mock theta functions [46] are components of the vector-
valued umbral McKay—Thompson series Hg = (Hg,). For example, consider the root
system X = A%z, whose umbral group is a double cover 2.M15 of the sporadic simple
Mathieu group Mi;. In terms of Ramanujan’s third-order mock theta functions

n2

00
q
= 1 + )
f(q) ; (1 +Q)2(1 —|—q2)2...(1_|_qn)2
00 2
q
= 1 + )
va) ; A+g)A+q%---1+g%)
00 q”lz
x(@ =1+
1 ;(1_q+q2)(1—q2+q4)...(1_qn+q2n)
> 2n(n+1)
— q
wla) = ; (1—g)2(1 —g3)2--- (1 — g2n+1)2’
ad 2n(n+1)
plg)=> . . q 6 .
= (U+q+a)A+q°+4°) - (1447 +4%72)

we have that

HJ, (1) = HE (0) = HiG (1) = =247 - £(?),
Hjc\ (1) = Hopy, (7) = —247 1 - x (),
HE () = H (1) = =27 - $(—42),
H3Go(t) = —H o (x) = —4g5 - w(—q),

2
Hg(c,z(f) = _Hé(D,z(T) =2q3 - p(—q).

See Sect. 5.4 of [16] for more coincidences between umbral McKay—Thompson series and
mock theta functions identified by Ramanujan almost a 100 years ago.

Our proof of Theorem 1.1 involves the explicit determination of each GX-module KX
by computing the multiplicity of each irreducible component for each homogeneous
subspace. It guarantees the existence and uniqueness of a KX which is compatible with
the representation theory of GX and the Fourier expansions of the vector-valued mock
modular forms Hg(‘[) = (Hg,(r)).

At first glance our methods do not appear to shed light on any deeper algebraic proper-
ties of the K%, such as might correspond to the vertex operator algebra structure on V%, or
the monster Lie algebra introduced by Borcherds in [5]. However, we do determine, and
utilize, specific recursion relations for the coefficients of the umbral McKay—Thompson
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series which are analogous to the replicability properties of monstrous moonshine formu-
lated by Conway and Norton in Sect. 8 of [18] (cf. also [1]). More specifically, we use recent
work [40] of Imamoglu, Raum and Richter, as generalized [42] by Mertens, to obtain such
recursions. These results are based on the process of holomorphic projection.

Theorem 1.2 For each g € GX and 0 < r < m, the mock modular form Hg)’(r(r) is
replicable in the mock modular sense.

A key step in Borcherds’ proof [5] of the monstrous moonshine conjecture is the refor-
mulation of replicability in Lie theoretic terms. We may speculate that the mock modular
replicability utilized in this work will ultimately admit an analogous algebraic interpreta-
tion. Such a result remains an important goal for future work.

In the statement of Theorem 1.2, replicable means that there are explicit recursion
relations for the coefficients of the vector-valued mock modular form in question. For
example, we recall the recurrence formula for Ramanujan’s third-order mock theta func-
tion f(q) = D52 ¢r(n)q" that was obtained recently by Imamoglu, Raum and Richter
[40]. If n € Q, then let

0 otherwise,

o1(n) ==

sgn(n) ifn #£0,

sgn’ (n) :=
ifn=0,
and then define
d(N,N, %) := sgn™(N) - sgn " (N) - IN +¢| — IN +7]).

Then for positive integers n, we have that

5 (2ot

meZ
3m2+m§2n
4 16 n ~ 11
=-on)— —o (—) -2 z d(N,N; =, —),
3 3 2 ez 6 6
2n=ab

where N := é(—?:a +b—1)and N := é(?)a + b — 1), and the sum is over integers a, b for
which N, N € Z. This is easily seen to be a recurrence relation for the coefficients cf(n).
The replicability formulas for all of the Hg),(,(r) are similar (although some of these relations
are slightly more complicated and involve the coefficients of weight 2 cusp forms).

It is important to emphasize that despite the progress which is represented by our
main results, Theorems 1.1 and 1.2, the following important question remains open in

general.

Question Is there a “natural” construction of KX?Is KX equipped with a deeper algebra
structure as in the case of the monster module V*° of Frenkel, Lepowsky and Meurman?

We remark that this question has been answered positively, recently, in one special case:
A vertex operator algebra structure underlying the umbral moonshine module KX for
X = Eg has been described explicitly in [25]. See also [14,26], where the problem of
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constructing algebraic structures that illuminate the umbral moonshine observations is
addressed from a different point of view.

The proof of Theorem 1.1 is not difficult. It is essentially a collection of tedious calcula-
tions. We use the theory of mock modular forms and the character table for each GX (cf.
Sect. A.2) to solve for the multiplicities of the irreducible G*-module constituents of each
homogeneous subspace in the alleged GX-module K*. To prove Theorem 1.1 it suffices to
prove that these multiplicities are non-negative integers. To prove Theorem 1.2 we apply
recent work [42] of Mertens on the holomorphic projection of weight % mock modular
forms, which generalizes earlier work [40] of Imamoglu, Raum and Richter.

In Sect. 2 we recall the facts about mock modular forms that we require, and we prove
Theorem 1.2. We prove Theorem 1.1 in Sect. 3. The appendices furnish all the data that
our method requires. In particular, the umbral groups GX are described in detail in Sect.
A, and explicit definitions for the mock modular forms Hg (7) are given in Sect. B.

2 Harmonic Maass forms and Mock modular forms
Here, we recall some very basic facts about harmonic Maass forms as developed by Bruinier
and Funke [9] (see also [45]).

We begin by briefly recalling the definition of a harmonic Maass form of weight k € %Z
and multiplier v (a generalization of the notion of a Nebentypus). If t = x + iy with x and
y real, we define the weight k hyperbolic Laplacian by

A 2 32+82 + ik a+'a (2.1)
=y |—=+-—=)+iky|—+i—). .
k Y oa2 ay? Y\ ox dy

Suppose I' is a subgroup of finite index in SLy(Z) and k € %Z. Then, a function F(r)
which is real-analytic on the upper half of the complex plane is a harmonic Maass form of
weight k on I with multiplier v if:

(a) The function F(r) satisfies the weight kX modular transformation,

F(r)lxy = v(y)F(7)

b
for every matrix y = (d d) € T, where F(t)|xy := F(yt)(ct + d)7K, and if
c

keZ+ %, the square root is taken to be the principal branch.

(b) We have that A F(t) =0,

(c) There is a polynomial Pr(g~!) and a constant ¢ > 0 such that F(r) — Pr(e™27i7) =
O(e™9) as T — ioco. Analogous conditions are required at each cusp of I'.

We denote the C-vector space of harmonic Maass forms of a given weight k, group I
and multiplier v by Hi (T, v). If no multiplier is specified, we will take

_1\ 2%
vo(y) == (2) (_71) ,

where (%) is the Kronecker symbol.
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2.1 Main properties
The Fourier expansion of a harmonic Maass form F (see Proposition 3.2 of [9]) splits into

two components. As before, we let g := e*"%,

Lemma 2.1 If F(t) is a harmonic Maass form of weight 2 — k for I" where % <ke %Z,
then

F(r) =F"(t)+ F (1),
where F' is the holomorphic part of F, given by
Fta)= > ¢ ng"

n>>—o0
where the sum adwmits only finitely many non-zero terms with n < 0, and F~ is the
nonholomorphic part, given by

F (1) = ZC;(n)F(k — 1, 4my|n))q".

n<0

Here, I'(s, z) is the upper incomplete gamma function.

The holomorphic part of a harmonic Maass form is called a mock modular form. We
denote the space of harmonic Maass forms of weight 2 — k for I' and multiplier v by
Hi (T, v). Similarly, we denote the corresponding subspace of holomorphic modular forms
by My (T, v), and the space of cusp forms by S¢(I', v). The differential operator &, :=
2iyw% (see [9]) defines a surjective map

ok : Hy— (I, v) — S(I', V)
onto the space of weight k cusp forms for the same group but conjugate multiplier. The
shadow of a Maass form f(t) € Hy_; (T, v) is the cusp form g(t) € Si(T, V) (defined, for
now, only up to scale) such that &_;f(7) = Hg—ll, where || o || denotes the usual Petersson

norm.

2.2 Holomorphic projection of weight % mock modular forms

As noted above, the modular transformations of a weight % harmonic Maass form may
be simplified by multiplying by its shadow to obtain a weight 2 nonholomorphic modular
form. One can use the theory of holomorphic projections to obtain explicit identities
relating these nonholomorphic modular forms to classical quasimodular forms. In this
way, we may essentially reduce many questions about the coefficients of weight % mock
modular forms to questions about weight 2 holomorphic modular forms. The following
theorem is a special case of a more general theorem due to Mertens (cf. Theorem 6.3 of
[42]). See also [40].

Theorem 2.1 (Mertens) Suppose g(t) and h(t) are both theta functions of weight % con-
tained in S 3 (T, vg) and S 3 (T, vy), respectively, with Fourier expansions

s

g(r) = Z Z nxi(m)q",

i=1 neZ

t
()= > > nying"”,

j=1 nez
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where each x; and ; is a Dirichlet character. Moreover, suppose h(t) is the shadow of a
weight % harmonic Maass form f(t) € H% (T, vy,). Define the function

DE(r) =2 > D" > xilm)y;(m)m — n)q".

r=1 xp¥j mnezt

le—}’lzzr

If f(z)g(t) has no singularity at any cusp, then f¥(t)g(t) + D'¢(t) isa weight 2 quasi-
modular form. In other words, it lies in the space CE3(t) ® Ma(T, vyvy,), where Ex(t) is the

nq”

quasimodular Eisenstein series Ex(t) :=1—243 | g

Two Remarks.

1. These identities give recurrence relations for the weight % mock modular form f+
in terms of the weight 2 quasimodular form which equals £ (7)g(t) + D*¢(z). The
example after Theorem 1.2 for Ramanujan’s third-order mock theta function f is an
explicit example of such a relation.

2. Theorem 2.1 extends to vector-valued mock modular forms in a natural way.

Proof of Theorem 1.2 Fix a Niemeier lattice and its root system X, and let M = m* denote

X

its Coxeter number. Each Hy,(7) is the holomorphic part of a weight % harmonic Maass

form ﬁg,(t), To simplify the exposition in the following section, we will emphasize the

case that the root system X is of pure A-type. If the root system X is of pure A-type, the

shadow function Sgr(r) is given by Xgﬁ‘SM,r(r) (see Sect. B.2), where

n2
Supm)= D, ngim,

nez
n=r (mod 2M)

Xa A

and g7 = xé( 4 or )'(g depending on the parity of r is the twisted Euler character given in

the appropriate table in Sect. A.3, a character of GX. (If X is not of pure A-type, then the
shadow function Sg,
B.2).

Given X and g, the symbol 14|, given in the corresponding table in Sect. A.3 defines the

(1) is a linear combination of similar functions as described in Sect.

modularity for the vector-valued function (?Igr(r)). In particular, if the shadow (Sg,(r)) is
nonzero, and if for y € I'y(n,) we have that

(Sgr(f))ls/zy = og,y(Sg,(r)),
then

(HY () 12y = Ggy (H (7).

Here, for y € I'o(ng), we have oy, = ve(y)oe,, where v,(y) is a multiplier which is trivial
on I'g(nghy). This identity holds even in the case that the shadow Sgr vanishes.

The vector-valued function (ng(‘[)) has poles only at the infinite cusp of I'g(r), and
only at the component ng(r) where r = 1if X has pure A-type, or at components where
r*> = 1 (mod 2M) otherwise. These poles may only have order ﬁ. This implies that
the function (I/-T‘g,(r)Sgr(t)) has no pole at any cusp and is therefore a candidate for an
application of Theorem 2.1.

The modular transformation of Sy;,(t) implies that

(O’e,S)2 = (O'e,T)4M =1
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0 -1 1 1
where § = (1 0 ), T = (0 1), and I is the identity matrix. Therefore, S/)\(/Lr(r),

viewed as a scalar-valued modular function, is modular on I'(4M), and so (ﬁé(r)Sgr(t))
is a weight 2 nonholomorphic scalar-valued modular form for the group I'(4M) N [y (rg)
with trivial multiplier.

Applying Theorem 2.1, we obtain a function Fg,(r)—call it the holomorphic projection
of HX (r) +(t)—which is a weight 2 quasimodular form on I'(4M) N T'o(ng). In the
case that Sg,(r) is zero, we substitute Sé(,(r) in its place to obtain a function ?gr(‘[) =
Hg{(r(r)Séfr(r) which is a weight 2 holomorphic scalar-valued modular form for the group
I"(4M) NT'o(ng) with multiplier vy (alternatively, modular for the group I'(4M) NTo(nghg)
with trivial multiplier).

The function Fgr(l') may be determined explicitly as the sum of Eisenstein series and
cusp forms on I'(4M) N To(nghy) using the standard arguments from the theory of holo-
morphic modular forms (i.e. the “first few” coefficients determine such a form). Therefore,
we have the identity

Fy(v) = Hy,(x) - Sg(x) + Dy, (v), (2.2)
where the function DX (1) is the correction term arising in Theorem 2.1. If X has pure
A-type, then

o0
DO =Gt Y D ¢ men(n)om — mg i, (23)
N=1 mneZy
m2—n2=N
where
+1 if¢é=+4r (mod 2M)
¢r(e) =

0 otherwise.

Suppose X(‘L’) = Zf,oo AX (n)q”_ﬁ where 0 < D < 4M and D = % (mod 4M),
and FX ZN _oB (n " Then by Theorem 2.1, we find that

X o X4 X D — m?
By, (N) = Rgr > mA N+

4M
meZ
m=r (mod 2M)
+ GG D brlm(m)m — n). (2.4)
mneZt
m?—n?=N

The function Fgr(l') may be found in the following manner. Using the explicit pre-
scriptions for Hg),(r(r) given in Sect. B.3 and (2.2) above, we may calculate the first several
coefficients of each component. The Eisenstein component is determined by the constant
terms at cusps. Since D (r) (and the corresponding correction terms at other cusps)
has no constant term, these are th the same as the constant terms of HX (r) (), which
are determined by the poles of HX Hg,. Call this Eisenstein component E, o ,(7:), The cuspidal
component can be found by matching the initial coefficients of Fg),(r(r) — Eg,(r).
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Once the coefficients Bgr

(n) are known, Eq. (2.4) provides a recursion relation which
may be used to calculate the coefficients of Hg,(t). If the shadows Sg,(r) are zero, then
we may apply a similar procedure to determine ?é(r). For example, suppose fg)fr(t) =

> o Eg,(n)q”, and X has pure A-type. Then, we find that the coefficients Eg (N)

r

satisfy
BX o Xa X D — m?
B}, (N) = 3 Z m- Ay, | N+ o) (2.5)
meZ
m=r (mod 2M)
Proceeding in this way we obtain the claimed results. O

3 Proof of Theorem 1.1

Here, we prove Theorem 1.1. The idea is as follows. For each Niemeier root system X,
we begin with the vector-valued mock modular forms (Hg (1)) for g € GX. We use their
g-expansions to solve for the g-series whose coefficients are the alleged multiplicities of
the irreducible components of the alleged infinite-dimensional GX -module

KX = @ @ KX, -

r (mod 2m)  DeZ, D<O0,
D=r2 (mod 4m)
These g-series turn out to be mock modular forms. The proof requires that we establish
that these mock modular forms have non-negative integer coefficients.

Proof of Theorem 1.1 As in the previous section, we fix a root system X and set M := m*,

and emphasize the case when X is of pure A-type.
The umbral moonshine conjecture asserts that

HY(x) =D~ > iy (n)x @q" (3.1)

n=0 x

where the second sum is over the irreducible characters of GX. Here, we have rewritten the

traces of the graded components K an » in (1.4) in terms of the values of the irreducible
characters of GX, where the mi(( +(n) are4tAI41e corresponding multiplicities. Naturally, if such
a KX exists, these multiplicities must be non-negative integers for # > 0. Similarly, if the
mock modular forms Hg)fr(r) can be expressed as in (3.1) with mi((’r(n) non-negative inte-
gers, then we may construct the umbral moonshine module KX explicitly with K an 2/4m
defined as the direct sum of irreducible components with the given multiplicities
mi(( (1.

Let

HE @) = o > X @HA () (32)
14

X

x,r(”) required

It turns out that the coefficients of H ))(( (1) are precisely the multiplicities m
so that (3.1) holds: if

0 2
Hy,(t) = D" m) (n)q" ", (33)
n=0
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then

oo

HE @) = 33w ) x@)g" .

n=0 X

Thus, the umbral moonshine conjecture is true if and only if the Fourier coefficients of
H ))(( +(7) are non-negative integers.
To see this fact, we recall the orthogonality of characters. For irreducible characters x;

and y;,
1 E— 1 ify; = x5,
1GX| Z xi@xj(g) = o hl .1 (34)
geGX otherwise.
We also have the relation for g and / € G¥,
C if g and % are conjugate,
ICex (@)l if g jug (3.5)

D xi@xith) = ,
P 0 otherwise.

Here, |Cgx (g)| is the order of the centralizer of g in GX. Since the order of the centralizer

times the order of the conjugacy class of an element is the order of the group, (3.2) and

(3.5) together imply the relation

Hyo(t) = D" x(@Hy,(x),
X

which in turn implies (3.3).

We have reduced the theorem to proving that the coefficients of certain weight % mock
modular forms are all non-negative integers. For holomorphic modular forms, we may
answer questions of this type by making use of Sturm’s theorem [49] (see also Theorem 2.58
of [44]). This theorem provides a bound B associated to a space of modular forms such
that if the first B coefficients of a modular form f () are integral, then all of the coefficients
of f(t) are integral. This bound reduces many questions about the Fourier coefficients of
modular forms to finite calculations.

Sturm’s theorem relies on the finite dimensionality of certain spaces of modular forms,
and so it cannot be applied directly to spaces of mock modular forms. However, by making
use of holomorphic projection we can adapt Sturm’s theorem to this setting.

Let 1-/1))((\,,(1) be ie\ﬁned as above. Recall that the transformation matrix for the vector-
valued function ng(r)) is 0g,, the conjugate of the transformation matrix for (ngr(r))
when y € Tg(nghg), and oy, is the identity for y € I'(4M). Therefore, if

N;(( = lem{ngh, | g € G, x(g) # 0},

then the scalar-valued functions HX »,r(7) are modular on I"(4M) N T'o(N ))(( ).
Let

Ay (1) = HY (1)S),(7),

and A,,,(t) be the holomorphic projection of A,,,(t). Suppose that H))((,,(r) has integral
coefficients up to some bound B. Formulas for the shadow functions (cf. Sect. B.2) show
that the leading coefficient of S;(l(f) is 1 and has integral coefficients. This implies that
the function
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Ay (1) = Hy (1)S) (1)
also has integral coefficients up to the bound B. The shadow of H ))(( +(7) is given by

X

S .(0) = ﬁ > x@85,(x)
14

If X is pure A-type, then SX.(t) = xg Sm(z) = (x'(g) + x"(¢))Sp,(z) for some irre-
ducible characters x’ and x”, according to “Twisted Euler characters” and “Shadows”.
Therefore,

$X (1) = Smyr(7) ifx = x"or x”,
xXor

0 otherwise.

When X is not of pure A-type the shadow is some sum of such functions, but in every
case has integer coefficients, and so, applying Theorem 2.1 to A,,,(t), we find that A, ,(t)
also has integer coefficients up to the bound B. In particular, since AX,,(I) is modular
on I'(4M) N Ty(N- ))(( ), then if B is at least the Sturm bound for this group we have that
every coefficient of A,,(t) is integral. Since the leading coefficient of Sé(l('() is 1, we may
reverse this argument and we have that every coefficient of HX , ,. (7). Therefore, in order to
check that H ))(( () has only integer coefficients, it suffices to check up to the Sturm bound
for I'(4M) N T'o(N,). These calculations were carried out using the sage mathematical
software [47].

The calculations and argument given above show that the multiplicities mi( (n) are all
integers. To complete the proof, it suffices to check that they are also are non-negative.
The proof of this claim follows easily by modifying step-by-step the argument in Gannon’s
proof of non-negativity in the Moy case [37] (i.e. X = A%‘L). Here, we describe how this is
done.

Expressions for the alleged McKay—Thompson series ng(r) in terms of Rademacher
sums and unary theta functions are given in Sect. B.4. Exact formulas are known for all the
coefficients of Rademacher sums because they are defined by averaging the special function
r[1 /]2()/, ) [see (B.114)] over cosets of a specific modular group modulo ', the subgroup
of translations. Therefore, Rademacher sums are standard Maass—Poincaré series, and
as a result we have formulas for each of their coefficients as convergent infinite sums
of Kloosterman-type sums weighted by values of the I1 /> modified Bessel function. (For
example, see [8] or [53] for the general theory, and [12] for the specific case that X = A%‘L.)
More importantly, this means also that the generating function for the multiplicities
mi(( ,(n) is a weight 3 harmonic Maass form, which in turn means that exact formulas
(modulo the unary theta functions) are also available in similar terms. For positive integers
n, this then means that (cf. Theorem 1.1 of [8])

KX (m,n,
Z Z a ( Z (m n c) (47t«/clnm|), 5.6)

r m<0

where the sums are over the cusps p of the group Fo(NgX ), and finitely many explicit
negative rational numbers 7. The constants aif (m) are essentially the coefficients which
describe the generating function in terms of Maass—Poincaré series. Here, [ is a suitable
normalization and change of variable for the standard /1> modified Bessel function.

The Kloosterman-type sums K /)f (m, n, ¢) are well known to be related to Salié-type sums
(for example see Proposition 5 of [41]). These Salié-type sums are of the form
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X
Sff(m, n,c) = Z eff(m, n)-e (,B_x)’

x (mod c) ¢
x2=—D(m,n) (mod c)

X
p

quadratic form, and A% is a nonzero positive rational number.

where €7 (m, n) is a root of unity, —D(m, n) is a discriminant of a positive definite binary

These Salié sums may then be estimated using the equidistribution of CM points with
discriminant —D(m, n). This process was first introduced by Hooley [38] and was first
applied to the coefficients of weight % mock modular forms by Bringmann and Ono [7].
Gannon explains how to make effective the estimates for sums of this shape in Sect.
4 of [37], thereby reducing the proof of the M4 case of umbral moonshine to a finite
calculation. In particular, in equations (4.6—4.10) of [37], Gannon shows how to bound
coefficients of the form (3.6) in terms of the Selberg—Kloosterman zeta function, which
is bounded in turn in his proof of Theorem 3 of [37]. We follow Gannon’s proof mutatis
mutandis. We find for most root systems that the coefficients of each multiplicity gen-
erating function are positive beyond the 390th coefficient. In the worst case, for the root
system X = E3, we find that the coefficients are positive beyond the 1780th coefficient.
Moreover, the coefficients exhibit subexponential growth. A finite computer calculation
in sage has verified the non-negativity of the finitely many remaining coefficients. O

Remark 1t turns out that the estimates required for proving nonnegativity are the worst
for the X = ES case which required 1780 coefficients.
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Appendix A: The umbral groups

In this section, we present the facts about the umbral groups that we have used in estab-
lishing the main results of this paper. We recall (from [16]) their construction in terms of
Niemeier root systems in Sect. A.1, and reproduce their character tables (appearing also in
[16]) in Sect. A.2. Note that we use the abbreviations a,, :== «/—#nand b,, := (=14+./—n)/2
in the tables of Sect. A.2.

The root system description of the umbral groups (cf. Sect. A.1) gives rise to certain
characters called twisted Euler characters which we recall (from [16]) in Sect. A.3. The
data appearing in Sect. A.3 plays an important role in Sect. B.2, where we use it to describe
the shadows Sg of the umbral McKay—Thompson series Hg explicitly.

A.1 Construction

As mentioned in Sect. 1, there are exactly 24 self-dual even positive-definite lattices of rank
24 up to isomorphism, according to the classification of Niemeier [43] (cf. also [19,52]).
Such a lattice L is determined up to isomorphism by its root system Ly := {a € L | (o, o) =
2}. The unique example without roots is the Leech lattice. We refer to the remaining 23
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as the Niemeier lattices, and call a root system X a Niemeier root system if it occurs as the
root system of a Niemeier lattice.

The simple components of Niemeier root systems are root systems of ADE type, and
it turns out that the simple components of a Niemeier root system X all have the same
Coxeter number. Define m* to be the Coxeter number of any simple component of X,
and call this the Coxeter number of X.

For X, a Niemeier root system write NX for the corresponding Niemeier lattice. The
umbral group attached to X is defined by setting

GX = Aut(NX)/ wX (A1)
where W is the normal subgroup of Aut(N*) generated by reflections in root vectors.

Observe that GX acts as permutations on the simple components of X. In general this
action is not faithful, so define G* to be the quotient of GX by its kernel. It turns out that
the level of the mock modular form Hg attached to g € G¥ is given by the order, denoted
ng, of the image of g in GX. (Cf. Sect. A.3 for the values ng.)

The Niemeier root systems and their corresponding umbral groups are described in
Table 1. The root systems are given in terms of their simple components of ADE type.
Here D1oE2, for example, means the direct sum of one copy of the D1 root system and two
copies of the E7 root system. The symbol ¢ is called the lambency of X, and the Coxeter
number mX appears as the first summand of .

In the descriptions of the umbral groups G, and their permutation group quotients
GX, we write My and M3 for the sporadic simple groups of Mathieu which act quin-
tuply transitively on 24 and 12 points, respectively. (Cf., e.g. [21].) We write GL,(q)
for the general linear group of a vector space of dimension # over a field with g ele-
ments, and SLy(g) is the subgroup of linear transformations with determinant 1, &c. The
symbols AGL3(2) denote the affine general linear group, obtained by adjoining transla-
tions to GL3(2). We write Dih,, for the dihedral group of order 2n, and Sym,, denotes
the symmetric group on #n symbols. We use n as a shorthand for a cyclic group of
order n.

We also use the notational convention of writing A.B to denote the middle term in
a short exact sequence 1 - A — A.B — B — 1. This introduces some ambiguity
which is nonetheless easily navigated in practice. For example, 2.M; is the unique (up to
isomorphism) double cover of M1, which is not 2 x Mjy. The group AGL3(2) naturally
embeds in GL4(2), which in turn admits a unique (up to isomorphism) double cover
2.GL4(2) which is not a direct product. The group we denote 2.AGL3(2) is the preimage
of AGL3(2) < GL4(2) in 2.GL4(2) under the natural projection.

A.2 Character tables
See Tables 2, 3,4, 5,6,7,8,9, 10,11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27,28, 29, 30, 31, 32, 33, 34, 35.

A.3 Twisted Euler characters

In this section we reproduce certain characters—the twisted Euler characters—which are
attached to each group GX, via its action on the root system X. (Their construction is
described in detail in Sect. 2.4 of [16].)



Duncan et al. Res Math Sci(2015)2:26 Page 15 of 47

Table 1 The umbral groups

X A2 Al AS AS AiD4 At A2D?
¢ 2 3 4 5 6 7 8

GX Mos 2.My5 2AGL3(2) GLy(5)/2 GL>(3) SL(3) Dihy
G* Mos Mis AGL3(2) PGL,(5) PGL,(3) PSL>(3) 2?

X A A3Ds AnDsEg A, A1sDg A7 Axs

¢ 9 10 12 13 16 18 25
G* Dihs 4 2 4 2 2 2

G* Sym; 2 1 2 1 1 1

X 08 D¢ D3 DioE? 0z, DiEs Da4
£ 6+3 1045 14+7 1849 22+11 30+15 46+23
G~ 3.Symg Sym, Sym; 2 2 1 1

G~ Syme Sym, Sym; 2 2 1 1

X £ £

¢ 12+4 30+6,10,15

el GL3) Sym;

GX PGLy(3) Sym;

To interpret the tables, write X4 for the (possibly empty) union of type A components of
X, and interpret Xp and X similarly, so that if m = mX Then X = A‘qu_l for some d, and
X = X4 UXpUXE, for example. Then g — )'(é( 4 denotes the character of the permutation
representation attached to the action of GX on the simple components of X4. The charac-
ters g — )'(gXD and g — )'(gXE are defined similarly. The characters XgA, XgXD, XgXE and )V(gXD
incorporate outer automorphisms of simple root systems induced by the action G* on X.
We refer to Sect. 2.4 of [16] for full details of the construction. For the purposes of this
work, it suffices to have the explicit descriptions in the tables in this section. The twisted
Euler characters presented here will be used to specify the umbral shadow functions in
Sect. B.2.

The twisted Euler character tables also attach integers #, and /g, to each g € GX. By
definition, rg is the order of the image of g € GX in G (cf. Sect. A.1). The integer hg may
be defined by setting /1, := N, /n; where N, is the product of the shortest and longest
cycle lengths appearing in the cycle shape attached to g by the action of GX on a (suitable)
set of simple roots for X.

Appendix B: The umbral McKay-Thompson series

In this section, we describe the umbral McKay-Thompson series in complete detail. In
particular, we present explicit formulas for all the McKay—Thompson series attached to
elements of the umbral groups by umbral moonshine in “Explicit prescriptions” section.
Most of these expressions appeared first in [15,16], but some appear for the first time in this
work.

To facilitate explicit formulations, we recall certain standard functions in Sect. B.1.
We then, using the twisted Euler characters of Sect. A.3, explicitly describe the shadow
functions of umbral moonshine in Sect. B.2. The umbral McKay—Thompson series defined
in Sect. B.3 may also be described in terms of Rademacher sums, according to the results
of [17]. We present this description in Sect. B.4.



Page 16 of 47

26

Duncan et al. Res Math Sci(2015)2

e 0 0 0 0 0 0 0 0 0 0 ! 0 0 0 0 0 € - € 0 0 Sb— lz—  sef0l 4+ %X
0 0 0 0 L L 0 0 0 = 1= 1 0 0 0 0 = 1 0 4 r— 0 6—  9€ 87— 96/§ +
L ! 0 O e 0 0 0 ! 0 lI— 0 0 0 0 L = 0 0 8— 0 6 24 95— b¥SS + X
0 0 0 0 0 0 0 0 0 L 0 = 1= 0 0 0 L € &= &= | 0 Sl— 6 6 €Les + X
L L 1= L= 0 0 L L 0 0 0 0 0 I— 1= 0 ¢— 0 0 0 0 g8— 0l 0 9 0zse +
0 0 L ! 0 0 L= - 0 0 ! L 0 L L = o0 &= 0 0 0 9= 0 oL 8y ziee + 1ex
0 0 1= L= 0 0 0 0 0 0 0 l - [4 [ 0 S €&~ 9 0 6l— 1T ¥xad + X
0 0 L L= L L 0 lI— 0 lI— 0 L L0 = 1= 0 0 8 8 = ¥ 8 (244 + o
0 0 0 0 L L 0 0 = 0 0 ! L= 0 0 1= o0 l = s— ¢ A gl Ll lz— 1L + 8
0 0 ! L 0 0 0 0 0 lI— 0 0 ! ¢— ¢— 0 L 0 &= 1 [~ 8 S Sl— 6P SOzl + X
0 0 ‘“9— ‘49— 0 0 0 0 = 0 L 0 l— f{z 9z | 0 0 - € € &= 0 S— 1= seol o 9X
0 0 49— 4= 0 0 0 0 I— 0 L 0 I— ‘9z ‘9z 1 0 0 - ¢ € €= 0 S— lg—  seol ° sk
0 0 1= 1= 0 0 1= - 0 0 ! 0 ! - 1= ¢ 0 0 € - € 9 0 s¢ Va4 €0l + X
L _ ‘q 9 0 0 ‘q 9 l 0 0 0 0 ‘9 49 1—- o0 0 - T 9 € 0 ol— 8l— 066 o ElX
L L ‘q ‘q 0 0 ‘q ‘q L 0 0 0 0 49 49 1- 0 0 - ¢ 9 3 0 ol— 8l— 066 o X
f€q  ¥q 0 0 0 0 0 0 L lI— 0 0 0 0 0 1 L 0 — - ¢ (= S oL vl— 0L o X
2 g 0 0 0 0 0 0 L lI— 0 0 0 0 0o 1 L 0 - - T [~ S oL vl— 0/ o 0lX
0 0 0 0 L L 0 0 0 0 = = 1= 0 0 0 4 - € € € 0 9 € s¢ €8y + 6X
0 0 L ! 0 0 L= - _ 0 0 = 1= L Lol - € ! ! = 1 oL Li— €l €5T + 8X
e 0 O e 0 0 0 ! - ¢ 0 0 0 0 L 14 0 4 4 0 6 4 8¢ 474 + X
L ! 0 0o °S9 ‘4 0 0 0 lI— 0 ! L= 0 0 0 L ! 3 lI— 1= 0 €= 6~ L LeC ° X
L _ 0 0 9 <l 0 0 0 I— 0 L 1= 0 0 0 L L € lI— 1= 0 &= 6= L L€z ° X
[ ‘q 9 0 0 ‘“9— ‘9- L 0 L 0 lI— ‘9 49 11— 0 0 L L &= ¢ 0 S &= S ° X
L= L= ‘q ‘q 0 0 49— 49— l 0 l 0 - X 9 1= 0 0 l l €~ ¢ 0 S €— Sy o X
0 0 1= 1= 0 0 0 0 e E | = L 4 ¢ 1= € - € = 1= S =/ €z + X
L L L L L L L L L L L L ! L [ L L L ! ! L L L L L + X
YL vl glc  viz  49sl vSsL gyl vkl g2zl wel o VIl VYol v8 9/ v/ 89 ¥9  ¥S Db @y wr  ge Ve a v VL (¢l
vee @gec glz viz  vSsL gSL gl Wyl gcl vZl YL Yol v8 9. Y. 99 Y9 ¥S Dy gy wr  de Ve a v 2 (0]
ver 4t ac e Vsl €Sl \74 ¥Z gcl vl VIl Yol v8 YL YL 99 V9 Vs Dy gy v# dgE Ve a v 2 [,6]
ver dec Ylz  8lc Ve veE  wpl gyl gcl VIl VYLL ¢ v8 Y/ 9. 99 VY9 VL Ddr gF vy o ge Ve a v 2 (6]
gec vee \7 9 vS VS Wyl @ D¢ vy VIl VOL V8 v/ 8/ 9 vYZ VS OF 4 W Vi vl a v VL (6]
dec  ver 4l Vi 951 vt az Y. 99 Y9 VIl VS 89y 9. Y. 9 VY€ VS 9¢ VT vC¢ o g ve VL vl 2 (6]
e ver  dlc viz @Sl vwsL o gkl vkl gZl vZl VIl voL v¥8 4/ ¥/ 89 VY9 ¥S D gy ¥y df Ve a v vl S 6]

2V = X'YIN < 4D Jo 3|qey Japdeieyd Z 3jqel



Duncan et al. Res Math Sci(2015)2:26 Page 17 of 47

<< ®mx - - - - - - -
N = N N < - = - =
NﬁNNNﬁOO‘\DQﬁ‘OOOOO‘ﬁOﬁﬁ ﬁooooﬁ‘gg
Q< @0 ‘:: — — — — — _‘55
- |—ocol 08~ loocooco |l —ol | —- l ocoocooco | | |
L @ T << = = — — — —] —
N = NN < -| = | =
N—NNN—OO@‘@—\OOOOO\‘—O-—‘— — 0o oo — ‘@
IS N :‘: — — — — — _ﬁ‘ﬁ
- ——|l—mro0o 9l looococoo | —ol | « l ocoocooco | | 1
59 59
o§o<t§ TR T - ‘mm
NN ANl— @Il To—rooo—-lol —~—ococooldcooo oo
S33S<38| 777 - = ol
N AN|l— |l Il lo—rocoo—-lol ~—~—coocococlcooo oo
QuauaQ i i i N ‘NN N‘N
OF 0D D|—— |l oo lol ~lo—ocoocoolccoooo oclso oo
VLLAQV Yy i o T N‘N ‘NN
XF VDD |—— |l oo lol ~—lo—ocococlScooools co oo
Q0 QI x T i T ‘NN ‘NN
0 < 0 00 O |— —ocoo lol |l ~—o—ocoocoolccoooolcscsco oo
<L X L @ N - o7 N‘N N‘N
OFDVRXDX|— | —ocolol |l —o—ocoocoocSlcoooo sico oo
QOCELAOQI—FO0 00O ————0 —00 —— —0O —— 00— O O
O M N0 O [ o I
U UVUVU|l—O O OO0 —+—+——0 00 ——+—0c——0O0— O O
o A [ |
< < T
Vg IAN|m - - - 2O~ - -0 -0~ —-000000000 00
- - = I | | |
< < <X
SEO LS m—— -~ 90 - 000~ -0~ —-—0O0NN~——00O0 0O
- - - I | | [
CTLCLCL L —— — — O — 00O ——O——0O0NN——OO0O OO
NN e 0 I | | I
VU LVLU|—FMN — 0O NN —— M AN —O0O0ODDODDODODODODODDODDO OO OO OO
ST NT TS | | I
VOO A|— MO O —N—M—AN—0O0O0ODDODDODDODOOOOO O O
¥ N ~ | | 1
VMO T Q|- —— — — MO —— —O0OMOMc—NNONN-NO-NO-NO N
O MmN I I [ I N B
MO CTUQ|——— — —MO —— —O0OMOM—ANNONNNNNO N N
Mmoo = ;oM I [ [
LCTILLLL|— NN NNOO —— —mMmMOMOST —— MMt — — NN NN
W M AN O O [ [ I
 w
<
CILCALLL]— NN N NOO —— —MNOMOST —  — N — — NN N
s o = 5 o Lo | L1 o
>
RIUTVULUUl— MM MM O OMUOUN— —NMOOONNT OSSO 00O O
gN*NNN | [ I | [ |
~
DT QN A[—MMOOMON——ANM®MNDMOO NN O S 0 O O
U | = A | o \ I o
>
E<(<(<(<(<:ﬁﬁﬁvvm\ommm\oﬁovvooooooooooo
o |T YT I [ | |
(/]
) — - VOV T NNV OTOVOONNTTOOOOD
© e T VL PPN ORI N == NI T ——X O O
[ [ I N |
g
%
© — - - 0OV TINNNOVUOONOTOVOONNTTOOO OO
:G<(<(<(<(<( — e - = LMW OOOTNTN—- ——N S — — N O O
v}
wy
el +++ 0o o ++++++++++ 00+ 1 000 o0+ o0 o
m
()]
2 {N’_‘NT‘U'T; O — &N M ¥ 1 O N0 OO — N M Y W O
ﬂ'Gmmmm—Nr\’)vLthV\oOO\——-———-———-——NNNNNNN
= 222 AR XX XEXXXXEXXXXXEXXXXXEXXXXXXXXXXXXX



Page 18 of 47

Duncan et al. Res Math Sci(2015)2:26

q
q

O — O O O O O —

5 57

fq

o O O O O

o O O O O

o O O O O

€p
€p

o O O O O

— O O O O O

|—
|—

1=

|—

— Mm O O O O O

o O o O

— M M O N 0 N~

174
174

lc
Lc
14!

m ™M O ™~ 00 N~

o

o+t ++ A+ +++++ o0

o

+

9LX
SLY
1494
€Lx
454
LY
oLx

44"
gL
arl

m @ T <
N S N —

arl
VL
44"

or
or
¢
or

V8
V8
144
V8

144
143
V9

Vi
143
143

ar
ar
g¢
ar

1474
1474
|44
1474

gc

144
144
Vi
144

14!
14!
14!
14!

S4

—_ & A
2 92 9292

£V = X“(Q)€19V'T = (O Jo 3|qer seeIRY) 3Rl



Page 19 of 47

Duncan et al. Res Math Sci(2015)2:26

lp—
lp—
lp

o O —

o O — — o O —

<t Y N N O — — S S 1o O

e}

e}

++ 4+ + 4+ ++

1494
€Ix
454
LY
oLx

acl

vl
v
V9

|44}

144
144
gy

144
av
144

|44
YOl
VS
YOl

Vi
VS
VS
VS

V9
144
143
V9

143
vl
143
143

¢
¢
Vi
¢

gc
gc
Vi
gc

144
144
Vi
144

14}
14}
14}
14}

S4

— N e
2959

5V = X'2/(5)¥1D < D jo 3|qes sapeiey §3|qeL



Duncan et al. Res Math Sci(2015)2:26 Page 20 of 47

Table 6 Character table of GX ~ GL,(3), X € {ADa, EZ)

lg] FS 1A 2A 2B 4A 3A 6A 8A 8B
9°] 1A 1A 1A 2A 3A 3A 4A 4A
3°] 1A 2A 2B 4A 1A 2A 8A 8B
X + 1 1 1 1 1 1 1 1
X2 + 1 1 -1 1 1 1 —1 —1
X3 + 2 2 0 2 -1 —1 0 0
X4 + 3 3 -1 -1 1 1
x5 + 3 3 1 -1 —1 —1
X6 ° 2 -2 0 0 —1 1 a a
X7 o 2 -2 0 0 —1 1 a a
X8 + 4 —4 0 0 1 —1 0 0

B.1 Special functions

2wit 2mwiz

Throughout this section we assume g := e ,and u := e“™'%, where 1,z € C with
Im 7 > 0. The Dedekind eta function is 5(t) := ¢g'/** [1,20(1 — ™), where . Write Apr(t)
for the function

. i nMrz)\ MM —1) kg Mk
Ap(T) ._quq (log () )— 7 +M§dzk:d(q Mg ),

which is a modular form of weight two for I'g(XN) if M|N.
Define the Jacobi theta function 6;(z, z) by setting

01(t,2) = iql/su_l/2 Z(—l)”u”q”("_l)/z. (B.1)

nez

According to the Jacobi triple product identity we have

01(t,2) = —ig"Pul? [T = w'q" A — ug")(1 - q"). (B.2)

n>0

The other Jacobi theta functions are

05(1, 2) := q1/8u1/2 H(l + uilqnil)(l + qu)(l _ qn),

n>0
bs(z,2) = [ [ +u'q"))A + ug" HA - "), (B.3)
n>0
Oa(r,2) = [ (1 = u'g" V)1 — ug" )1 = "),
n>0

Define W11 and W,_1/3 by setting

01(, 22)n(7)3

)\ ,Z) = —
wle 2 = iy (B.4)
)P
\111,,1/2(7:, Z) = —191(_[ )

These are meromorphic Jacobi forms of weight one, with indexes 1 and —1/2, respectively.
Here, the term meromorphic refers to the presence of simple poles in the functions
z > W1 .(1, 2), for fixed t € H, at lattice points z € Zt + Z (Cf. Sect. 8 of [22]).

From Sect. 5 of [29] we recall the index m theta functions, for m € Z, defined by setting

em,r("-': Z) — Z u2mk+rq(2mk+r)2/4m, (B.5)
keZ
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Table 7 Character table of GX ~ 3.Symg, X

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
Xn
X12
X3
X14
Xi5
X16
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Table 8 Character table of GX ~ SL,(3), X = A?

lq] FS 1A 2A 4A 3A 6A 3B 6B
9°] 1A 1A 2A 3B 3A 3A 3B
3°] 1A 2A 4A 1A 2A 1A 2A
X + 1 1 1 1 1 1 1
X2 ° 1 1 1 bs b3 b3 b3
X3 ° 1 1 1 b3 bs b3 b3
Xa + 3 3 -1 0 0 0 0
X5 - 2 -2 0 -1 1 -1 1
X6 ° 2 -2 0 ) bs —b3 b3
X7 ° 2 -2 0 —b3 b3 —b3 b3
Table 9 Character table of GX ~ Dih,, X = A2D?

lq] FS 1A 2A 2B 2C 4A
[9°] 1A 1A 1A 1A 2A
xi + 1 1 1 1 1
X2 + 1 1 -1 -1 1
X3 + 1 1 -1 1 -1
Xa + 1 1 1 -1 -1
Xs + 2 -2 0 0 0
Table 10 Character table of G¥ = Dihg, X = A3

lq] FS 1A 2A 2B 2C 3A 6A
9’1 1A 1A 1A 1A 3A 34
3°] 1A 2A 28 2C 1A 2A
X + 1 1 1 1 1 1
X2 + 1 1 -1 -1 1 1
X3 + 2 2 0 0 -1 -1
Xa + 1 —1 -1 1 1 -1
Xs + 1 —1 1 -1 1 -1
X6 + 2 -2 0 0 -1 1
Table 11 Character table of G¥ = 4, for X € {A2Dg, A2}

lg] 1A 2A aA 4B
lg°] 1A 1A 2A 2A
xi 1 1 1 1
x2 1 1 -1 -1
X3 1 =1 ap ar
X4 1 =1 ar a
Table 12 Character table of G ~ PGL;(3) ~ Sym,, X = D}

gl FS 1A 2A 3A 28 4A
lg°] 1A 1A 3A 1A 2A
lg°] 1A 2A 1A 28 4A
X + 1 1 1 1 1
X + 1 1 1 -1 -1
e + 2 2 -1 0 0
Xa + 3 -1 0 1 -1
Xxs + 3 —1 0 -1 1




Duncan et al. Res Math Sci(2015)2:26 Page 23 of 47

Table 13 Character table of GX = 2, for X € {A11D7Es, A15Do, A17E7, A4, D1oE2, D?,}

[g] FS 1A 2A
[9°] 1A 14
X1 + 1 1
X2 + 1 -1

Table 14 Character table of G¥ ~ Sym;, X € {D3, E3}

lg] FS 1A 24 3A
lg°] 1A 1A 34
lg°] 1A 24 1A
X + 1 1 1
X2 + 1 —1 1
X3 + 2 0 —1

Table 15 Twisted Euler charactersat{ = 2, X = A2*

lg] 1A 2A 2B 3A 38 4A 48 4C 5A 6A 68
nglhg 111 20 22 301 33 412 an 414 501 6|1 616
% 24 8 0 6 0 0 4 0 4 2 0

lg) JAB 8A  10A  11A 12A  12B 14AB 15AB  21AB  23AB

nglhg 711 811 1012 111 1212 12112 14)1 15]1 2113 2301

% 3 2 0 2 0 0 1 1 0 1

where r € 7. Evidently, 6,,, only depends on r mod 2m. We set S, ,(r) :=
# 0z0m,r (T, 2) |Z:0, so that

Smp() = D (2mk + r)g 2k’ /dm, (B.6)
keZ

For a m, a positive integer define

uqk—i—l_u—{—l
k1 u—-1

2
wmo(t,2) = > ug"™ +0(q), (B.7)

keZ uq

and observe that we recover W) ; upon specializing (B.7) to m = 1. Observe also that

k

uq 1 u-1
T,z4+1/2 § Mka mk?

/’Lm,O( / ) - ~ q I/lqk 1 U 1

+0(q). (B.8)

Define the even and odd parts of 1,0 by setting

1

Hio(5:2) = - (mo(5,2) + (=1 o5, 2+ 1/2)) (B.9)

for k mod 2.
Form,r e Z + % with m > 0 define half-integral index theta functions
Om,r(T, 2) := Z e(mk + r/2)u2’"k+rq(2"’k+’)2/4m, (B.10)
keZ

and define also Sy, ,(7) := ﬁazem,,(r, 2)|;=0, so that

Sir(t) = Z e(mk +r/2)(2mk + r)q(2"4k+r)2/4m, (B.11)

kel

As in the integral index case, 0y, depends only on r mod 2m. We recover —0; upon
specializing 0, tom =r = 1/2.
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Table 17 Twisted Euler charactersat{ =4,X = Ag

[g] 1A 2A
nglhg 111 12

28
22

4A
2|4

4
4

B
|4

2C
21

3A
3

6A
32

6BC
6/2

8A
4(8

4C

4

[

7AB 1448
7R

% 8 8
X 8 -8

0
0

0
0

0
0

4
0

2
2

0
0

0
0

2
0

1 1
1 —1

Table 18 Twisted Euler charactersat{ =5,X = Ag

1A
ik

[g]
nglhg

2A
114

2B
2|2

2C
201

3A
33

6A
312

5A
501

10A
54

4AB
2|8

4CD
41

12AB
6|24

=X
XgA 6

X
XgA 6

6
—6

2
-2

2
2

0
0

0
0

1
—1

0
0

2
0

0
0

Table 19 Twisted Euler charactersat{ =6, X = A‘S‘D4

112

28
21

4A
212

3A
301

6A
3p

8AB
42

N — — O O

o - = O O

Table 20 Twisted Euler charactersat{ =6+ 3,X = Dg

1A 3A

13

[g]
nglhg

2A
201

6A
23

3B
3|1

6C
33

4A
42

12A
416

5A
5)1

2C
22

6C
66

2

2
2
-2

1
1
2

Table 21 Twisted Euler charactersat{ = 7, X = A}

9]
nglhg

1A
1

4A
2I8

3AB

3|1

6AB
34

X,
XgA

4
4

Table 22 Twisted Euler characters at ¢ = 8, X = A2D?

1A
11

2A
12

4A
2|14

2

2
2
2

2
-2
2
-2

o O O O

2A

2B

2C

3A

6A

211
1
1

22

—1

313

312
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Table 24 Twisted Euler charactersat{ = 10, X = A§D5

lg] 1A 2A 448
nglhg m 112 22
% 2 2 0
X 2 -2 0
%7 1 1 1
x° 1 1 -1

Table 25 Twisted Euler charactersat{ =10+5,X = Dg

lq) 1A 2A 3A 28 4A
nglhg 11 212 3 21 414
%P 4 0 1 2 0
X" 4 0 1 -2 0

[g] 1A 2A
nglhg 111 12

1
1
1
Xo 1
1
1

Table 27 Twisted Euler charactersat{ =12+ 4,X = Eg

lg] 1A 2A 28 47 3A 6A 8AB
nglhg m 112 2 214 3N 32 418
o 4 4 2 0 1 1 0
X 4 —4 0 0 1 -1 0

Table 28 Twisted Euler charactersat{ = 13, X = A%z

lg) 1A 2A 4AB
nglhg M 114 218
- X

x5 2 2 0
x 2 -2 0

Table 29 Twisted Euler charactersat{ =14+ 7,X = Dg

lg] 1A 2A 3A
nglhg 01 201 33
%P 3 1 0
x° 3 1 0

Table 30 Twisted Euler charactersat{ = 16, X = A15D9
[g] 1A 2A
nglhg 1 12

1
1
~Xp 1
1
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Table 31 Twisted Euler charactersat{ = 18, X = A7E7

[g] 1A 2A
nglhg 11 112
x 1 1
X 1 -1
o 1 1

Table 33 Twisted Euler charactersat{ =22+ 11, X = sz

[g] 1A 2A
nglhg 101 22
x° 2 0
x° 2 0

Table 34 Twisted Euler charactersat{ = 25, X = Ay

lg] 1A 2A
nglhg 11 14
% 1 1
X 1 -1

Table 35 Twisted Euler charactersat{ =30+6,10,15,X = Eg

[g] 1A 2A 3A
nglhg 101 2 33
X 3 1 0

Form € Z + 1/2, m > 0, define

, 2 1 —iu'/?
umo(n,2) 1= i 3 (FDNTRGIEHE L =~ 1 0() (B.12)
keZ

Given o € Q write [«] for the operator on g-series (in rational, possibility negative
powers of g) that eliminates exponents not contained in Z +«, so that if f = > peq c(B )q?
then

[a]f = Z c(n 4+ a)g"t (B.13)

nez
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B.2 Shadows
Let X be a Niemeier root system and m = m* be the Coxeter number of X. For g € G¥,
we define the associated shadow function Sg = (Sg,) by setting

X . X X, X,
Sg = SgA —i—SgD —i—SgE (B.14)

where the Sj,(", &c., are defined in the following way, in terms of the twisted Euler charac-
ters XgX 4, &c. given in Sect. A.3, and the unary theta series S, , (cf. (B.6)).

Note that if m = m*X then Sg, =sX

ori2m = —Sg_, for all g € GX, so we need specify

the ng‘, &c., only for 0 < r < m.
If X4 = @ then Sz,(A := 0. Otherwise, we define Sg{,‘ for 0 < r < m by setting
Xg(ASm,, ifr=0 mod 2,

SXA —

T = (B.15)

)'(é(ASm,, ifr=1 mod.

If Xp = ( then Sé(D :=0.If Xp # ¢ then m is even and m > 6. If m = 6 then set

0 ifr=0 mod 2,
sXp .} - Xp Xp e B.16
gr Xg Se,r + Xg Se6—r ifr=1,5 mod 6, (B.16)
%2 Se.r ifr=3 mod 6.

If m > 6 and m = 2 mod 4 then set

Xp 0 ifr=0 mod 2,
Sa =1 x - o (B.17)
Xg " Smr+ Xg " Smm—r ifr=1 mod 2.
If m > 6and m =0 mod 4 then set
Xp .
Smm—r ifr=0 mod 2,
S5 = Xg —omm=r (B.18)

%PSmy  ifr=1 mod 2.

If Xp = @ then S?E := 0. Otherwise, m is 12 or 18 or 30. In case m = 12 define ng for
0 < r < 12 by setting

3 (S12,1 + S127)  ifr € (1,7},
_Xp ,
S125+ S ifr e {511},
ng _ X%( (S12,5 + S12,11) {5 11} (B.19)
Xe " (S124 +S128)  ifr € {48},
[0 else.
In case m = 18 define ng for 0 < r < 18 by setting
[ 7 (S18, + Sig18-1) if r € {1,5,7,11,13,17),
_Xp ,
S ifr € {3,15},
Sof = Xi 189 (3,15} (B.20)
Xg " (S183 + S189 + S1815) if r =9,
[0 else.
In case m = 30 define ng for 0 < r < 30 by setting
Ko (S30,1 + S3011 + S30,19 + S3020) if 7 € {1,11,19,29),
ng = >‘<§E (S30,7 + S30,13 + S30,17 + S3023) if r € {7,13,17,23}, (B.21)
| 0 else.
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B.3 Explicit prescriptions

Here, we give explicit expressions for all the umbral McKay—Thompson series Hg . Most
of these appeared first in [15,16]. The expressions in Sects. B.3.3, B.3.4, B.3.7 and B.3.14
are taken from [26]. The expressions in Sects. B.3.11, B.3.15, B.3.19 and B.3.23 are taken
from [14]. The expressions for Hg with X = Eg’ appeared first in [25]. The expression for
Hé%ﬁg) in Sect. B.3.6, and the expressions for H, &zj  and Héfgf ) in Sect. B.3.13, appears
here for the first time.

The labels for conjugacy classes in GX are as in Sect. A.2.

B3.1 £=2,X =A%
We have G® = GX ~ My and m* = 2. So for g € May, the associated umbral McKay—

Thompson series Hg(z) = (Hg,)) is a 4-vector-valued function, with components indexed
by r € Z/47Z, satisfying Hg,) = —Hg(,z_),, and in particular, ng) =0forr =0 mod 2. So

it suffices to specify the H ;21) explicitly.
Define Hg(z) = (Hg,)) for g = e by requiring that

—2011(0, 2097 (1, 2) = —2Apap(.2) + D HZ(0)0,(1,2), (B.22)
r mod 4
where
o= (T Tt i) ®2
More generally, for g € G define
HP (1) .= ﬁH(Z)(T) _ (1 (B.24)
G177 g el € S21(z)’ )

where )'(éz) and Féz) are as specified in Table 36. Note that )'(éz) = )'(g 4, the latter appearing

in Table 15. Also, Sy 1(7) = n(r)3.
The functions f23 , and fa3 5 in Table 36 are cusp forms of weight two for I'9(23), defined
by

_ n(r)’n(237)?
T T)
+ 4n(t)n(27)n(237)n(467) + 4n(27)*n(467)>% (B.25)

Fozp(z) := n(r)*n(237)%

+ 3n(7)*n(237)*

Note that the definition of Fg(2) appearing here for g € 23AU23B corrects errorsin [11,12].

B3.2 £ =3,X=A)?

We have G® = GX ~ 2.M;, and m¥ = 3. So for g € 2.Mj», the associated umbral

McKay—-Thompson series Hég) = (Hg})) is a 6-vector-valued function, with components

indexed by r € Z/6Z, satisfying ng) = - g—)

mod 3. So it suffices to specify the H g(i) and H, ;32) explicitly.

,» and in particular, Hg(i) =0forr =0

Define Hg(s) = (Hé,g,)) for g = e by requiring that

—2011(5, 29 (1, 2) = —12p30(r,2) + D, HE(0)63,(1, 2) (B.26)

r mod 6
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Table 36 Character values and weight two forms for{ = 2, X = A%“

[g] xéz) Féz)(r)

1A 24 0

2A 8 16A5(T)

28 0 2n(r)8n2r)~*

3A 6 6A3(T)

3B 0 2n(7)°n(31)~?

4A 0 2n(27)8n4r)~*

4B 4 A=A (1) + Ag(D)

4C 0 2n(t)y*nQ2t)’n(4r)=2

5A 4 2As(T)

6A 2 2(=Aa(t) = A3(1) 4 Ag(T))

68 0 2n(2)’nQ2t)’n(31)n67) 2

7AB 3 A7(7)

8A 2 —A4(1) + Ag(7)

10A 0 2n()nQ2t)n(1)n (101)—

1A 2 2(Aq1(t) = 11n(T) )2)/5

124 0 2n(t)3nl4t)’n67)3 (2:) nB7)~'n(127)~2

128 0 2n(r)ynn)n6T)nRT) " N(127) 7"

14AB 1 (=A2(7) = A7(T) + AyalT) — 14n(T)nQT)n(7o)n(141))/
15AB 1 (=A3(r) = As(r) + Ays(t) — 150(0)nBr)n(51)n(151)) /4
2148 0 (@071 n30) " 'n10)~" — n(r)°nB7)72)/3
23AB 1 (A23(7) — 23f3,4(T) — 6923 (1)) /11

where

O, 2) =2 03(1,2)* 64(t,2)* | 6a(t,2)* 0a(1,2)* | 6a(1,2)* 63(7, 2)°
brinE= (93(1, 0)2 04(7,0)2  64(z,0)2 62(7, 02 02(z,0)2 O3(z, 0)2)

More generally, for g € G® define

7
®) (1) . ®) 3, p@Y)_1
Hgl(r)._ SHG 0+ (F +F® )531(1)

3) X ( ' o e _ gy 1
H =2 H = (F —F ) :
22 (r):= 12 e 1( )+ 5 e 29 S3(7)

where Xég)

. (B.27)

(B.28)

(B.29)

and Fég) are as specified in Table 37, and z is the non-trivial central element of

G®). Theaction of g > zg on conjugacy classes can be read off Table 37, for the horizontal

lines indicate the sets [g] U [zg].

Note the eta product identities, Sg}l(‘f) = n(21) ®/n(41)?, and S35(t) = 2n(7)*n(41)?/

n(27). Note also that )'(é(,s) = '?A and X‘é = Xg , the latter appearing in Table 16.

The function fi4 is the unique new cusp form of weight 2 for I'y(44), normalized so that
faa(t) = g+ 0O(g®) as 3(r) — oo. The coefficients cq(d) and cé(d) forg € 10AU22AU22B

are given by

5 2

c104(2) = =5, c104(4) = —3 c104(5) = —3 c104(10) = 1, ¢104(20) = ——, (B.30)

2

2) = ——, 4) = —, 1) = ——,

c2248(2) z c2248(4) z c2248(11) T

1 1

22) = —, 44) = ——, B.31
c2248(22) z c2248(44) T (B.31)
C/22AB(1) =1, C/ZZAB(Z) =4, 6/22143(4-) =8 (B.32)
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Table 37 Character values and weight two forms for{ = 3, X = A;Z

gl )’(33) xf) Féf’(r)

1A 12 12 0

2A 12 -12 0

4A 0 0 —2n(r)*nQ27)* /n(4t)?

2B 4 4 —16A,(1)

2C 4 -4 16A5(1) — 2 A4(r)

3A 3 3 —6A3(T)

6A 3 -3 —9A5(t) — 2A5(1) + 3A4( )+ 3A6(1) — Aga(t)
3B 0 0 8A3(r)—2A9(r)+ 7)/n%(37)

6B 0 0 —2n(t)°>nB1)/nt)n )

4B 0 0 —2n(20)8/n(4r)*

4C 4 0 —8A4(1)/3

5A 2 2 —2As(T)

10A 2 -2 3120 €104 Ag(T) + Fn(27)*n(107)?

12A 0 0 —2n(T)n(21)°n(37)/n(4t)’n(67)

6C 1 1 2(A2(T) + As(T) — Ag(T)

6D 1 -1 —5As(t )—2A3(T)+ As4(t) + 3A6(T) — A12(7)
8AB 0 0 —2nQ7)*n47)? /n(81)

8CD 2 0 —2A5(1) + 3A4(1) — Ag(r)

20AB 0 0 —2n(2t) n(57) /n(r 41)’n(107)

11AB 1 1 —2A1(1) - n(r) < 17)?

22AB 1 —1 > djas G DA e G @n(deyn(11d7)? + Zfau(r)

Table 38 Character values and meromorphic Jacobi forms for{ =4, X = Ag

9] x5 x5 vg'(0,2)

1A 8 8 2i6; (7, 22)°601 (1, 2)"*q()?

2A -8 8 2i6; (v, 22)%64 (1, 2)"*n()?

2B 0 0 —2i64 (1, 22)%6; (v, 2) 265 (t, Z)_zn(f)3

4A 0 0 —2i61(7, 2205 (7, 22)20,(27, 22) 2 ( )7°n(r)™!

4B 0 0 —2i61(27, 2200327, 22)204(27, 22)(2T) n(x) " 2n(47) =2
2C 0 4 2i0)(z, 22)0,(t, 22)2604 (1, 2) 26, (z, z) n(r)

3A 2 2 2i6, (31, 62)0; (t, 2) 761 (37, 32) " ' n(x)?

6A -2 2 —2i61(37,62)0(1, 2)~ 16,31, 32) " " n(1)?

6BC 0 0 cf. (B.34)

8A 0 0 —2i6;(t, 22)6> (27, 42)0> (47, 42)~ " n(T)n(4t)nQ2T) ™!

4C 0 2 2i6: (v, 22)6, (27, 42)0: (2, 22)~2n(27) n(T) > p(4T) 2
7AB 1 1 cf. (B.34)

14AB —1 1 cf. (B.34)

B33 t=4X=A8

We have mX = 4, so the umbral McKay-Thompson series H, @ = (H, ) associated to

g € GW is an 8-vector-valued function, with components lndexed byr € Z/8Z.
Define H, @ — (H (?) forg € GW, g ¢ 4C, by requiring that

U2 = —xPuo(m ) — P ubom D+ D Hy (1Dar(r,2) (B.33)
r mod 8
where X;L) = ng 4 and )'(é4> = )'(;( 4 (cf. Table 17), and the 1//g(4) are meromorphic Jacobi

forms of weight 1 and index 4 given explicitly in Table 38.
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Y= (br(r, 2 + 4 Dotz + L) -0tz — Dotz — 1))
—i61(37, 62)
3
X 067,396,321

3 3
2 2 2 2
Y= [[o1@ 22+ S)on(rz = 5) + [ [ 01z, 22 — H)on(r, 2+ )
j=1 j=1
—i  n(77)
 —
91(71, 7z) n(r)*

3
2 .2
14AB H91 r,22+ 92(1,2— )+H91(T,2Z—17)92(I,Z+I7)

j=1
j 7
x ; n(7e) (B.34)
62(77, 72) n(r)*
@ _ _ 4
For use later on, note that v,/ = —2W;1¢,”, where

2

) 61(7, 22)
T,2)i= ————5 B.35
A2 =5 (B.35)

B.3.4 £=5X=A§
We have mX = 5, so the umbral McKay—Thompson series Hg () = (Hyg ) associated to
g € G® is a 10-vector-valued function, with components indexed by r € Z/10Z.

Define H(5) (H(5)) for g € G®, g ¢ 54 U 104, by requiring that

U202 = xPudom ) — 0ulm+ D HY (6512, (B36)
r  mod 10
where Xés) = ng 4 and )'(és) = )'(gX 4 (cf. Table 18), and the 1@5) are meromorphic Jacobi

forms of weight 1 and index 5 given explicitly in Table 39.

01(t,z + %)91(1’, 3z + %) —01(t,z — %)Gl(r, 3z — i) n(27)?

1// (‘L’, z) = —ify(1,22)

62(21, 22)2 n(z)
1/; (T 2) 1= —ify(, 22) O(r, z + %)91(7' 3z — %) +61(t,z — *)91(% 3z + 4) n(21)?
e w 01(27, 22)02(21, 22) n(z)
L 0y(1,22)
1/’g)AB(T’ 2) = m (91(% 24+ 501tz + 3)01(t, 2 + )01 (1,32 — 7)
(61)
— 01(t,z — 13)01(r, 2 — Poi(r, 2 — H)o(T, 32 + i)) Z(T)S (B.37)

Table 39 Character values and meromorphic Jacobi formsfor{ =5, X = Ag

R v, 2)

°g

9] Xg X

1A 6 6 2i0; (t, 22)6: (1, 32)0: (t, 2) 3 ()3

2A —6 6 —2i6; (1, 22)05(1, 32)01 (1, 2) 3 ()3

2B -2 2 —2i0; (1, 22)6: (t, 32)0: (v, 2)~ 10> (t, 2)~2n(1)?
2C 2 2 2i61(t, 22)62(x, 32)61 (r, 2)~*6,(t, 2~ ' n(x)?
3A 0 0 —2i61(z, 22)61 (1, 32)61 (37, 32) "' n(37)

6A 0 0 —2i61(z, 22)65(t, 32)6>(37, 32) "' n(37)

4AB 0 0 cf. (837)

4CD 0 2 cf. (8.37)

12AB 0 0 cf. (837)
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For g € 5A use the formulas of Sect. B.3.20 to define

5) 25 25) 25) 25
HE) (v) = HE (0 /5) — HEY o (2/5) + H{p )04, (1/5) — Hi oy, (T/5)
+H®) L (€/5). (B.38)

For g € 104 set H{(S)l”(t) —(-1 )rHé,Sq)r( )-

For use later on we note that 1/flA -2, 1<p1 , ) where
®) 01(7, 32)
T,2) i = ———. B.39
@1 (7, 2) 61(0.2) (B.39)
B.3.5 £=6,X =A%D,
We have m* = 6, so the umbral McKay—Thompson series H, © = (Hy (6 )) associated to

g € G© isa 12-vector-valued function with components indexed by r € Z/127Z. We have

Hg(6,) = Hg() ),, so it suffices to specify the H(é) forr € {1,2,3,4,5}.

To define Hé@ (Hy, 6)) for g = e, first define i(t) = (h,(t)) by requiring that

— 2011 (5, 297 (1,2) = —24peo(1,2) + D (16, (T, 2), (B.40)
r mod 12
where
091, 2) == 0?1, 207 (1, 2) — 0 (1, 20 (1, 2). (B.41)

[Cf. (B.23), (B.27), (B.35), (B.39).] Now define the Hlj)m by setting

HIS (@) 1= 5 (5I(0) + hs(0),

HS,(0) = ghn(e),

HE) (1) = }th(z), (B.42)
HS, () = (),

HI(0) 1= o U (0) + 5hs(2).

Define HZ(Z), , by requiring
HY) (1) = —(-1'HS) (0. (B.43)

For the remaining g, recall (B.13). The H ) for g ¢ 1A U 24 are defined as follows for

r =2 and r = 4, noting thatH 3) Hg(?jz = H;z)
Hz(%),r(t) =~ 24]H4§3C)r (z/2)
Hii),r(f) =[- 24]Héi%)r (z/2)
HE) (1) = - 5 ]HD (x/2) (B.44)
Hea (1) = [ = 5] Hep, (0/2)
Hya (1) = [ = 5315, (¢/2)
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For the H we define

Hy)(2), Hiy(0) = —[ — 5 ]HE  (2/3)

HE (@, HE () =0, (B.45)
SABB(T) -[- ] 12,4 1(z/3).

Noting that Hg) = Hg(;zl) and H ; H;gl), the H, (6) and H' 5 are defined for o(g) # 0

mod 3 by setting

1

Hyg, (0 1= [ = 5515 (HE, (0/3) + HiZ, (/2))
1

Hig (@) = [ = 5515 (0 /3) + Hig, (/2) (B46)
1

Hygly (7) = [ = 3515 (Hi3a,(2/3) + HiZp, (2/2)) .

It remains to specify the H,, (©) » wheng € 34U6A and r is 1 or 5. These cases are determined
using the formulas of Sect. B.3.17 to set

HE) (0, HE) (1) = HUS 37) = HUY, (31) + H{), (37),

B.47
S0 1) = HD0) — HEe) 4 1) o
B.3.6 £=6+3,X=D§

We have m* = 6, so the umbral McKay—Thompson series Hg (6+3) = (Hg, (6+3 )) associated
to g € G is a 12-vector-valued function with components indexed by r € Z/127Z. In
addition to the identity Hg, (6+3) — —Hg(,6_+,3), we have Hg(,6,+3) = 0forr =0 mod 2. Thus,
it suffices to specify the H,, 6+3) forr € {1, 3,5}.

Recall (B.13). Forr =1, deﬁne

HS P, 1S (@) =HS) @)+ HE (),
6 6 6 6
HED @), G (0) = H (1) + H5(2)

HiH Y (0) = H (1) + H 5 (0),

2
HEP @ = 220

(6+3) (6+3) (6) (6)
Hypy (0, Hypp 1 (0) i= Hgyp (7) + Hy g 5(7),

£6+3) (6+3) (B.48)
Hgy 7 (1) Hyggy (1) i= [_24] 5A31(T/3)
Hy P 0) = Hyl (1) = HiG (@),
Hypi?(2) o= Hp, (7) — Higly s (0),
(6+3) _ 176)
HG2 (@) = HE) (1) — HE 5 (1),
(6+3) n(27) n(37)
H = pMEU T
6C,1 ( ) 77(67:)
(6+3) .
Then, define H,,',™ by setting
HO () = 216 D(1) 42 n(r)? (B.49)
2B,1 - 4B,1 ‘

n(27)%
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Forr = 3 set

6+3)(.L,) — 2H(6)3(T)

1A3

H ) () = —H{G5(2)
HiG (@) 1= 2H1g), (x),

6?14_33)( )= — 233(1)
HG (@) = 2HG g 5(0)

13122( )= SABS(T)

HGS) () = =21 % 1H {25, (0),

(6+3) ,_ (2)
Higy3(1) = [— 24]H15AB 1 (7)

and

H(6+3)( )H(6+3)( )H(6+3( )H(6+3)( )H(6+3)( )H(6+3)( ) H 6+3)( )= 0.

3B,3 3C3 2B,3 2C3 4B,3 6B,3 6C,3

(B.50)

(B.51)

For r = 5 define H(6+3)(‘L') = Héﬁ*f’)(z) for [g] € {14, 34,24, 64, 3B, 3C, 44, 124,
5A, 15AB}, and set H, 6H)(t) = H;i+3)(r) for the remaining cases, [g] € {2B,2C, 4B,

6B, 6C).

B3.7 t=7X=A}

We have m* = 7, so the umbral McKay-Thompson series H, ) = (Hgy 7) ) associated to
g € G¥) = GX ~ SL,(3) is a 14-vector-valued function, with components indexed by

r € Z/14Z.
Define H, @) = (Hyg (7)) for g € G7) by requiring that
v = xS0 — 3 woma+ D> HP @12, (B5Y)
r mod 14
where xg) = gX 4 and j '( )= )'(gX 4 (cf. Table 21), and the wg) are meromorphic Jacobi
forms of weight 1 and 1ndex 7 given explicitly in Table 40.
Ot 4z + $)01(r,z — D +01(r, 42 — Dow(r, 2z + 3)
Uiz, 2) = —i 5.37,32) n(3t
e (B.53)
vz, 2) 1= 91(1, 4z + 3)01(1,z — ) — Oi(r, 42 — DN (T, 2+ §) 03
T
64 62(37, 32)
7 _ _ @)
For use later on we note that ¢, = —2W;1¢,"’, where
@) 61(z, 4z)
y2) = ———. B.54
¢, (1, 2) o1t 22) (B.54)

Table 40 Character values and meromorphic Jacobiformsfor{ =7,X = Ag

[g) X el v (1,2

X
1A 4 4 2i6 (1, 42)0, (1, Z
2A —4 4 —2i6; (1, 42)05(t, 2) 2n(r)?
4A 0 0 —2i6; (1, 42)0,(27, 22) "' n(21)n(7)
3A 1 1 cf. (B.53)
6A —1 1 cf. (B.53)
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B.3.8 £ =8 X =A3D}
We have mX = 8, so the umbral McKay—Thompson series Hf) = (Hg(,sr)) associated to
g € G® isa 16-vector-valued function with components indexed by € Z/16Z. We have
Hg(sr) = —H(és)r, so it suffices to specify the Hgi) forr € {1,2,3,4,5,6,7}.

To define Hég) = (Hg)) for g = e, first define /(t) = (h,(r)) by requiring that

—2¥1,1(1, 2) (<ﬂ§8)(r, )+ wz (r,Z)) —24ugo(t, z) + Z h(1)03,(1, 2),

r mod 16
(B.55)
where
o) (r,2) = ¢;3>( >¢§6’< 7,2) - 561" (v, 29} (x, 2), 556
o (r,2) = 0 (1,267 (1,2) — 0¥z, 2).
[Cf. (B.27), (B.35), (B.39), (B.41).] Now define the Hl(i . by setting
1
HE (0):= (@), (B.57)
forr € {1,3,4,5,7}, and
1
HE), (@), HY (1) = 13 (12(0) + he(2). (B.58)
Define HZ(i),r for 1 <r < 7 by requiring
HY) (0) = ~(-1'HY (). (B.59)
For the remaining g, recall (B.13). The Hy ®) for g € 2BU2C U 4A are defined as follows
for r € {1, 3,5, 7}, noting that Hg(fL) = Hg)l = Hg), &ec.

He (0) = [~ 1HLL, (/2)

HE (0) = [~ 5IHY (t/2)

(B.60)

The HégB)C and Hii)’r vanish forr =0 mod 2.
B3.9 £=9,X=A]
We have m* = 9, so for g € G the associated umbral McKay—Thompson series
Hg(g) = (Hg(gr)) is a 18-vector-valued function, with components indexed by r € Z/18Z,
satisfying Hg,) = Hé,g_),, and in particular, Hg,) = 0 for » = 0 mod 9. So it suffices to
specify the Hy for r € {1,2,3,4,5,6,7, 8.

Define H, (9) = (H, (9,)) for ¢ = e by requiring that

— U (020 (1,2) = =3pge(t,2) + D HE(1)09,(z,2), (B.61)
r mod 18
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where
01, 2) == 0P (1,20 (z, 2) — 9(z, 2)% (B.62)

[Cf. (B.27), (B.39), (B.54)].
Recall (B.13). The H. (?3) are defined for r € {1, 2,4, 5, 7, 8} by setting
Hyp, (¢) 1= [~ 5 H, (1 /3), (B.63)
where we note that HS) = H® = —H®), &c. We determine H. (9)3 and HZB)6 using

g4 T g2 T 82’
“¢ =18, X = A17E7” to set

H{) (1) = H{ (1) — H{s_,(27) (B.64)
forr € {3, 6}.

The Hé?q)) , are defined by the explicit formulas

H?()Z)l( 1f1 (z/3),
Héi{z(r) = —%]1’29)&/3),
H{) (1) := —633(7,0),
Ao =~ 157 /2 (B.65)
HY) (2) = —[—% D),
H) (1) = 030(,0),
HE) (1) = -2 1%/3)
H:gi),s(f) = [— 36 2 ( /3),
where
2
0 = =2 nn((r6):)($(29rr))nn((1386tr)) ’ (B.66)
19() = — M@ N20N80 _ p(On20)n(Gr)? '
n(e)n(dr)*n(67)n(97)n(367) n(4t)2n(97)
Finally, the Hg,) are determined for g € 24 U 2C U 6A by setting
H{, (1) = (-1 HE) (o),
Hﬁ?rm = (=11 H) (1), (B.67)

Hep,(v) = (1) T Hyy ().
B.3.10 £ =10,X = A2Ds
We have mX = 10, so the umbral McKay—Thompson series H, (10) = (Hg H10 )) associated
to g € G119 is a 20-vector-valued function with components indexed by r € Z/20Z. We
have Hg, (10) _ H (1 2, so it suffices to specify the ngo) forl<r<09.

To define Hélo) = (H(1,0 ) for g = e, first define h(t) = (h,(7)) by requiring that

—6U11 (0, 200 (1, 2) = —2p00(t. )+ D, h(D)r0r(T, 2) (B.68)
r  mod 20

where

019z, 2) := 50 (z, 209" (1, 2) — 917 (1, 2)0\O(x, 2). (B.69)
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[CE. (B.35), (B.39), (B.AL), (B.54).] Now define the Hy for r odd by setting

H{\(7) = i (Bhi(t) 4 ho(2)),

(@) 1= 5 (3hs(0) + Iy (o),

H&OE(T) = th(f), (B70)
H{y(x) = (h3(r) + 3h7(1)),

H&Og(f) = ﬂ (h1(z) + 3ho(1)).

Forr =0 mod 2 set

HY () = —2hr<r>, (B.71)

and define Héllq(’)})ﬂ for 1 < r < 9 by requiring
Hyy () i= —(=1)" Hy ) (@), (B.72)
It remains to specify Hg(,lro) forg e 4AU4B. Forr =0 mod 2 set
H) (1) =0 (B.73)
For r odd, recall (B.13), and define

HE@) = =g (HE, (2/5) + HiZ, (2/2). (B.74)

B.3.11 £=10+5X =Dg
We have m* = 10, so the umbral McKay—Thompson series Hélo+5) = (Hg,()%)) associ-
atedtog € G109+ isa 20-vector-valued function with components indexed by r € Z/20Z.
We have H(10+5) = 0 for r = 0 mod 2, so it suffices to specify the ng0+5) for r odd.
Observing that Hy, (10+5) _ —H, (10+5)

W(S/Z)(It Z) = 2X( /2 )l/'L5/2,0(TJ 2) + Z e(_r/z)Hg(122+5)(1)05/2)},(7_', z), (B.75)

reZ+1/2
r mod 5

we may determine H, (10+5) by requiring that

where X(S/ 2. )'(g D as in Table 25, and the 1//(5/ 2 are the meromorphic Jacobi forms of

weight 1 and index 5/2 defined as follows (Table 41).

B.3.12 £ =12, X = A11D7Es

We have m* = 12, so the umbral McKay—Thompson series Héu) = (Hélrz)) associated to
g € G2 ~ 7,/27.is a 24-vector-valued function with components indexed by r € Z/247.
We have H(lz) H;_Z;, so it suffices to specify the Hg(,lrz) forl <r <11

Table 41 Character values and meromorphic jacobiformsfor{ =10+ 5,X = Dg

q) ng /2) v é(75 /2) (z,2)

1A 4 2i6; (1, 22)26 (r, 2) 3 ()3

2A 0 —2i01(z, 22)%01(t,2)"'02(, 2)~n(1)?

3A 1 2i61(37,62)0; (1, 22)~ 10,31, 32) " "n(1)?
2B 2 2i6; (1, 22)05(t, 22)0: (t, 2)~ 262(r 2" ()
4A 0 —2i61(1, 22)0(t, 22)0>(21, 22)" ' n(T)n(21)
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To define He(u) = (He(,l,2)), first define k() = (h,(t)) by requiring that

—2W,1(7, 2) ((0?2)(1, z) + wélz)(f, Z)) = —244120(7,2) + z hy(T)012,r (T, 2),

r mod 24
(B.76)
where
0 (1,2) == 30 (1, 209" (1, 2) — 80\" (1, 209 (2, 2) + P (1, 2)0V (1, 2),
(12) @ ) (5) ®) (12) (B77)
@y (1, 2) =4, (T,2)0; (T,2) — 07 (T, 2)@; (T, 2) — @) (T, 2).

[CE. (B.27), (B.35), (B.39), (B.54), (B.56), (B.62), (B.69).] Now define the H{y) for r # 0
mod 3 by setting

H{\ (0) o= % Bh1(t) + ha(2)),

I (0, HIZo(0) 1= 5 (o) + hno(o),
U2 0, HIA(®) 1= (o) + (o),
(B.78)
HIA @) = 5 Bhs() + (),
HIA (@) 1= 5 (O (2) + 3Ir(x)),
HIZ () 1= 5 (hs() + 3 (o).
Forr =0 mod 3 set
HD () = 1—12h,(r), (B.79)
and define H&Z})ﬂ by requiring
H{2\(0) = —(=1) HU2 (). (B.80)

B3.13 £=12+4,X=E;

We have m* = 12, so the umbral McKay-Thompson series Héuﬂ) = (Hg(,lrzﬂ)) associ-

atedtog € G12+% jsa 24-vector-valued function with components indexed by r € Z/247.
g o (1244) o ,(1244) (12+4) _

In addition to the identity Hg) =—H, " 7, we have H,, =0forr €{2,36,9 10},

H ;112”) = Hg()172+4), H&ZH) = H;182+4), and H, ;152+4) =H, ;1121“%). Thus, it suffices to specify
(1244) ;,(1244) (1244)

theHg,1 ,Hg4 anng5 .

Recall (B.13). Also, set S+¢(7) := Si2,1(7) + S127(7), and SE(7) := S125(t) + S12.11 (7).
For r = 1 define

HZ Y (0) .= g2 () 4 12 (1),

14,1 14,1 1A,7
Higi (@) i= (= 45) (H{p1 (1/2) = Hiflgs(2/2)).
(12+4) 1 ( n(27)® n(r)*n(dv)* g, )
H )= ) sEe(r) + 817 sFs(p)),
w0 = R U T O e S0) ea)

H (o) = (=5 (M3, (0/2) = HiG (2 /2),

1
HIZ () =

(1244) ;_\ s (12+4) Eq
—— (—2F, (7)S7%(r)+12F, (r/2)S:%(7)).
8AB1 Sfé(t)2—556(t)2 ( 8AB,1 1 SAB5 5 )
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In the expression for g € 8AB, we write Féf;f ) for the unique modular form of weight 2
for T'y(32) such that

FloD(0) = 1+ 12q + 44% — 244° — 16¢° — 84° + O(¢°), (B.82)
and write F&ZBJF;L for the unique modular form of weight 2 for I'9(64) such that

Fi(r) = 3q+44°+64°—84" —9¢° +124" ~ 184 244" + 0(4").  (B.83)

For r = 4 define

HUZ (1) = H{Z (1) + HU (1),

(B.84)
HUZ (1) = HG) ) (1/2) + Hi (1 /2),

and set Hg(jfﬂ)(r) :=0forg € 2BU4A U 8AB.
For r = 5 define

Hijy V() = Higa() + Higy, (o)
i (o) = (= 51 (Hp5(1/2) — Hily 1 (/2)),

02 oy 1 ( n(27)8
ans () Sf6(r)2— E6(.[)2 n(t)?

H?ELZ;A)( )= [— (H?EZ)S( /2) — w(r/z))

(12+4) o
Hgyps (7)

n(z)4n(4r)
n(2r)*

Ste(r) - 8 Sfﬁ(r)), (B.85)

(12+4) E (12+4) E
— m( S @S5 (1) = 12ED (/)57 ().
1 5

Finally, define Hg(,1,2+4) for g € 2A U 6A by setting

HO2D () = 1y 2 (o,

2A,r 1A,r
(B.86)
Hp () = =17 Hyy (o)

B3.14 £=13,X =A%,
We have mX = 13, so the umbral McKay—Thompson series Hgl?’) = (Hg()lr?’)) associated
tog € G13) = GX ~ 7/47. is a 26-vector-valued function, with components indexed by
r € 7./267 (Table 39).

Define H(lg) (H(IB)) for g € GU3) by requiring that

U8 2) = =450t 2) — 3 ulsom )+ D HYY (0013,(x, 2),
r mod 26
(B.87)

as),_

where x, g 4 and j (13) = ¢ (cf. Table 28), and the wg 13) are meromorphic Jacobi

forms of weight 1 and 1ndex 13 given explicitly in Table 42.

(13) . 01(t.2+ 1)01(7.32+ 1) —01 (r,2— )01 (r.32— §) p(27)?
V4up(T, 2) i= —is(T, 62) . 02(2r,%z)02(21,6z)4 : nn(;) (B.88)

(13) _

For use later on we note that ¥, -2V (pi , where

(13) _ 0i(t,2)01 (7, 62)
N (7,', Z) = —91(7, 2201(z.32)" (B.89)
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Table 42 Character values and meromorphic Jacobi forms for £ = 13, X = Afz

[g] XéB) XélS) W;B)(Tr Z)

1A 2 2 201 (t,62)01(7,2)~'0:(z, 32) " " n(z)?
2A -2 2 —2i0;(t,62)0:(t,2)"'02(7, 32) " " n(z)?
4A 0 0 cf. (B.88)

B3.15 £=14+7,X =D;

We have m* = 14, so the umbral McKay—Thompson series Hél4+7) = (H;1,4+7)) associ-
atedtog € G14+7) isa 28-vector-valued function with components indexed by r € Z/28Z.
We have Hg,4+7) = 0 for r = 0 mod 2, so it suffices to specify the Hg(1,4+7) for r odd.
Observing that Hgfpﬁ) = —Hg(}ff 7 we may determine Hél4+7) by requiring that

v P 2) = =23 Piprpot )+ D, e(—r/H T (1)070,(1,2),  (B9O)

reZ4+1/2
r mod 7
where )'(g(7/2) = )'(?D is the number of fixed points of g € G147 ~ S in the defining

7/2
1//(/)

permutation representation on 3 points. The v/, '~ are the meromorphic Jacobi forms of

weight 1 and index 7/2 defined in Table 43.

B.3.16 £ = 16,X = A15D9
We have mX = 16, so the umbral McKay—Thompson series Hém) = (H‘élf)) associated to
g € GU19) ~ 7,/27,is a 32-vector-valued function with components indexed byr € Z/32Z.
We have Hg(,lf) = —H;fi, so it suffices to specify the Hgf) forl <r <15.

To define Hém = (Hgf)) for g = e, first define /(t) = (h,()) by requiring that

1
~61(0,2) (o V(0,2 + 36475, 2))

= U0+ D, h(0)b16:(7,2) (B91)
r mod 32

where

019z, 2) := 8 (1, 209\ (7, 2) — 7 (1, 201 (1, 2) + 0 (x, )"z, 2),

(B.92)
o891, 2) = 120 (1, 20"V (1, 2) — 07 (1, 200 (1, 2) — 39"V (1, 2).
[CE. (B.35), (B.39), (B.54), (B.69), (B.77), (B.89).] Now define the H\} by setting
1
HY ()= () (B.93)
for r odd. For r even, 2 < r < 14, use
1
Hj) () i= o (e (2) + (7). (B.94)
Table 43 Character values and meromorphic Jacobiformsfor{ =14+ 7,X = Dg
[q) x5 v, 2)
1A 3 2i0; (1, 32)01 (r, 2) 2 ()3
2A 1 2i0>(t, 32)601 (7, 2) "' 02(x, 2)~ "n(z)?

3A 0 —2i6;(t, 2)6; (1, 32)601 (37, 32) "' n(37)
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Define H by requiring

16 16
H§A}(r) = —(~1)'H (7).

B.3.17 £ =18, X = A7E7

We have mX = 18, so the umbral McKay—Thompson series Hé(,lg)

Page 42 of 47

(B.95)

= (Hg,s)) associated to

g € GU8) ~ 7,/27,is a 36-vector-valued function with components indexed by r € Z/36Z.
We have H(ls) —H(ls) so it suffices to specify the Hg(,lrs) forl<r<17.
To define H, (18) (Hg,8 ) for g = e, first define i(t) = (h,(1)) by requiring that
— 2401, (1, 29" (1, 2) = —24pig0(. 2) + D e (T)01s,(7, 2), (B.96)
r mod 36
where
as) ._ as) L s, 0% ( (2 12 , 1 a2
¢ =Sle 5o+ 4m o1 420y 7 + 3% . (B.97)
For the definition of ¢18) we require
oD(1,2) = ¢ (2, 29 (¢, 2) — 29 (r, 2)? — 49 (z,2)
wﬁm(r, z) = 3<p15)(t, Z)wl '(t,2) + 2<0 'z, Z)wl N(z,2) - <ﬂ§4) (t, Z)qoﬁs)(f, z),
o8, 2) = P (0, 2003 (1, 2),
(1, 2) = 300, z)so“"’( .2+ 0P (1,267 (1, 2) — 401" (1, 206V (1, 2), (5.98)
0 (1,2) i= 0P (1, 209"V (x, 2) + 607 (1, 2)p 1V (1, 2) — o ( 29 (1, 2),
o1(1,2) 1= oW (1, 2001 (1, 2) — 20 (2, 209V (1, 2) — 2<01 (g, 2),
(1, 2) = 0P (2, 2000 (1, 2) + 301 (1, 20V (¢, 2) — 401" (1, 2)0 " (1, 2),
o1, 2) = Pz, 20905 P (1, 2)
in addition to the other (p ) that have appeared already. Now define the HY 1A by setting
1
HP () = 2@ (B.99)
for r even. For r odd, use
H{P (1) = (2h1< )+ 7 (1)),
(18)
HlA 3(":) (hS( )+h9(f))r
H{ (1) = (2h5(r) + hi3(0)),
(18)
Hy,o(t) = (2h7(f) + h11(7)),
H{(1) = 4 L (hs(c) + 2ho(2) + s (2), (B.100)
718)
lA 11(7) (h7(T)+2h11(T));
H{P (1) = ( 5(t) + 2m3(1)),
H{ (1) = (h15(T) + ho (7)),
(18)
HlA 17(7:) (hl( )+2h17(7))'
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Define H, , 18) . in the usual way for root systems with a type A component, by requiring
HN(x) o= —(—1) H{ (7). (B.101)

B.3.18 £ =18+ 9,X = DyoE?
We have m* = 18, so the umbral McKay—Thompson series ngs”) = (Hg()1,8+9)) asso-
ciated to g € GU89) ~ 7,/27 is a 36-vector-valued function with components indexed

by r € 7Z/36Z. We have H(18+9) = H‘émjg) H(18+9) Hg(188+9r) for1 <r <17, and
Hg(,1,8+9) 0 forr =0 mod 2, so it suffices to specify the Hyg, (18+9) forr € {1,3,5,7,9}.
Define

(18+49) (18) (18)
Hyyy (1) = Hyg, (1) + Hiy g (7),

HUS (1) = HUO(1) — Hi s, (0)

(B.102)

forr € {1,3,5,7,9}.

B.3.19 £=22+11,X = D3,

We have m* = 22, so the umbral McKay—Thompson series H, (22+11) = (Hg (22+11)) asso-
ciated to g € G2t ~ 7,/97, is a 44-vector-valued function with components indexed
by r € Z/44Z. We have Hg(,nﬂl) H(ZZHI) and H(ZZHI) Oforr =0 mod 2, soit

suffices to specify the Hg,”ll for r odd. Observing that Hy 22+11) = —Hy (22+11) we may

determine Hézzﬂl) by requiring that

1/{;11/2)(1; z) = ( Yz )lﬂu/zo(f; z) + Z e(—r/2)Hé§i+u)(1)911/2,,(1, z),
rezZ+1/2
r mod 11
(B.103)
where )'(&1/ - 2, '2‘1/ 2, = 0, and the ¥, (11/2) are the meromorphic Jacobi forms of

weight 1 and index 11/2 defined as follows.

11/2) .. bi(r,42) 3
Via (7)== 2 01(t, 2)01 (1, 22) e (B.104)
P (0, 2) = i UEED iy

0>(1, )02 (1, 22)

B.3.20 £ =25,X = Ay
We have mX = 25, so for g € G*® ~ 7,/27, the associated umbral McKay—Thompson

series H, (25) = (H, (25)) is a 50-vector-valued function, with components indexed by r €
Z/50Z, satisfying Hy), (25) H‘é%i, and in particular, H, ( = 0forr =0 mod 25. So it

suffices to specify the Hg(zr5 forl <r < 24.
Define H, (25) = (H, (2,5)) for g = e by requiring that

— U100 (1,2) = —pase(m )+ D HE(0)60s5, (1, 2), (B.105)
r mod 50
where
1 1
0(1,2) =~ (7, 20V (1, 2) — ¢V (1, 206" (7, 2) + —pP (5,22 (B.106)

2 2
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For the definition of g0§25) we require

017(1,2) == 40P (7,200 (1, 2) — 01 (1, 2)%,

wiw (t,2) = <p14) (z, z)w(m)(r, z) + 2<p(7)(t, z)so(13 (r,2) — oz, z)¢§15)(t, z), (B.107)

(21) (5) (17) (9)( (13) (

@) (1, 2) =97 (1, 2)0; (T, 2) — 20 T,2),

T,2)¢,

in addition to the other <p ) that have appeared already. Define H2,2452 in the usual way
for root systems with a type A component, by requiring

Hy\(2) = (=1 H{)(x). (B.108)

B.3.21 £ =30+ 15,X = D1¢Es

We have m* = 30, so the umbral McKay—Thompson series Hy (30+15) _ (Héa‘r0+15))
associated to g € GBO+15) — (e} is a 60-vector-valued function with components
indexed by r € Z/60Z. We have H(30+15) = —H(30+15), H(BOHS) = Hg%“f) for

1 <r <29 and Hésro+15) 0 for r = 0 mod 2, so it suffices to specify the Hf}o“s)
forr € {1,3,5,7,9,11,13,15}.
Define

(30+15),_y ._ L (1(30+610,15) (10+5)
Hyyy "(1):= 3 (HIAI +l-mplHsa1 (T /3))

2
30+15 10+5)
H{A;— )( ).: [_ 120]H3(A;_ (‘[/3),
HEH) (1) o= [ ZIHA D (2 /3),
1
HE D0 = 3 (HE™ + I e /9), (3.109
HED @) o= o (HE ) — (=l e /3),
(80+15) 1/ (30+610,15) 49 14,(1045)
Hyyps  (T) —5( 14,7 —[—1561H543 (7/3))
30415 1045
HE (@) = = (=3B IHG (2/3),

B.3.22 £=30+6,10,15X = E}
We have m* = 30, and GB0T61015) — GX ~ g3 The umbral McKay—Thompson series
HB0+610.15) j5 3 60-vector-valued function with components indexed by r € Z/60Z. We

have
+HTOI) i = 21,411,419, 4£29  mod 60,
HPHo1019(z) = +H SO if = 47,413, £17,427 mod 60,  (B.110)

0 else,

so it suffices to specify the Hg(,3,0+6’10’15) for r = 1 and r = 7. These functions may be

defined as follows.

(30+6,10,15) ,__ k+l+m (K2 +12+m?) ) 242 (ki +-ImA-mk)+(k-+l+m) /2+3 /40
H = — E + E -1
. n(t (kl ) )

m>0  klLm<0

(30+6,10,15) ,__ k+m  3k>4-m? |2+4km+(2k-+m) /243 /40
HZA,I = (2_[) Z Z (—=1)f*mg m2/ m m)/2+3/
km>0  km<0
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(30+6,10,15) __ ) & 15k%/243k/2+3/40
Hzp =6 Z(—l) "ok kS,
keZ
(30+6,10,15) __ ktl4m (k2412 +m2) ) 244 2(kl+lm-+mk) +3(k+1+m) /2427 /40
T DI I [ e
kim>0  klLm<0
(30+610,15) _ , 1 Kkt 3K2+m? |2+ 4kim+3(2k-+m) /2+27 /40
H2A,7 _2]7(27_.) z - Z (_1) mq " " "/ !
km>0  km<0
(30+6,10,15) _ W(T kg 15k2 249Kk /2+27 /40
Hsa7 2. ey 2N (B.111)
kez

B.3.23 { =46+ 23,X =Dy
We have m* = 22, and G“#0123) = {¢}. The umbral McKay—Thompson series H£46+23) =
(HSMB)) is a 92-vector-valued function with components indexed by r € Z/927Z. We

have Hg‘;6+23) = —H™2) and He(,%HB) 0 for r = 0 mod 2, so it suffices to specify
the He(f“r6+23) for r odd. Observing that H (46+23) _ —H, (46+23 we may determine He(46+23)
by requiring that

(1, 2) = —2iuaz0(t, 2) + e(—r/2)H 426r+23)(f)923/2,r(f»z)» (B.112)
e
reZ+1/2

r mod 23
where 1//(23/ % is the meromorphic Jacobi forms of weight 1 and index 23/2 defined by
setting

01(7, 62)

_ noE )3
191(T, 22)601(z, 3z) n(@)” (B.113)

we(z?,/z)(n z):=2
B.4 Rademacher sums
Let ', denote the subgroup of upper-triangular matrices in SLy(Z). Given o € R and
y € SLy(Z), define r[lo;]Z(y, 1) := lif y € Iy. Otherwise, set

Qmia(yt — yoo))'+1/2

NCEER) , (B.114)

e, 1) = e(— alyr —yoo) 3
k>0

where e(x) := 2™, Let n be a positive integer, and suppose that v is a multiplier system for
vector-valued modular forms of weight 1/2 on I' = I'g(n). Assume that v = (v;;) satisfies
v11(T) = €7/?", for some basis {¢;}, for some positive integer m, where T = (§1). To
these data, attach the Rademacher sum

. T .
Rr,,(1) == Klgnoo Z v(y)e (—Z—m) > e1j(y, 7)1/? r£/21/4m (y, 1), (B.115)
YT\ k2

where [y g2 := {(‘C’Z) elN|0<c<K |d| < 1(2}, and j(y, 1) := (ct +d) " fory =
(‘Cz Z) If the expression (B.115) converges then it defines a mock modular form of weight
1/2 for I whose shadow is given by an explicitly identifiable Poincaré series. We refer to
[13] for a review of this, and to [53] for a more general and detailed discussion.
Convergence of (B.115) can be shown by rewriting the Fourier expansion as in [53,
Theorem2] in terms of a sum of Kloostermann sums weighted by Bessel functions. This
expression converges at w = 1/2 by the analysis discussed at the end of Sect. 3, following
the method of Hooley as adapted by Gannon. That analysis requires not only establishing
that the expressions converge, but also explicitly bounding the rates of convergence.
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For the special case that X = Ag we require 8-vector-valued functions i‘g) = (igr)) for
g € G* with order 3 or 6. For such g, define ié(,,gr), for 0 < r < 9, by setting

'0, if r20 mod 3,
B2,(0) == § ~633(1,0), ifr=3, (B.116)
| 03,0(, 0), ifr =6,
in the case that g has order 3, and
0, ifr #0 mod 3,
B (1) = 1 —33(1,0), ifr =3, (B.117)
—030(1,0), ifr=6,

when o(g) = 6. Here, 6,,,(7, z) is as defined in (B.5).
The following result is proved in [17], using an analysis of representations of the meta-
plectic double cover of SLy(Z).

Theorem B.1 [17]) Let X be a Niemeier root system and let g € GX. Assume that the

Rademacher sum Rffo(n ,px converges. IfX # A3 orif X = Ag and g € GX does not
8h7g

satisfy o(g) = 0 mod 3, then we have

XN opX
Hg (1) = 2RF0(ng),f)£,“ (B.118)

If X = A} and g € G¥ satisfies o(g) = 0 mod 3 then

AX(r) = —2RE (1) + £ (0). (B.119)

FO("g)yf’g

The X = A%‘L case of Theorem B.1 was proven first in [12], via different methods.
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