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Abstract

The Umbral Moonshine Conjectures assert that there are infinite-dimensional graded
modules, for prescribed finite groups, whose McKay–Thompson series are certain
distinguished mock modular forms. Gannon has proved this for the special case
involving the largest sporadic simple Mathieu group. Here, we establish the existence
of the umbral moonshine modules in the remaining 22 cases.

Mathematics Subject Classification: 11F22, 11F37

1 Introduction and statement of results
Monstrous moonshine relates distinguished modular functions to the representation the-
ory of the Monster,M, the largest sporadic simple group. This theory was inspired by the
famous observations of McKay and Thompson in the late 1970s [18,51] that

196884 = 1 + 196883,

21493760 = 1 + 196883 + 21296876.

The left-hand sides here are familiar as coefficients of Klein’s modular function (note
q := e2π iτ ),

J (τ ) =
∞∑

n=−1
c(n)qn := j(τ ) − 744 = q−1 + 196884q + 21493760q2 + · · · .

The sums on the right-hand sides involve the first three numbers arising as dimensions
of irreducible representations ofM,

1, 196883, 21296876, 842609326, . . . , 258823477531055064045234375.

Thompson conjectured that there is a graded infinite-dimensionalM-module

V � =
∞⊕

n=−1
V �
n ,

satisfying dim(V �
n ) = c(n). For g ∈ M, he also suggested [50] to consider the graded-trace

functions

Tg (τ ) :=
∞∑

n=−1
tr(g |V �

n )qn,

now known as the McKay–Thompson series, that arise from the conjectured M-module
V �. Using the character table forM, it was observed [18,50] that the first few coefficients
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of each Tg (τ ) coincide with those of a generator for the function field of a discrete group
�g < SL2(R), leading Conway and Norton [18] to their famous Monstrous Moonshine
Conjecture: This is the claim that for each g ∈ M there is a specific genus zero group �g
such that Tg (τ ) is the unique normalized hauptmodul for �g , i.e., the unique �g -invariant
holomorphic function onHwhich satisfiesTg (τ ) = q−1+O(q) as�(τ ) → ∞ and remains
bounded near cusps not equivalent to the infinite one.
In a series of ground-breaking works, Borcherds introduced vertex algebras [2], gen-

eralized Kac–Moody Lie algebras [3,4], and used these notions to prove [5] the Mon-
strous Moonshine Conjecture of Conway and Norton. He confirmed the conjecture for
the module V � constructed by Frenkel, Lepowsky and Meurman [30–32] in the early
1980s. These results provide much more than the predictions of monstrous moonshine.
The M-module V � is a vertex operator algebra, one whose automorphism group is pre-
cisely M. The construction of Frenkel, Lepowsky and Meurman can be regarded as one
of the first examples of an orbifold conformal field theory (Cf. [23]). Here, the orbifold
in question is the quotient

(
R
24/�24

)
/(Z/2Z), of the 24-dimensional torus �24 ⊗Z

R/�24 � R
24/�24 by the Kummer involution x �→ −x, where �24 denotes the Leech

lattice.
We refer to [24,32,35,36] for more on monstrous moonshine.
In 2010, Eguchi, Ooguri and Tachikawa reignited moonshine with their observation

[28] that dimensions of some representations ofM24, the largest sporadic simpleMathieu
group (cf., e.g. [20,21]), are multiplicities of superconformal algebra characters in the
K3 elliptic genus. This observation suggested a manifestation of moonshine for M24:
Namely, there should be an infinite-dimensional graded M24-module whose McKay–
Thompson series are holomorphic parts of harmonic Maass forms, the so-called mock
modular forms (see [45,54,55] for introductory accounts of the theory of mock modular
forms).
Following the work of Cheng [10], Eguchi and Hikami [27], and Gaberdiel, Hohenegger,

andVolpato [33,34], Gannon established the existence of this infinite-dimensional graded
M24-module in [37].
It is natural to seek a generalmathematical and physical setting for these results. Herewe

consider the mathematical setting, which develops from the close relationship between
the monster group M and the Leech lattice �24. Recall (cf., e.g. [20]) that the Leech
lattice is even, unimodular and positive-definite of rank 24. It turns out thatM24 is closely
related to another such lattice. Such observations led Cheng, Duncan and Harvey to
further instances of moonshine within the setting of even unimodular positive-definite
lattices of rank 24. In this way, they arrived at the Umbral Moonshine Conjectures (cf.
Sect. 5 of [15], Sect. 6 of [16], and Sect. 2 of [17]), predicting the existence of 22 further,
graded infinite-dimensional modules, relating certain finite groups to distinguishedmock
modular forms.
To explain this prediction in more detail, we recall Niemeier’s result [43] that there are

24 (up to isomorphism) even unimodular positive-definite lattices of rank 24. The Leech
lattice is the unique one with no root vectors (i.e. lattice vectors with norm-square 2),
while the other 23 have root systems with full rank, 24. These Niemeier root systems are
unions of simple simply-laced root systems with the sameCoxeter numbers, and are given
explicitly as
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A24
1 , A12

2 , A8
3, A

6
4 , A

4
6 , A

2
12,

A4
5D4 , A2

7D
2
5 , A

3
8, A

2
9D6, A11D7E6, A15D9, A17E7, A24 , (1.1)

D6
4 , D

4
6 , D

3
8 , D10E2

7 , D
2
12, D16E8, D24 , E4

6 , E
3
8 ,

in terms of the standard ADE notation (cf., e.g. [20] or [39] for more on root systems).
For each Niemeier root system X, let NX denote the corresponding unimodular lattice,

let WX denote the (normal) subgroup of Aut(NX ) generated by reflections in roots, and
define the umbral group of X by setting

GX := Aut(NX )/WX. (1.2)

(See Sect. A.1 for explicit descriptions of the groups GX .)
Let mX denote the Coxeter number of any simple component of X . An association of

distinguished 2mX -vector-valued mock modular forms HX
g (τ ) = (HX

g,r(τ )) to elements
g ∈ GX is described and analyzed in [15–17].
ForX = A24

1 we haveGX � M24 andmX = 2, and the functionsHX
g,1(τ ) are precisely the

mockmodular forms assigned to elements g ∈ M24 in the works [10,27,33,34] mentioned
above. Generalizing the M24 moonshine initiated by Eguchi, Ooguri and Tachikawa, we
have the following conjecture of Cheng, Duncan and Harvey (cf. Sect. 2 of [17] or Sect.
9.3 of [24]).

Conjecture (Umbral Moonshine Modules) Let X be a Niemeier root system X and set
m := mX. There is a naturally defined bi-graded infinite-dimensional GX-module

ǨX =
⊕

r∈IX

⊕

D∈Z, D≤0,
D=r2 (mod 4m)

Ǩ X
r,−D/4m (1.3)

such that the vector-valuedmock modular formHX
g = (HX

g,r) is aMcKay–Thompson series
for ǨX related1 to the graded trace of g on ǨX by

HX
g,r(τ ) = −2q−1/4mδr,1 +

∑

D ∈ Z, D ≤ 0,
D = r2 (mod 4m)

tr(g |Ǩ X
r,−D/4m)q

−D/4m

(1.4)

for r ∈ IX .

In (1.3) and (1.4), the set IX ⊂ Z/2mZ is defined in the following way. IfX has an A-type
component then IX := {1, 2, 3, . . . , m − 1}. If X has no A-type component but does have
a D-type component, then m = 2 mod 4 and IX := {1, 3, 5, . . . , m/2}. The remaining
cases are X = E4

6 and X = E3
8 . In the former of these, IX := {1, 4, 5}, and in the latter case

IX := {1, 7}.

Remark The functionsHX
g (τ ) are defined explicitly in Sect. B.3. An alternative description

in terms of Rademacher sums is given in Sect. B.4.

Here, we prove the following theorem.

1In the statement of Conjecture 6.1 of [16], the functionHX
g,r in (1.4) is replaced with 3HX

g,r in the case thatX = A3
8 . This

is now known to be an error, arising from a misspecification of some of the functions HX
g for X = A3

8 . Our treatment
of the case X = A3

8 in this work reflects the corrected specification of the corresponding HX
g which is described and

discussed in detail in [17].
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Theorem 1.1 The umbral moonshine modules exist.

Two remarks

1. Theorem 1.1 for X = A24
1 is the main result of Gannon’s work [37].

2. The vector-valuedmockmodular formsHX = (HX
g,r) have “minimal” principal parts.

This minimality is analogous to the fact that the original McKay–Thompson series
Tg (τ ) for the Monster are hauptmoduln, and plays an important role in our proof.

Example Many of Ramanujan’s mock theta functions [46] are components of the vector-
valued umbral McKay–Thompson series HX

g = (HX
g,r). For example, consider the root

system X = A12
2 , whose umbral group is a double cover 2.M12 of the sporadic simple

Mathieu groupM12. In terms of Ramanujan’s third-order mock theta functions

f (q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

φ(q) = 1 +
∞∑

n=1

qn2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

χ (q) = 1 +
∞∑

n=1

qn2

(1 − q + q2)(1 − q2 + q4) · · · (1 − qn + q2n)

ω(q) =
∞∑

n=0

q2n(n+1)

(1 − q)2(1 − q3)2 · · · (1 − q2n+1)2
,

ρ(q) =
∞∑

n=0

q2n(n+1)

(1 + q + q2)(1 + q3 + q6) · · · (1 + q2n+1 + q4n+2)
,

we have that

HX
2B,1(τ ) = HX

2C,1(τ ) = HX
4C,1(τ ) = −2q− 1

12 · f (q2),
HX
6C,1(τ ) = HX

6D,1(τ ) = −2q− 1
12 · χ (q2),

HX
8C,1(τ ) = HX

8D,1(τ ) = −2q− 1
12 · φ(−q2),

HX
2B,2(τ ) = −HX

2C,2(τ ) = −4q
2
3 · ω(−q),

HX
6C,2(τ ) = −HX

6D,2(τ ) = 2q
2
3 · ρ(−q).

See Sect. 5.4 of [16] for more coincidences between umbralMcKay–Thompson series and
mock theta functions identified by Ramanujan almost a 100 years ago.

Our proof of Theorem 1.1 involves the explicit determination of each GX -module Ǩ X

by computing the multiplicity of each irreducible component for each homogeneous
subspace. It guarantees the existence and uniqueness of a Ǩ X which is compatible with
the representation theory of GX and the Fourier expansions of the vector-valued mock
modular forms HX

g (τ ) = (HX
g,r(τ )).

At first glance our methods do not appear to shed light on any deeper algebraic proper-
ties of the Ǩ X , such asmight correspond to the vertex operator algebra structure onV �, or
the monster Lie algebra introduced by Borcherds in [5]. However, we do determine, and
utilize, specific recursion relations for the coefficients of the umbral McKay–Thompson
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series which are analogous to the replicability properties of monstrousmoonshine formu-
lated by Conway andNorton in Sect. 8 of [18] (cf. also [1]).More specifically, we use recent
work [40] of Imamoğlu, Raum and Richter, as generalized [42] byMertens, to obtain such
recursions. These results are based on the process of holomorphic projection.

Theorem 1.2 For each g ∈ GX and 0 < r < m, the mock modular form HX
g,r(τ ) is

replicable in the mock modular sense.

A key step in Borcherds’ proof [5] of the monstrous moonshine conjecture is the refor-
mulation of replicability in Lie theoretic terms. We may speculate that themock modular
replicability utilized in this work will ultimately admit an analogous algebraic interpreta-
tion. Such a result remains an important goal for future work.
In the statement of Theorem 1.2, replicable means that there are explicit recursion

relations for the coefficients of the vector-valued mock modular form in question. For
example, we recall the recurrence formula for Ramanujan’s third-order mock theta func-
tion f (q) = ∑∞

n=0 cf (n)qn that was obtained recently by Imamoğlu, Raum and Richter
[40]. If n ∈ Q, then let

σ1(n) :=
⎧
⎨

⎩

∑
d|n d if n ∈ Z,

0 otherwise,

sgn+(n) :=
⎧
⎨

⎩
sgn(n) if n �= 0,

1 if n = 0,

and then define

d(N, Ñ , t, t̃) := sgn+(N ) · sgn+(Ñ ) · (|N + t| − |Ñ + t̃|) .
Then for positive integers n, we have that

∑

m∈Z
3m2+m≤2n

(
m + 1

6

)
cf

(
n − 3

2
m2 − 1

2
m

)

= 4
3
σ (n) − 16

3
σ

(n
2

)
− 2

∑

a,b∈Z
2n=ab

d
(
N, Ñ ,

1
6
,
1
6

)
,

where N := 1
6 (−3a+ b− 1) and Ñ := 1

6 (3a+ b− 1), and the sum is over integers a, b for
which N, Ñ ∈ Z. This is easily seen to be a recurrence relation for the coefficients cf (n).
The replicability formulas for all of theHX

g,r(τ ) are similar (although someof these relations
are slightly more complicated and involve the coefficients of weight 2 cusp forms).
It is important to emphasize that despite the progress which is represented by our

main results, Theorems 1.1 and 1.2, the following important question remains open in
general.

Question Is there a “natural” construction of Ǩ X? Is Ǩ X equipped with a deeper algebra
structure as in the case of the monster module V � of Frenkel, Lepowsky and Meurman?

We remark that this question has been answered positively, recently, in one special case:
A vertex operator algebra structure underlying the umbral moonshine module Ǩ X for
X = E3

8 has been described explicitly in [25]. See also [14,26], where the problem of
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constructing algebraic structures that illuminate the umbral moonshine observations is
addressed from a different point of view.
The proof of Theorem 1.1 is not difficult. It is essentially a collection of tedious calcula-

tions. We use the theory of mock modular forms and the character table for each GX (cf.
Sect. A.2) to solve for the multiplicities of the irreducibleGX -module constituents of each
homogeneous subspace in the allegedGX -module Ǩ X . To prove Theorem 1.1 it suffices to
prove that these multiplicities are non-negative integers. To prove Theorem 1.2 we apply
recent work [42] of Mertens on the holomorphic projection of weight 1

2 mock modular
forms, which generalizes earlier work [40] of Imamoğlu, Raum and Richter.
In Sect. 2 we recall the facts about mock modular forms that we require, and we prove

Theorem 1.2. We prove Theorem 1.1 in Sect. 3. The appendices furnish all the data that
our method requires. In particular, the umbral groups GX are described in detail in Sect.
A, and explicit definitions for the mock modular forms HX

g (τ ) are given in Sect. B.

2 Harmonic Maass forms andMockmodular forms
Here,we recall somevery basic facts aboutharmonicMaass forms asdevelopedbyBruinier
and Funke [9] (see also [45]).
We begin by briefly recalling the definition of a harmonic Maass form of weight k ∈ 1

2Z

and multiplier ν (a generalization of the notion of a Nebentypus). If τ = x+ iy with x and
y real, we define the weight k hyperbolic Laplacian by

�k := −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
. (2.1)

Suppose � is a subgroup of finite index in SL2(Z) and k ∈ 1
2Z. Then, a function F (τ )

which is real-analytic on the upper half of the complex plane is a harmonic Maass form of
weight k on � with multiplier ν if:

(a) The function F (τ ) satisfies the weight k modular transformation,

F (τ )|kγ = ν(γ )F (τ )

for every matrix γ =
(
a b
c d

)
∈ �, where F (τ )|kγ := F (γ τ )(cτ + d)−k , and if

k ∈ Z + 1
2 , the square root is taken to be the principal branch.

(b) We have that �kF (τ ) = 0,
(c) There is a polynomial PF (q−1) and a constant c > 0 such that F (τ ) − PF (e−2π iτ ) =

O(e−cy) as τ → i∞. Analogous conditions are required at each cusp of �.

We denote the C-vector space of harmonic Maass forms of a given weight k , group �

and multiplier ν by Hk (�, ν). If no multiplier is specified, we will take

ν0(γ ) :=
⎛

⎝
( c
d

)
√(−1

d

)−1⎞

⎠
2k

,

where
( ∗
d
)
is the Kronecker symbol.
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2.1 Main properties

The Fourier expansion of a harmonic Maass form F (see Proposition 3.2 of [9]) splits into
two components. As before, we let q := e2π iτ .

Lemma 2.1 If F (τ ) is a harmonic Maass form of weight 2 − k for � where 3
2 ≤ k ∈ 1

2Z,
then

F (τ ) = F+(τ ) + F−(τ ),

where F+ is the holomorphic part of F , given by

F+(τ ) =
∑

n−∞
c+F (n)q

n

where the sum admits only finitely many non-zero terms with n < 0, and F− is the
nonholomorphic part, given by

F−(τ ) =
∑

n<0
c−F (n)�(k − 1, 4πy|n|)qn.

Here, �(s, z) is the upper incomplete gamma function.

The holomorphic part of a harmonic Maass form is called a mock modular form. We
denote the space of harmonic Maass forms of weight 2 − k for � and multiplier ν by
Hk (�, ν). Similarly, we denote the corresponding subspace of holomorphicmodular forms
by Mk (�, ν), and the space of cusp forms by Sk (�, ν). The differential operator ξw :=
2iyw ∂

∂τ
(see [9]) defines a surjective map

ξ2−k : H2−k (�, ν) → Sk (�, ν)
onto the space of weight k cusp forms for the same group but conjugate multiplier. The
shadow of a Maass form f (τ ) ∈ H2−k (�, ν) is the cusp form g(τ ) ∈ Sk (�, ν) (defined, for
now, only up to scale) such that ξ2−k f (τ ) = g

||g || , where || • || denotes the usual Petersson
norm.

2.2 Holomorphic projection of weight 1
2 mock modular forms

As noted above, the modular transformations of a weight 1
2 harmonic Maass form may

be simplified by multiplying by its shadow to obtain a weight 2 nonholomorphic modular
form. One can use the theory of holomorphic projections to obtain explicit identities
relating these nonholomorphic modular forms to classical quasimodular forms. In this
way, we may essentially reduce many questions about the coefficients of weight 1

2 mock
modular forms to questions about weight 2 holomorphic modular forms. The following
theorem is a special case of a more general theorem due to Mertens (cf. Theorem 6.3 of
[42]). See also [40].

Theorem 2.1 (Mertens) Suppose g(τ ) and h(τ ) are both theta functions of weight 3
2 con-

tained in S 3
2
(�, νg ) and S 3

2
(�, νh), respectively, with Fourier expansions

g(τ ) :=
s∑

i=1

∑

n∈Z
nχi(n)qn

2
,

h(τ ) :=
t∑

j=1

∑

n∈Z
nψj(n)qn

2
,



Duncan et al. Res Math Sci (2015) 2:26 Page 8 of 47

where each χi and ψi is a Dirichlet character. Moreover, suppose h(τ ) is the shadow of a
weight 1

2 harmonic Maass form f (τ ) ∈ H 1
2
(�, νh). Define the function

Df,g (τ ) := 2
∞∑

r=1

∑

χi ,ψj

∑

m,n∈Z+
m2−n2=r

χi(m)ψj(n)(m − n)qr .

If f (τ )g(τ ) has no singularity at any cusp, then f +(τ )g(τ ) + Df,g (τ ) is a weight 2 quasi-
modular form. In other words, it lies in the space CE2(τ )⊕M2(�, νgνh), where E2(τ ) is the
quasimodular Eisenstein series E2(τ ) := 1 − 24

∑
n≥1

nqn
1−qn .

Two Remarks.

1. These identities give recurrence relations for the weight 1
2 mock modular form f +

in terms of the weight 2 quasimodular form which equals f +(τ )g(τ ) + Df,g (τ ). The
example after Theorem 1.2 for Ramanujan’s third-order mock theta function f is an
explicit example of such a relation.

2. Theorem 2.1 extends to vector-valued mock modular forms in a natural way.

Proof of Theorem 1.2 Fix aNiemeier lattice and its root systemX , and letM = mX denote
its Coxeter number. Each HX

g,r(τ ) is the holomorphic part of a weight 1
2 harmonic Maass

form ĤX
g,r(τ ). To simplify the exposition in the following section, we will emphasize the

case that the root system X is of pure A-type. If the root system X is of pure A-type, the
shadow function SXg,r(τ ) is given by χ̂

XA
g,r SM,r(τ ) (see Sect. B.2), where

SM,r(τ ) =
∑

n∈Z
n≡r (mod 2M)

n q
n2
4M ,

and χ̂
XA
g,r =χ

XA
g or χ̄

XA
g depending on the parity of r is the twisted Euler character given in

the appropriate table in Sect. A.3, a character of GX. (If X is not of pure A-type, then the
shadow function SXg,r(τ ) is a linear combination of similar functions as described in Sect.
B.2).
GivenX and g , the symbol ng |hg given in the corresponding table in Sect. A.3 defines the

modularity for the vector-valued function (ĤX
g,r(τ )). In particular, if the shadow (SXg,r(τ )) is

nonzero, and if for γ ∈ �0(ng ) we have that

(SXg,r(τ ))|3/2γ = σg,γ (SXg,r(τ )),

then

(ĤX
g,r(τ ))|1/2γ = σg,γ (ĤX

g,r(τ )).

Here, for γ ∈ �0(ng ), we have σg,γ = νg (γ )σe,γ where νg (γ ) is a multiplier which is trivial
on �0(nghg ). This identity holds even in the case that the shadow SXg,r vanishes.
The vector-valued function (HX

g,r(τ )) has poles only at the infinite cusp of �0(ng ), and
only at the componentHX

g,r(τ ) where r = 1 if X has pure A-type, or at components where
r2 ≡ 1 (mod 2M) otherwise. These poles may only have order 1

4M . This implies that
the function (ĤX

g,r(τ )SXg,r(τ )) has no pole at any cusp and is therefore a candidate for an
application of Theorem 2.1.
The modular transformation of SM,r(τ ) implies that

(σe,S)2 = (σe,T )4M = I
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where S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, and I is the identity matrix. Therefore, SXM,r(τ ),

viewed as a scalar-valued modular function, is modular on �(4M), and so (ĤX
g,r(τ )SXg,r(τ ))

is a weight 2 nonholomorphic scalar-valued modular form for the group �(4M) ∩ �0(ng )
with trivial multiplier.
Applying Theorem 2.1, we obtain a function FX

g,r(τ )—call it the holomorphic projection
of ĤX

g,r(τ )SXe,r(τ )—which is a weight 2 quasimodular form on �(4M) ∩ �0(ng ). In the
case that SXg,r(τ ) is zero, we substitute SXe,r(τ ) in its place to obtain a function F̃X

g,r(τ ) =
HX
g,r(τ )SXe,r(τ ) which is a weight 2 holomorphic scalar-valued modular form for the group

�(4M)∩�0(ng ) withmultiplier νg (alternatively, modular for the group�(4M)∩�0(nghg )
with trivial multiplier).
The function FX

g,r(τ ) may be determined explicitly as the sum of Eisenstein series and
cusp forms on �(4M) ∩ �0(nghg ) using the standard arguments from the theory of holo-
morphicmodular forms (i.e. the “first few” coefficients determine such a form). Therefore,
we have the identity

FX
g,r(τ ) = HX

g,r(τ ) · SXg,r(τ ) + DX
g,r(τ ), (2.2)

where the function DX
g,r(τ ) is the correction term arising in Theorem 2.1. If X has pure

A-type, then

DX
g,r(τ ) = (χ̂XA

g,r )2
∞∑

N=1

∑

m,n∈Z+
m2−n2=N

φr(m)φr(n)(m − n)q
N
4M , (2.3)

where

φr(�) =
⎧
⎨

⎩
±1 if � ≡ ±r (mod 2M)

0 otherwise.

Suppose HX
g,r(τ ) = ∑∞

n=0 AX
g,r(n)qn− D

4M where 0 < D < 4M and D ≡ r2 (mod 4M),
and FX

g,r(τ ) = ∑∞
N=0 BX

g,r(n)qn. Then by Theorem 2.1, we find that

BX
g,r(N ) = χ̂XA

g,r
∑

m∈Z
m≡r (mod 2M)

m · AX
g,r

(
N + D − m2

4M

)

+ (χ̂XA
g,r )2

∑

m,n∈Z+
m2−n2=N

φr(m)φr(n)(m − n). (2.4)

The function FX
g,r(τ ) may be found in the following manner. Using the explicit pre-

scriptions for HX
g,r(τ ) given in Sect. B.3 and (2.2) above, we may calculate the first several

coefficients of each component. The Eisenstein component is determined by the constant
terms at cusps. Since DX

g,r(τ ) (and the corresponding correction terms at other cusps)
has no constant term, these are the same as the constant terms of ĤX

g,r(τ )SXg,r(τ ), which
are determined by the poles of ĤX

g,r . Call this Eisenstein component EX
g,r(τ ). The cuspidal

component can be found by matching the initial coefficients of FX
g,r(τ ) − EX

g,r(τ ).
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Once the coefficients BX
g,r(n) are known, Eq. (2.4) provides a recursion relation which

may be used to calculate the coefficients of HX
g,r(τ ). If the shadows SXg,r(τ ) are zero, then

we may apply a similar procedure to determine F̃X
g,r(τ ). For example, suppose F̃X

g,r(τ ) =∑∞
N=0 B̃X

g,r(n)qn, and X has pure A-type. Then, we find that the coefficients B̃X
g,r(N )

satisfy

B̃X
g,r(N ) = χ̂XA

g,r
∑

m∈Z
m≡r (mod 2M)

m · AX
g,r

(
N + D − m2

4M

)
. (2.5)

Proceeding in this way we obtain the claimed results. ��

3 Proof of Theorem 1.1
Here, we prove Theorem 1.1. The idea is as follows. For each Niemeier root system X,
we begin with the vector-valued mock modular forms (HX

g (τ )) for g ∈ GX . We use their
q-expansions to solve for the q-series whose coefficients are the alleged multiplicities of
the irreducible components of the alleged infinite-dimensional GX -module

Ǩ X =
⊕

r (mod 2m)

⊕

D∈Z, D≤0,
D=r2 (mod 4m)

Ǩ X
r,−D/4m.

These q-series turn out to be mock modular forms. The proof requires that we establish
that these mock modular forms have non-negative integer coefficients.

Proof of Theorem 1.1 As in the previous section, we fix a root system X and setM := mX ,
and emphasize the case when X is of pure A-type.
The umbral moonshine conjecture asserts that

HX
g,r(τ ) =

∞∑

n=0

∑

χ

mX
χ ,r(n)χ (g)qn− r2

4M (3.1)

where the second sum is over the irreducible characters ofGX . Here, we have rewritten the
traces of the graded components Ǩ X

r,n− r2
4M

in (1.4) in terms of the values of the irreducible

characters ofGX , where themX
χ ,r(n) are the correspondingmultiplicities. Naturally, if such

a Ǩ X exists, these multiplicities must be non-negative integers for n > 0. Similarly, if the
mock modular forms HX

g,r(τ ) can be expressed as in (3.1) withmX
χ ,r(n) non-negative inte-

gers, then we may construct the umbral moonshine module Ǩ X explicitly with Ǩ X
r,n−r2/4m

defined as the direct sum of irreducible components with the given multiplicities
mX

χ ,r(n).
Let

HX
χ ,r(τ ) :=

1
|GX |

∑

g
χ (g)HX

g,r(τ ). (3.2)

It turns out that the coefficients ofHX
χ ,r(τ ) are precisely themultiplicitiesmX

χ ,r(n) required
so that (3.1) holds: if

HX
χ ,r(τ ) =

∞∑

n=0
mX

χ ,r(n)qn− r2
4M , (3.3)
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then

HX
g,r(τ ) =

∞∑

n=0

∑

χ

mX
χ ,r(n)χ (g)qn− r2

4M .

Thus, the umbral moonshine conjecture is true if and only if the Fourier coefficients of
HX

χ ,r(τ ) are non-negative integers.
To see this fact, we recall the orthogonality of characters. For irreducible characters χi

and χj ,

1
|GX |

∑

g∈GX

χi(g)χj(g) =
⎧
⎨

⎩
1 ifχi = χj ,

0 otherwise.
(3.4)

We also have the relation for g and h ∈ GX ,

∑

χ

χi(g)χi(h) =
⎧
⎨

⎩
|CGX (g)| if g and h are conjugate,

0 otherwise.
(3.5)

Here, |CGX (g)| is the order of the centralizer of g in GX . Since the order of the centralizer
times the order of the conjugacy class of an element is the order of the group, (3.2) and
(3.5) together imply the relation

HX
g,r(τ ) =

∑

χ

χ (g)HX
χ ,r(τ ),

which in turn implies (3.3).
We have reduced the theorem to proving that the coefficients of certain weight 1

2 mock
modular forms are all non-negative integers. For holomorphic modular forms, we may
answerquestionsof this typebymakinguseof Sturm’s theorem[49] (see alsoTheorem2.58
of [44]). This theorem provides a bound B associated to a space of modular forms such
that if the first B coefficients of amodular form f (τ ) are integral, then all of the coefficients
of f (τ ) are integral. This bound reduces many questions about the Fourier coefficients of
modular forms to finite calculations.
Sturm’s theorem relies on the finite dimensionality of certain spaces of modular forms,

and so it cannot be applied directly to spaces ofmockmodular forms. However, bymaking
use of holomorphic projection we can adapt Sturm’s theorem to this setting.
Let ĤX

χ ,r(τ ) be defined as above. Recall that the transformation matrix for the vector-
valued function ĤX

g,r(τ )) is σg,γ , the conjugate of the transformation matrix for (SXe,r(τ ))
when γ ∈ �0(nghg ), and σg,γ is the identity for γ ∈ �(4M). Therefore, if

NX
χ := lcm{nghg | g ∈ G,χ (g) �= 0},

then the scalar-valued functions ĤX
χ ,r(τ ) are modular on �(4M) ∩ �0(NX

χ ).
Let

Aχ ,r(τ ) := HX
χ ,r(τ )SXe,1(τ ),

and Ãχ ,r(τ ) be the holomorphic projection of Aχ ,r(τ ). Suppose that HX
χ ,r(τ ) has integral

coefficients up to some bound B. Formulas for the shadow functions (cf. Sect. B.2) show
that the leading coefficient of SXe,1(τ ) is 1 and has integral coefficients. This implies that
the function
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Aχ ,r(τ ) := HX
χ ,r(τ )SXe,1(τ )

also has integral coefficients up to the bound B. The shadow of HX
χ ,r(τ ) is given by

SXχ ,r(τ ) :=
1

|GX |
∑

g
χ (g)SXg,r(τ ).

If X is pure A-type, then SXg,r(τ ) = χ
XA
g,r SM,r(τ ) = (χ ′(g) + χ ′′(g))SM,r(τ ) for some irre-

ducible characters χ ′ and χ ′′, according to “Twisted Euler characters” and “Shadows”.
Therefore,

SXχ ,r(τ ) =
⎧
⎨

⎩
SM,r(τ ) ifχ = χ ′ or χ ′′,
0 otherwise.

When X is not of pure A-type the shadow is some sum of such functions, but in every
case has integer coefficients, and so, applying Theorem 2.1 to Aχ ,r(τ ),we find that Ãχ ,r(τ )
also has integer coefficients up to the bound B. In particular, since Ãχ ,r(τ ) is modular
on �(4M) ∩ �0(NX

χ ), then if B is at least the Sturm bound for this group we have that
every coefficient of Ãχ ,r(τ ) is integral. Since the leading coefficient of SXe,1(τ ) is 1, we may
reverse this argument andwehave that every coefficient ofHX

χ ,r(τ ).Therefore, in order to
check thatHX

χ ,r(τ ) has only integer coefficients, it suffices to check up to the Sturm bound
for �(4M) ∩ �0(Nχ ). These calculations were carried out using the sage mathematical
software [47].
The calculations and argument given above show that the multiplicities mX

χ ,r(n) are all
integers. To complete the proof, it suffices to check that they are also are non-negative.
The proof of this claim follows easily bymodifying step-by-step the argument inGannon’s
proof of non-negativity in theM24 case [37] (i.e. X = A24

1 ). Here, we describe how this is
done.
Expressions for the alleged McKay–Thompson series HX

g,r(τ ) in terms of Rademacher
sums and unary theta functions are given in Sect. B.4. Exact formulas are known for all the
coefficients ofRademacher sumsbecause they aredefinedby averaging the special function
r[α]1/2(γ , τ ) [see (B.114)] over cosets of a specific modular group modulo �∞, the subgroup
of translations. Therefore, Rademacher sums are standard Maass–Poincaré series, and
as a result we have formulas for each of their coefficients as convergent infinite sums
of Kloosterman-type sums weighted by values of the I1/2 modified Bessel function. (For
example, see [8] or [53] for the general theory, and [12] for the specific case thatX = A24

1 .)
More importantly, this means also that the generating function for the multiplicities
mX

χ ,r(n) is a weight 1
2 harmonic Maass form, which in turn means that exact formulas

(modulo the unary theta functions) are also available in similar terms. For positive integers
n, this then means that (cf. Theorem 1.1 of [8])

mX
χ ,r(n) =

∑

ρ

∑

m<0

aXρ (m)

n
1
4

∞∑

c=1

KX
ρ (m, n, c)

c
· IX

(
4π

√|nm|
c

)
, (3.6)

where the sums are over the cusps ρ of the group �0(NX
g ), and finitely many explicit

negative rational numbers m. The constants aXρ (m) are essentially the coefficients which
describe the generating function in terms of Maass–Poincaré series. Here, I is a suitable
normalization and change of variable for the standard I1/2 modified Bessel function.
The Kloosterman-type sumsKX

ρ (m, n, c) are well known to be related to Salié-type sums
(for example see Proposition 5 of [41]). These Salié-type sums are of the form
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SXρ (m, n, c) =
∑

x (mod c)
x2≡−D(m,n) (mod c)

εXρ (m, n) · e
(

βXx
c

)
,

where εXρ (m, n) is a root of unity, −D(m, n) is a discriminant of a positive definite binary
quadratic form, and βX is a nonzero positive rational number.
These Salié sums may then be estimated using the equidistribution of CM points with

discriminant −D(m, n). This process was first introduced by Hooley [38] and was first
applied to the coefficients of weight 1

2 mock modular forms by Bringmann and Ono [7].
Gannon explains how to make effective the estimates for sums of this shape in Sect.
4 of [37], thereby reducing the proof of the M24 case of umbral moonshine to a finite
calculation. In particular, in equations (4.6–4.10) of [37], Gannon shows how to bound
coefficients of the form (3.6) in terms of the Selberg–Kloosterman zeta function, which
is bounded in turn in his proof of Theorem 3 of [37]. We follow Gannon’s proof mutatis
mutandis. We find for most root systems that the coefficients of each multiplicity gen-
erating function are positive beyond the 390th coefficient. In the worst case, for the root
system X = E3

8 , we find that the coefficients are positive beyond the 1780th coefficient.
Moreover, the coefficients exhibit subexponential growth. A finite computer calculation
in sage has verified the non-negativity of the finitely many remaining coefficients. ��

Remark It turns out that the estimates required for proving nonnegativity are the worst
for the X = E3

8 case which required 1780 coefficients.
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Appendix A: The umbral groups
In this section, we present the facts about the umbral groups that we have used in estab-
lishing the main results of this paper. We recall (from [16]) their construction in terms of
Niemeier root systems in Sect. A.1, and reproduce their character tables (appearing also in
[16]) in Sect. A.2. Note that we use the abbreviations an := √−n and bn := (−1+√−n)/2
in the tables of Sect. A.2.
The root system description of the umbral groups (cf. Sect. A.1) gives rise to certain

characters called twisted Euler characters which we recall (from [16]) in Sect. A.3. The
data appearing in Sect. A.3 plays an important role in Sect. B.2, where we use it to describe
the shadows SXg of the umbral McKay–Thompson series HX

g explicitly.

A.1 Construction

Asmentioned in Sect. 1, there are exactly 24 self-dual even positive-definite lattices of rank
24 up to isomorphism, according to the classification of Niemeier [43] (cf. also [19,52]).
Such a lattice L is determined up to isomorphism by its root system L2 := {α ∈ L | 〈α,α〉 =
2}. The unique example without roots is the Leech lattice. We refer to the remaining 23
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as the Niemeier lattices, and call a root system X a Niemeier root system if it occurs as the
root system of a Niemeier lattice.
The simple components of Niemeier root systems are root systems of ADE type, and

it turns out that the simple components of a Niemeier root system X all have the same
Coxeter number. Define mX to be the Coxeter number of any simple component of X ,
and call this the Coxeter number of X .
For X, a Niemeier root system write NX for the corresponding Niemeier lattice. The

umbral group attached to X is defined by setting
GX := Aut(NX )/WX (A.1)

whereWX is the normal subgroup of Aut(NX ) generated by reflections in root vectors.
Observe that GX acts as permutations on the simple components of X . In general this

action is not faithful, so define GX to be the quotient of GX by its kernel. It turns out that
the level of the mock modular formHX

g attached to g ∈ GX is given by the order, denoted
ng , of the image of g in ḠX . (Cf. Sect. A.3 for the values ng .)
The Niemeier root systems and their corresponding umbral groups are described in

Table 1. The root systems are given in terms of their simple components of ADE type.
HereD10E2

7 , for example,means the direct sumof one copy of theD10 root system and two
copies of the E7 root system. The symbol � is called the lambency of X , and the Coxeter
numbermX appears as the first summand of �.
In the descriptions of the umbral groups GX , and their permutation group quotients

ḠX , we write M24 and M12 for the sporadic simple groups of Mathieu which act quin-
tuply transitively on 24 and 12 points, respectively. (Cf., e.g. [21].) We write GLn(q)
for the general linear group of a vector space of dimension n over a field with q ele-
ments, and SLn(q) is the subgroup of linear transformations with determinant 1, &c. The
symbols AGL3(2) denote the affine general linear group, obtained by adjoining transla-
tions to GL3(2). We write Dihn for the dihedral group of order 2n, and Symn denotes
the symmetric group on n symbols. We use n as a shorthand for a cyclic group of
order n.
We also use the notational convention of writing A.B to denote the middle term in

a short exact sequence 1 → A → A.B → B → 1. This introduces some ambiguity
which is nonetheless easily navigated in practice. For example, 2.M12 is the unique (up to
isomorphism) double cover of M12 which is not 2 × M12. The group AGL3(2) naturally
embeds in GL4(2), which in turn admits a unique (up to isomorphism) double cover
2.GL4(2) which is not a direct product. The group we denote 2.AGL3(2) is the preimage
of AGL3(2) < GL4(2) in 2.GL4(2) under the natural projection.

A.2 Character tables

See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35.

A.3 Twisted Euler characters

In this section we reproduce certain characters—the twisted Euler characters—which are
attached to each group GX , via its action on the root system X . (Their construction is
described in detail in Sect. 2.4 of [16].)
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Table 1 The umbral groups

X A241 A122 A83 A64 A45D4 A46 A27D
2
5

� 2 3 4 5 6 7 8

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4
ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A38 A29D6 A11D7E6 A212 A15D9 A17E7 A24

� 9 10 12 13 16 18 25

GX Dih6 4 2 4 2 2 2

ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E27 D2

12 D16E8 D24

� 6+3 10+5 14+7 18+9 22+11 30+15 46+23

GX 3.Sym6 Sym4 Sym3 2 2 1 1

ḠX Sym6 Sym4 Sym3 2 2 1 1

X E46 E38
� 12+4 30+6,10,15

GX GL2(3) Sym3

ḠX PGL2(3) Sym3

To interpret the tables, writeXA for the (possibly empty) union of type A components of
X , and interpret XD and XE similarly, so that ifm = mX Then X = Ad

m−1 for some d, and
X = XA ∪XD ∪XE , for example. Then g �→ χ̄

XA
g denotes the character of the permutation

representation attached to the action of ḠX on the simple components ofXA. The charac-
ters g �→ χ̄

XD
g and g �→ χ̄

XE
g are defined similarly. The characters χ

XA
g , χXD

g , χXE
g and χ̌

XD
g

incorporate outer automorphisms of simple root systems induced by the actionGX on X .
We refer to Sect. 2.4 of [16] for full details of the construction. For the purposes of this
work, it suffices to have the explicit descriptions in the tables in this section. The twisted
Euler characters presented here will be used to specify the umbral shadow functions in
Sect. B.2.
The twisted Euler character tables also attach integers ng and hg to each g ∈ GX . By

definition, ng is the order of the image of g ∈ GX in ḠX (cf. Sect. A.1). The integer hg may
be defined by setting hg := Ng/ng where Ng is the product of the shortest and longest
cycle lengths appearing in the cycle shape attached to g by the action ofGX on a (suitable)
set of simple roots for X .

Appendix B: The umbral McKay–Thompson series
In this section, we describe the umbral McKay–Thompson series in complete detail. In
particular, we present explicit formulas for all the McKay–Thompson series attached to
elements of the umbral groups by umbral moonshine in “Explicit prescriptions” section.
Most of these expressions appearedfirst in [15,16], but someappear for thefirst time in this
work.
To facilitate explicit formulations, we recall certain standard functions in Sect. B.1.

We then, using the twisted Euler characters of Sect. A.3, explicitly describe the shadow
functions of umbralmoonshine in Sect. B.2. TheumbralMcKay–Thompson series defined
in Sect. B.3 may also be described in terms of Rademacher sums, according to the results
of [17]. We present this description in Sect. B.4.
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Table 6 Character table of GX � GL2(3), X ∈ {A45D4, E46 }
[g] FS 1A 2A 2B 4A 3A 6A 8A 8B

[g2] 1A 1A 1A 2A 3A 3A 4A 4A

[g3] 1A 2A 2B 4A 1A 2A 8A 8B

χ1 + 1 1 1 1 1 1 1 1

χ2 + 1 1 −1 1 1 1 −1 −1

χ3 + 2 2 0 2 −1 −1 0 0

χ4 + 3 3 −1 −1 0 0 1 1

χ5 + 3 3 1 −1 0 0 −1 −1

χ6 ◦ 2 −2 0 0 −1 1 a2 a2
χ7 ◦ 2 −2 0 0 −1 1 a2 a2
χ8 + 4 −4 0 0 1 −1 0 0

B.1 Special functions

Throughout this section we assume q := e2π iτ , and u := e2π iz , where τ , z ∈ C with
Im τ > 0. The Dedekind eta function is η(τ ) := q1/24

∏
n>0(1− qn), where . Write�M(τ )

for the function

�M(τ ) := Mq
d
dq

(
log

η(Mτ )
η(τ )

)
= M(M − 1)

24
+ M

∑

k>0

∑

d|k
d

(
qk − MqMk

)
,

which is a modular form of weight two for �0(N ) ifM|N .
Define the Jacobi theta function θ1(τ , z) by setting

θ1(τ , z) := iq1/8u−1/2
∑

n∈Z
(−1)nunqn(n−1)/2. (B.1)

According to the Jacobi triple product identity we have

θ1(τ , z) = −iq1/8u1/2
∏

n>0
(1 − u−1qn−1)(1 − uqn)(1 − qn). (B.2)

The other Jacobi theta functions are

θ2(τ , z) := q1/8u1/2
∏

n>0
(1 + u−1qn−1)(1 + uqn)(1 − qn),

θ3(τ , z) :=
∏

n>0
(1 + u−1qn−1/2)(1 + uqn−1/2)(1 − qn), (B.3)

θ4(τ , z) :=
∏

n>0
(1 − u−1qn−1/2)(1 − uqn−1/2)(1 − qn).

Define �1,1 and �1,−1/2 by setting

�1,1(τ , z) := −i
θ1(τ , 2z)η(τ )3

θ1(τ , z)2
,

�1,−1/2(τ , z) := −i
η(τ )3

θ1(τ , z)
.

(B.4)

These aremeromorphic Jacobi forms ofweight one, with indexes 1 and−1/2, respectively.
Here, the term meromorphic refers to the presence of simple poles in the functions
z �→ �1,∗(τ , z), for fixed τ ∈ H, at lattice points z ∈ Zτ + Z (Cf. Sect. 8 of [22]).
From Sect. 5 of [29] we recall the index m theta functions, form ∈ Z, defined by setting

θm,r(τ , z) :=
∑

k∈Z
u2mk+rq(2mk+r)2/4m, (B.5)
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0
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Table 8 Character table of GX � SL2(3), X = A46
[g] FS 1A 2A 4A 3A 6A 3B 6B

[g2] 1A 1A 2A 3B 3A 3A 3B

[g3] 1A 2A 4A 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1

χ2 ◦ 1 1 1 b3 b3 b3 b3
χ3 ◦ 1 1 1 b3 b3 b3 b3
χ4 + 3 3 −1 0 0 0 0

χ5 − 2 −2 0 −1 1 −1 1

χ6 ◦ 2 −2 0 −b3 b3 −b3 b3
χ7 ◦ 2 −2 0 −b3 b3 −b3 b3

Table 9 Character table of GX � Dih4, X = A27D
2
5

[g] FS 1A 2A 2B 2C 4A

[g2] 1A 1A 1A 1A 2A

χ1 + 1 1 1 1 1

χ2 + 1 1 −1 −1 1

χ3 + 1 1 −1 1 −1

χ4 + 1 1 1 −1 −1

χ5 + 2 −2 0 0 0

Table 10 Character table of GX � Dih6, X = A38
[g] FS 1A 2A 2B 2C 3A 6A

[g2] 1A 1A 1A 1A 3A 3A

[g3] 1A 2A 2B 2C 1A 2A

χ1 + 1 1 1 1 1 1

χ2 + 1 1 −1 −1 1 1

χ3 + 2 2 0 0 −1 −1

χ4 + 1 −1 −1 1 1 −1

χ5 + 1 −1 1 −1 1 −1

χ6 + 2 −2 0 0 −1 1

Table 11 Character table of GX � 4, for X ∈ {A29D6, A212}
[g] FS 1A 2A 4A 4B

[g2] 1A 1A 2A 2A

χ1 + 1 1 1 1

χ2 + 1 1 −1 −1

χ3 ◦ 1 −1 a1 a1
χ4 ◦ 1 −1 a1 a1

Table 12 Character table of GX � PGL2(3) � Sym4, X = D4
6

[g] FS 1A 2A 3A 2B 4A

[g2] 1A 1A 3A 1A 2A

[g3] 1A 2A 1A 2B 4A

χ1 + 1 1 1 1 1

χ2 + 1 1 1 −1 −1

χ3 + 2 2 −1 0 0

χ4 + 3 −1 0 1 −1

χ5 + 3 −1 0 −1 1
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Table 13 Character table of GX � 2, for X ∈ {A11D7E6, A15D9, A17E7, A24, D10E27 , D
2
12}

[g] FS 1A 2A

[g2] 1A 1A

χ1 + 1 1

χ2 + 1 −1

Table 14 Character table of GX � Sym3, X ∈ {D3
8 , E

3
8 }

[g] FS 1A 2A 3A

[g2] 1A 1A 3A

[g3] 1A 2A 1A

χ1 + 1 1 1

χ2 + 1 −1 1

χ3 + 2 0 −1

Table 15 Twisted Euler characters at � = 2, X = A241
[g] 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B

ng|hg 1|1 2|1 2|2 3|1 3|3 4|2 4|1 4|4 5|1 6|1 6|6
χ̄
XA
g 24 8 0 6 0 0 4 0 4 2 0

[g] 7AB 8A 10A 11A 12A 12B 14AB 15AB 21AB 23AB

ng|hg 7|1 8|1 10|2 11|1 12|2 12|12 14|1 15|1 21|3 23|1
χ̄
XA
g 3 2 0 2 0 0 1 1 0 1

where r ∈ Z. Evidently, θm,r only depends on r mod 2m. We set Sm,r(τ ) :=
1

2π i ∂zθm,r(τ , z)
∣∣
z=0, so that

Sm,r(τ ) =
∑

k∈Z
(2mk + r)q(2mk+r)2/4m. (B.6)

For am, a positive integer define

μm,0(τ , z) =
∑

k∈Z
u2kmqmk2 uqk + 1

uqk − 1
= u + 1

u − 1
+ O(q), (B.7)

and observe that we recover �1,1 upon specializing (B.7) tom = 1. Observe also that

μm,0(τ , z + 1/2) =
∑

k∈Z
u2kmqmk2 uqk − 1

uqk + 1
= u − 1

u + 1
+ O(q). (B.8)

Define the even and odd parts of μm,0 by setting

μk
m,0(τ , z) :=

1
2
(μm,0(τ , z) + (−1)kμm,0(τ , z + 1/2)) (B.9)

for k mod 2.
Form, r ∈ Z + 1

2 withm > 0 define half-integral index theta functions

θm,r(τ , z) :=
∑

k∈Z
e(mk + r/2)u2mk+rq(2mk+r)2/4m, (B.10)

and define also Sm,r(τ ) := 1
2π i∂zθm,r(τ , z)|z=0, so that

Sm,r(τ ) =
∑

k∈Z
e(mk + r/2)(2mk + r)q(2mk+r)2/4m. (B.11)

As in the integral index case, θm,r depends only on r mod 2m. We recover −θ1 upon
specializing θm,r tom = r = 1/2.
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Table 17 Twisted Euler characters at � = 4, X = A83
[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

ng|hg 1|1 1|2 2|2 2|4 4|4 2|1 3|1 3|2 6|2 4|8 4|1 7|1 7|2

χ̄
XA
g 8 8 0 0 0 4 2 2 0 0 2 1 1

χ
XA
g 8 −8 0 0 0 0 2 −2 0 0 0 1 −1

Table 18 Twisted Euler characters at � = 5, X = A64
[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

ng|hg 1|1 1|4 2|2 2|1 3|3 3|12 5|1 5|4 2|8 4|1 6|24
χ̄
XA
g 6 6 2 2 0 0 1 1 0 2 0

χ
XA
g 6 −6 −2 2 0 0 1 −1 0 0 0

Table 19 Twisted Euler characters at � = 6, X = A45D4

[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|2 3|1 3|2 4|2

χ̄
XA
g 4 4 2 0 1 1 0

χ
XA
g 4 −4 0 0 1 −1 0

χ̄
XD
g 1 1 1 1 1 1 1

χ
XD
g 1 1 −1 1 1 1 −1

χ̌
XD
g 2 2 0 2 −1 −1 0

Table 20 Twisted Euler characters at � = 6 + 3, X = D6
4

[g] 1A 3A 2A 6A 3B 6C 4A 12A 5A 15AB 2B 2C 4B 6B 6C

ng|hg 1|1 1|3 2|1 2|3 3|1 3|3 4|2 4|6 5|1 5|3 2|1 2|2 4|1 6|1 6|6
χ̄
XD
g 6 6 2 2 3 0 0 0 1 1 4 0 2 1 0

χ
XD
g 6 6 2 2 3 0 0 0 1 1 −4 0 −2 −1 0

χ̌
XD
g 12 −6 4 −2 0 0 0 0 2 −1 0 0 0 0 0

Table 21 Twisted Euler characters at � = 7, X = A46
[g] 1A 2A 4A 3AB 6AB

ng|hg 1|1 1|4 2|8 3|1 3|4

χ̄
XA
g 4 4 0 1 1

χ
XA
g 4 −4 0 1 −1

Table 22 Twisted Euler characters at � = 8, X = A27D
2
5

[g] 1A 2A 2B 2C 4A

ng|hg 1|1 1|2 2|1 2|1 2|4
χ̄
XA
g 2 2 0 2 0

χ
XA
g 2 −2 0 0 0

χ̄
XD
g 2 2 2 0 0

χ
XD
g 2 −2 0 0 0

Table 23 Twisted Euler characters at � = 9, X = A38
[g] 1A 2A 2B 2C 3A 6A

ng|hg 1|1 1|4 2|1 2|2 3|3 3|12
χ̄
XA
g 3 3 1 1 0 0

χ
XA
g 3 −3 1 −1 0 0
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Table 24 Twisted Euler characters at � = 10, X = A29D6

[g] 1A 2A 4AB

ng|hg 1|1 1|2 2|2

χ̄
XA
g 2 2 0

χ
XA
g 2 −2 0

χ̄
XD
g 1 1 1

χ
XD
g 1 1 −1

Table 25 Twisted Euler characters at � = 10 + 5, X = D4
6

[g] 1A 2A 3A 2B 4A

ng|hg 1|1 2|2 3|1 2|1 4|4
χ̄
XD
g 4 0 1 2 0

χ
XD
g 4 0 1 −2 0

Table 26 Twisted Euler characters at � = 12, X = A11D7E6
[g] 1A 2A

ng|hg 1|1 1|2

χ̄
XA
g 1 1

χ
XA
g 1 −1

χ̄
XD
g 1 1

χ
XD
g 1 −1

χ̄
XE
g 1 1

χ
XE
g 1 −1

Table 27 Twisted Euler characters at � = 12 + 4, X = E46
[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|4 3|1 3|2 4|8
χ̄
XE
g 4 4 2 0 1 1 0

χ
XE
g 4 −4 0 0 1 −1 0

Table 28 Twisted Euler characters at � = 13, X = A212
[g] 1A 2A 4AB

ng|hg 1|1 1|4 2|8
χ̄
XA
g 2 2 0

χ
XA
g 2 −2 0

Table 29 Twisted Euler characters at � = 14 + 7, X = D3
8

[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3
χ̄
XD
g 3 1 0

χ
XD
g 3 1 0

Table 30 Twisted Euler characters at � = 16, X = A15D9

[g] 1A 2A

ng|hg 1|1 1|2

χ̄
XA
g 1 1

χ
XA
g 1 −1

χ̄
XD
g 1 1

χ
XD
g 1 −1



Duncan et al. Res Math Sci (2015) 2:26 Page 27 of 47

Table 31 Twisted Euler characters at � = 18, X = A17E7
[g] 1A 2A

ng|hg 1|1 1|2

χ̄
XA
g 1 1

χ
XA
g 1 −1

χ̄
XE
g 1 1

Table 32 Twisted Euler characters at � = 18 + 9, X = D10E27
[g] 1A 2A

ng|hg 1|1 2|1

χ̄
XD
g 1 1

χ
XD
g 1 −1

χ̄
XE
g 2 0

Table 33 Twisted Euler characters at � = 22 + 11, X = D2
12

[g] 1A 2A

ng|hg 1|1 2|2
χ̄
XD
g 2 0

χ
XD
g 2 0

Table 34 Twisted Euler characters at � = 25, X = A24
[g] 1A 2A

ng|hg 1|1 1|4

χ̄
XA
g 1 1

χ
XA
g 1 −1

Table 35 Twisted Euler characters at � = 30 + 6, 10, 15, X = E38
[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3
χ̄
XE
g 3 1 0

Form ∈ Z + 1/2,m > 0, define

μm,0(τ , z) := i
∑

k∈Z
(−1)ku2mk+1/2qmk2+k/2 1

1 − uqk
= −iu1/2

y − 1
+ O(q). (B.12)

Given α ∈ Q write [α] for the operator on q-series (in rational, possibility negative
powers of q) that eliminates exponents not contained inZ+α, so that if f = ∑

β∈Q c(β)qβ

then

[α]f :=
∑

n∈Z
c(n + α)qn+α (B.13)
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B.2 Shadows

Let X be a Niemeier root system and m = mX be the Coxeter number of X . For g ∈ GX,
we define the associated shadow function SXg = (SXg,r) by setting

SXg := SXA
g + SXD

g + SXE
g (B.14)

where the SXA
g , &c., are defined in the following way, in terms of the twisted Euler charac-

ters χ
XA
g , &c. given in Sect. A.3, and the unary theta series Sm,r (cf. (B.6)).

Note that if m = mX then SXg,r = SXg,r+2m = −SXg,−r for all g ∈ GX , so we need specify
the SXA

g,r , &c., only for 0 < r < m.
If XA = ∅ then SXA

g := 0. Otherwise, we define SXA
g,r for 0 < r < m by setting

SXA
g,r :=

⎧
⎨

⎩
χ
XA
g Sm,r if r = 0 mod 2,

χ̄
XA
g Sm,r if r = 1 mod .

(B.15)

If XD = ∅ then SXD
g := 0. If XD �= ∅ thenm is even andm ≥ 6. Ifm = 6 then set

SXD
g,r :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if r = 0 mod 2,

χ̄
XD
g S6,r + χ

XD
g S6,6−r if r = 1, 5 mod 6,

χ̌
XD
g S6,r if r = 3 mod 6.

(B.16)

Ifm > 6 andm = 2 mod 4 then set

SXD
g,r :=

⎧
⎨

⎩
0 if r = 0 mod 2,

χ̄
XD
g Sm,r + χ

XD
g Sm,m−r ifr = 1 mod 2.

(B.17)

Ifm > 6 andm = 0 mod 4 then set

SXD
g,r :=

⎧
⎨

⎩
χ
XD
g Sm,m−r ifr = 0 mod 2,

χ̄
XD
g Sm,r ifr = 1 mod 2.

(B.18)

If XE = ∅ then SXE
g := 0. Otherwise,m is 12 or 18 or 30. In case m = 12 define SXE

g,r for
0 < r < 12 by setting

SXE
g,r =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ̄
XE
g (S12,1 + S12,7) if r ∈ {1, 7},

χ̄
XE
g (S12,5 + S12,11) if r ∈ {5, 11},

χ
XE
g (S12,4 + S12,8) if r ∈ {4, 8},

0 else.

(B.19)

In casem = 18 define SXE
g,r for 0 < r < 18 by setting

SXE
g,r =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ̄
XE
g (S18,r + S18,18−r ) if r ∈ {1, 5, 7, 11, 13, 17},

χ̄
XE
g S18,9 if r ∈ {3, 15},

χ̄
XE
g (S18,3 + S18,9 + S18,15) if r = 9,

0 else.

(B.20)

In casem = 30 define SXE
g,r for 0 < r < 30 by setting

SXE
g,r =

⎧
⎪⎪⎨

⎪⎪⎩

χ̄
XE
g (S30,1 + S30,11 + S30,19 + S30,29) if r ∈ {1, 11, 19, 29},

χ̄
XE
g (S30,7 + S30,13 + S30,17 + S30,23) if r ∈ {7, 13, 17, 23},

0 else.

(B.21)
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B.3 Explicit prescriptions

Here, we give explicit expressions for all the umbral McKay–Thompson series HX
g . Most

of these appeared first in [15,16]. The expressions in Sects. B.3.3, B.3.4, B.3.7 and B.3.14
are taken from [26]. The expressions in Sects. B.3.11, B.3.15, B.3.19 and B.3.23 are taken
from [14]. The expressions forHX

g with X = E3
8 appeared first in [25]. The expression for

H (6+3)
2B,1 in Sect. B.3.6, and the expressions for H (12+4)

4A,r and H (12+4)
8AB,r in Sect. B.3.13, appears

here for the first time.
The labels for conjugacy classes in GX are as in Sect. A.2.

B.3.1 � = 2, X = A241
We have G(2) = GX � M24 andmX = 2. So for g ∈ M24, the associated umbral McKay–
Thompson series H (2)

g = (H (2)
g,r ) is a 4-vector-valued function, with components indexed

by r ∈ Z/4Z, satisfying H (2)
g,r = −H (2)

g,−r , and in particular, H (2)
g,r = 0 for r = 0 mod 2. So

it suffices to specify the H (2)
g,1 explicitly.

Define H (2)
g = (H (2)

g,r ) for g = e by requiring that

− 2�1,1(τ , z)ϕ(2)
1 (τ , z) = −24μ2,0(τ , z) +

∑

r mod 4
H (2)
e,r (τ )θ2,r(τ , z), (B.22)

where

ϕ
(2)
1 (τ , z) := 4

(
θ2(τ , z)2

θ2(τ , 0)2
+ θ3(τ , z)2

θ3(τ , 0)2
+ θ4(τ , z)2

θ4(τ , 0)2

)
. (B.23)

More generally, for g ∈ G(2) define

H (2)
g,1 (τ ) :=

χ̄
(2)
g

24
H (2)
e,1 (τ ) − F (2)

g (τ )
1

S2,1(τ )
, (B.24)

where χ̄
(2)
g and F (2)

g are as specified in Table 36. Note that χ̄ (2)
g = χ̄

XA
g , the latter appearing

in Table 15. Also, S2,1(τ ) = η(τ )3.
The functions f23,a and f23,b in Table 36 are cusp forms of weight two for �0(23), defined

by

f23,a(τ ) := η(τ )3η(23τ )3

η(2τ )η(46τ )
+ 3η(τ )2η(23τ )2

+ 4η(τ )η(2τ )η(23τ )η(46τ ) + 4η(2τ )2η(46τ )2, (B.25)

f23,b(τ ) := η(τ )2η(23τ )2.

Note that the definition of F (2)
g appearing here for g ∈ 23A∪23B corrects errors in [11,12].

B.3.2 � = 3, X = A122
We have G(3) = GX � 2.M12 and mX = 3. So for g ∈ 2.M12, the associated umbral
McKay–Thompson series H (3)

g = (H (3)
g,r ) is a 6-vector-valued function, with components

indexed by r ∈ Z/6Z, satisfying H (3)
g,r = −H (3)

g,−r , and in particular, H (3)
g,r = 0 for r = 0

mod 3. So it suffices to specify the H (3)
g,1 and H (3)

g,2 explicitly.
Define H (3)

g = (H (3)
g,r ) for g = e by requiring that

− 2�1,1(τ , z)ϕ(3)
1 (τ , z) = −12μ3,0(τ , z) +

∑

r mod 6
H (3)
e,r (τ )θ3,r(τ , z), (B.26)
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Table 36 Character values and weight two forms for � = 2, X = A241
[g] χ̄

(2)
g F (2)g (τ )

1A 24 0

2A 8 16�2(τ )

2B 0 2η(τ )8η(2τ )−4

3A 6 6�3(τ )

3B 0 2η(τ )6η(3τ )−2

4A 0 2η(2τ )8η(4τ )−4

4B 4 4(−�2(τ ) + �4(τ ))

4C 0 2η(τ )4η(2τ )2η(4τ )−2

5A 4 2�5(τ )

6A 2 2(−�2(τ ) − �3(τ ) + �6(τ ))

6B 0 2η(τ )2η(2τ )2η(3τ )2η(6τ )−2

7AB 3 �7(τ )

8A 2 −�4(τ ) + �8(τ )

10A 0 2η(τ )3η(2τ )η(5τ )η(10τ )−1

11A 2 2(�11(τ ) − 11η(τ )2η(11τ )2)/5

12A 0 2η(τ )3η(4τ )2η(6τ )3η(2τ )−1η(3τ )−1η(12τ )−2

12B 0 2η(τ )4η(4τ )η(6τ )η(2τ )−1η(12τ )−1

14AB 1 (−�2(τ ) − �7(τ ) + �14(τ ) − 14η(τ )η(2τ )η(7τ )η(14τ ))/3

15AB 1 (−�3(τ ) − �5(τ ) + �15(τ ) − 15η(τ )η(3τ )η(5τ )η(15τ ))/4

21AB 0 (7η(τ )3η(7τ )3η(3τ )−1η(21τ )−1 − η(τ )6η(3τ )−2)/3

23AB 1 (�23(τ ) − 23f23,a(τ ) − 69f23,b(τ ))/11

where

ϕ
(3)
1 (τ , z) := 2

(
θ3(τ , z)2

θ3(τ , 0)2
θ4(τ , z)2

θ4(τ , 0)2
+ θ4(τ , z)2

θ4(τ , 0)2
θ2(τ , z)2

θ2(τ , 0)2
+ θ2(τ , z)2

θ2(τ , 0)2
θ3(τ , z)2

θ3(τ , 0)2

)
. (B.27)

More generally, for g ∈ G(3) define

H (3)
g,1 (τ ) :=

χ̄
(3)
g

12
H (3)
e,1 (τ ) + 1

2

(
F (3)
g + F (3)

zg
) 1
S3,1(τ )

, (B.28)

H (3)
g,2 (τ ) :=

χ
(3)
g

12
H (3)
e,1 (τ ) + 1

2

(
F (3)
g − F (3)

zg
) 1
S3,2(τ )

, (B.29)

where χ
(3)
g and F (3)

g are as specified in Table 37, and z is the non-trivial central element of
G(3). The action of g �→ zg on conjugacy classes can be read offTable 37, for the horizontal
lines indicate the sets [g] ∪ [zg].
Note the eta product identities, S3,1(τ ) = η(2τ )5/η(4τ )2, and S3,2(τ ) = 2η(τ )2η(4τ )2/

η(2τ ). Note also that χ̄
(3)
g = χ̄

XA
g and χ

(3)
g = χ

XA
g , the latter appearing in Table 16.

The function f44 is the unique new cusp form of weight 2 for �0(44), normalized so that
f44(τ ) = q+O(q3) as �(τ ) → ∞. The coefficients cg (d) and c′g (d) for g ∈ 10A∪22A∪22B
are given by

c10A(2) = −5, c10A(4) = −5
3
, c10A(5) = −2

3
, c10A(10) = 1, c10A(20) = −1

3
, (B.30)

c22AB(2) = −11
5
, c22AB(4) = 11

5
, c22AB(11) = − 2

15
,

c22AB(22) = 1
5
, c22AB(44) = − 1

15
, (B.31)

c′22AB(1) = 1, c′22AB(2) = 4, c′22AB(4) = 8. (B.32)
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Table 37 Character values and weight two forms for � = 3, X = A122
[g] χ̄

(3)
g χ

(3)
g F (3)g (τ )

1A 12 12 0

2A 12 −12 0

4A 0 0 −2η(τ )4η(2τ )2/η(4τ )2

2B 4 4 −16�2(τ )

2C 4 −4 16�2(τ ) − 16
3 �4(τ )

3A 3 3 −6�3(τ )

6A 3 −3 −9�2(τ ) − 2�3(τ ) + 3�4(τ ) + 3�6(τ ) − �12(τ )

3B 0 0 8�3(τ ) − 2�9(τ ) + 2 η6(τ )/η2(3τ )

6B 0 0 −2η(τ )5η(3τ )/η(2τ )η(6τ )

4B 0 0 −2η(2τ )8/η(4τ )4

4C 4 0 −8�4(τ )/3

5A 2 2 −2�5(τ )

10A 2 −2
∑

d|20 c10A(d)�d (τ ) + 20
3 η(2τ )2η(10τ )2

12A 0 0 −2η(τ )η(2τ )5η(3τ )/η(4τ )2η(6τ )

6C 1 1 2(�2(τ ) + �3(τ ) − �6(τ ))

6D 1 −1 −5�2(τ ) − 2�3(τ ) + 5
3�4(τ ) + 3�6(τ ) − �12(τ )

8AB 0 0 −2η(2τ )4η(4τ )2/η(8τ )2

8CD 2 0 −2�2(τ ) + 5
3�4(τ ) − �8(τ )

20AB 0 0 −2η(2τ )7η(5τ )/η(τ )η(4τ )2η(10τ )

11AB 1 1 − 2
5�11(τ ) − 33

5 η(τ )2η(11τ )2

22AB 1 −1
∑

d|44 cg(d)�d (τ ) − 11
5

∑
d|4 c′

g(d)η(dτ )2η(11dτ )2 + 22
3 f44(τ )

Table 38 Character values andmeromorphic Jacobi forms for � = 4, X = A83
[g] χ

(4)
g χ̄

(4)
g ψ

(4)
g (τ , z)

1A 8 8 2iθ1(τ , 2z)3θ1(τ , z)−4η(τ )3

2A −8 8 2iθ1(τ , 2z)3θ2(τ , z)−4η(τ )3

2B 0 0 −2iθ1(τ , 2z)3θ1(τ , z)−2θ2(τ , z)−2η(τ )3

4A 0 0 −2iθ1(τ , 2z)θ2(τ , 2z)2θ2(2τ , 2z)−2η(2τ )2η(τ )−1

4B 0 0 −2iθ1(2τ , 2z)θ3(2τ , 2z)2θ4(2τ , 2z)η(2τ )2η(τ )−2η(4τ )−2

2C 0 4 2iθ1(τ , 2z)θ2(τ , 2z)2θ1(τ , z)−2θ2(τ , z)−2η(τ )3

3A 2 2 2iθ1(3τ , 6z)θ1(τ , z)−1θ1(3τ , 3z)−1η(τ )3

6A −2 2 −2iθ1(3τ , 6z)θ2(τ , z)−1θ2(3τ , 3z)−1η(τ )3

6BC 0 0 cf. (B.34)

8A 0 0 −2iθ1(τ , 2z)θ2(2τ , 4z)θ2(4τ , 4z)−1η(τ )η(4τ )η(2τ )−1

4C 0 2 2iθ1(τ , 2z)θ2(2τ , 4z)θ1(2τ , 2z)−2η(2τ )7η(τ )−3η(4τ )−2

7AB 1 1 cf. (B.34)

14AB −1 1 cf. (B.34)

B.3.3 � = 4, X = A83
We have mX = 4, so the umbral McKay–Thompson series H (4)

g = (H (4)
g,r ) associated to

g ∈ G(4) is an 8-vector-valued function, with components indexed by r ∈ Z/8Z.
Define H (4)

g = (H (4)
g,r ) for g ∈ G(4), g /∈ 4C , by requiring that

ψ
(4)
g (τ , z) = −χ

(4)
g μ0

4,0(τ , z) − χ̄
(4)
g μ1

4,0(τ , z) +
∑

r mod 8
H (4)
g,r (τ )θ4,r(τ , z), (B.33)

where χ
(4)
g := χ

XA
g and χ̄

(4)
g := χ̄

XA
g (cf. Table 17), and the ψ

(4)
g are meromorphic Jacobi

forms of weight 1 and index 4 given explicitly in Table 38.
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ψ
(4)
6BC := (

θ1(τ , z + 1
3 )θ1(τ , z + 1

6 ) − θ1(τ , z − 1
3 )θ1(τ , z − 1

6 )
)

× −iθ1(3τ , 6z)
θ1(3τ , 3z)θ2(3τ , 3z)

η(3τ )

ψ
(4)
7AB :=

⎛

⎝
3∏

j=1
θ1(τ , 2z + j2

7 )θ1(τ , z − j2
7 ) +

3∏

j=1
θ1(τ , 2z − j2

7 )θ1(τ , z + j2
7 )

⎞

⎠

× −i
θ1(7τ , 7z)

η(7τ )
η(τ )4

ψ
(4)
14AB :=

⎛

⎝
3∏

j=1
θ1(τ , 2z + j2

7 )θ2(τ , z − j2
7 ) +

3∏

j=1
θ1(τ , 2z − j2

7 )θ2(τ , z + j2
7 )

⎞

⎠

× i
θ2(7τ , 7z)

η(7τ )
η(τ )4

(B.34)

For use later on, note that ψ
(4)
1A = −2�1,1ϕ

(4)
1 , where

ϕ
(4)
1 (τ , z) := θ1(τ , 2z)2

θ1(τ , z)2
. (B.35)

B.3.4 � = 5, X = A64
We have mX = 5, so the umbral McKay–Thompson series H (5)

g = (H (5)
g,r ) associated to

g ∈ G(5) is a 10-vector-valued function, with components indexed by r ∈ Z/10Z.
Define H (5)

g = (H (5)
g,r ) for g ∈ G(5), g /∈ 5A ∪ 10A, by requiring that

ψ
(5)
g (τ , z) = −χ

(5)
g μ0

5,0(τ , z) − χ̄
(5)
g μ1

5,0(τ , z) +
∑

r mod 10
H (5)
g,r (τ )θ5,r(τ , z), (B.36)

where χ
(5)
g := χ

XA
g and χ̄

(5)
g := χ̄

XA
g (cf. Table 18), and the ψ

(5)
g are meromorphic Jacobi

forms of weight 1 and index 5 given explicitly in Table 39.

ψ
(5)
4AB(τ , z) := −iθ2(τ , 2z)

θ1(τ , z + 1
4 )θ1(τ , 3z + 1

4 ) − θ1(τ , z − 1
4 )θ1(τ , 3z − 1

4 )
θ2(2τ , 2z)2

η(2τ )2

η(τ )

ψ
(5)
4CD(τ , z) := −iθ2(τ , 2z)

θ1(τ , z + 1
4 )θ1(τ , 3z − 1

4 ) + θ1(τ , z − 1
4 )θ1(τ , 3z + 1

4 )
θ1(2τ , 2z)θ2(2τ , 2z)

η(2τ )2

η(τ )

ψ
(5)
12AB(τ , z) := i

θ2(τ , 2z)
θ2(6τ , 6z)

(
θ1(τ , z + 1

12 )θ1(τ , z + 1
4 )θ1(τ , z + 5

12 )θ1(τ , 3z − 1
4 )

− θ1(τ , z − 1
12 )θ1(τ , z − 1

4 )θ1(τ , z − 5
12 )θ1(τ , 3z + 1

4 )
) η(6τ )

η(τ )3
(B.37)

Table 39 Character values andmeromorphic Jacobi forms for � = 5, X = A64
[g] χ

(5)
g χ̄

(5)
g ψ

(5)
g (τ , z)

1A 6 6 2iθ1(τ , 2z)θ1(τ , 3z)θ1(τ , z)−3η(τ )3

2A −6 6 −2iθ1(τ , 2z)θ2(τ , 3z)θ2(τ , z)−3η(τ )3

2B −2 2 −2iθ1(τ , 2z)θ1(τ , 3z)θ1(τ , z)−1θ2(τ , z)−2η(τ )3

2C 2 2 2iθ1(τ , 2z)θ2(τ , 3z)θ1(τ , z)−2θ2(τ , z)−1η(τ )3

3A 0 0 −2iθ1(τ , 2z)θ1(τ , 3z)θ1(3τ , 3z)−1η(3τ )

6A 0 0 −2iθ1(τ , 2z)θ2(τ , 3z)θ2(3τ , 3z)−1η(3τ )

4AB 0 0 cf. (B.37)

4CD 0 2 cf. (B.37)

12AB 0 0 cf. (B.37)
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For g ∈ 5A use the formulas of Sect. B.3.20 to define

H (5)
5A,r(τ ) := H (25)

1A,r(τ/5) − H (25)
1A,10−r (τ/5) + H (25)

1A,10+r (τ/5) − H (25)
1A,20−r (τ/5)

+H (25)
1A,20+r (τ/5). (B.38)

For g ∈ 10A set H (5)
10A,r (τ ) := −(−1)rH (5)

5A,r(τ ).
For use later on we note that ψ

(5)
1A = −2�1,1ϕ

(5)
1 , where

ϕ
(5)
1 (τ , z) := θ1(τ , 3z)

θ1(τ , z)
. (B.39)

B.3.5 � = 6, X = A45D4

We have mX = 6, so the umbral McKay–Thompson series H (6)
g = (H (6)

g,r ) associated to
g ∈ G(6) is a 12-vector-valued function with components indexed by r ∈ Z/12Z. We have
H (6)
g,r = −H (6)

g,−r , so it suffices to specify the H (6)
g,r for r ∈ {1, 2, 3, 4, 5}.

To define H (6)
g = (H (6)

g,r ) for g = e, first define h(τ ) = (hr(τ )) by requiring that

− 2�1,1(τ , z)ϕ(6)
1 (τ , z) = −24μ6,0(τ , z) +

∑

r mod 12
hr(τ )θ6,r(τ , z), (B.40)

where

ϕ
(6)
1 (τ , z) := ϕ

(2)
1 (τ , z)ϕ(5)

1 (τ , z) − ϕ
(3)
1 (τ , z)ϕ(4)

1 (τ , z). (B.41)

[Cf. (B.23), (B.27), (B.35), (B.39).] Now define the H (6)
1A,r by setting

H (6)
1A,1(τ ) :=

1
24

(5h1(τ ) + h5(τ )) ,

H (6)
1A,2(τ ) :=

1
6
h2(τ ),

H (6)
1A,3(τ ) :=

1
4
h3(τ ), (B.42)

H (6)
1A,4(τ ) :=

1
6
h4(τ ),

H (6)
1A,5(τ ) :=

1
24

(h1(τ ) + 5h5(τ )) .

Define H (6)
2A,r by requiring

H (6)
2A,r(τ ) := −(−1)rH (6)

1A,r(τ ). (B.43)

For the remaining g , recall (B.13). The H (6)
g,r for g /∈ 1A ∪ 2A are defined as follows for

r = 2 and r = 4, noting that H (3)
g,4 = H (3)

g,−2 = −H (3)
g,2 .

H (6)
2B,r (τ ) :=

[ − r2
24

]
H (3)
4C,r(τ/2)

H (6)
4A,r(τ ) :=

[ − r2
24

]
H (3)
4B,r(τ/2)

H (6)
3A,r (τ ) :=

[ − r2
24

]
H (3)
6C,r(τ/2) (B.44)

H (6)
6A,r (τ ) :=

[ − r2
24

]
H (3)
6D,r(τ/2)

H (6)
8AB,r (τ ) :=

[ − r2
24

]
H (3)
8CD,r(τ/2)
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For the H (6)
g,3 we define

H (6)
2B,3(τ ), H

(6)
4A,3(τ ) := −[ − 9

24
]
H (2)
6A,1(τ/3),

H (6)
3A,3(τ ), H

(6)
6A,3(τ ) := 0, (B.45)

H (6)
8AB,3(τ ) := −[ − 9

24
]
H (2)
12A,1(τ/3).

Noting that H (2)
g,5 = H (2)

g,1 and H (3)
g,5 = −H (3)

g,1 , the H
(6)
g,1 and H (6)

g,5 are defined for o(g) �= 0
mod 3 by setting

H (6)
2B,r (τ ) :=

[ − 1
24

]1
2

(
H (2)
6A,r(τ/3) + H (3)

4C,r(τ/2)
)

H (6)
4A,r(τ ) :=

[ − 1
24

]1
2

(
H (2)
6A,r(τ/3) + H (3)

4B,r(τ/2)
)

(B.46)

H (6)
8AB,r (τ ) :=

[ − 1
24

]1
2

(
H (2)
12A,r (τ/3) + H (3)

8CD,r (τ/2)
)
.

It remains to specify theH (6)
g,r when g ∈ 3A∪6A and r is 1 or 5. These cases are determined

using the formulas of Sect. B.3.17 to set

H (6)
3A,1(τ ), H

(6)
6A,1(τ ) := H (18)

1A,1(3τ ) − H (18)
1A,11(3τ ) + H (18)

1A,13(3τ ),

H (6)
3A,5(τ ), H

(6)
6A,5(τ ) := H (18)

1A,5(3τ ) − H (18)
1A,7(3τ ) + H (18)

1A,17(3τ ).
(B.47)

B.3.6 � = 6 + 3, X = D6
4

We have mX = 6, so the umbral McKay–Thompson series H (6+3)
g = (H (6+3)

g,r ) associated
to g ∈ G(6+3) is a 12-vector-valued function with components indexed by r ∈ Z/12Z. In
addition to the identity H (6+3)

g,r = −H (6+3)
g,−r , we have H (6+3)

g,r = 0 for r = 0 mod 2. Thus,
it suffices to specify the H (6+3)

g,r for r ∈ {1, 3, 5}.
Recall (B.13). For r = 1, define

H (6+3)
1A,1 (τ ), H (6+3)

3A,1 (τ ) := H (6)
1A,1(τ ) + H (6)

1A,5(τ ),

H (6+3)
2A,1 (τ ), H (6+3)

6A,1 (τ ) := H (6)
2B,1(τ ) + H (6)

2B,5(τ ),

H (6+3)
3B,1 (τ ) := H (6)

3A,1(τ ) + H (6)
3A,5(τ ),

H (6+3)
3C,1 (τ ) := −2

η(τ )2

η(3τ )
,

H (6+3)
4A,1 (τ ), H (6+3)

12A,1 (τ ) := H (6)
8AB,1(τ ) + H (6)

8AB,5(τ ),

H (6+3)
5A,1 (τ ), H (6+3)

15A,1 (τ ) := [− 1
24 ]H

(2)
15AB,1(τ/3),

H (6+3)
2C,1 (τ ) := H (6)

4A,1(τ ) − H (6)
4A,5(τ ),

H (6+3)
4B,1 (τ ) := H (6)

8AB,1(τ ) − H (6)
8AB,5(τ ),

H (6+3)
6B,1 (τ ) := H (6)

6A,1(τ ) − H (6)
6A,5(τ ),

H (6+3)
6C,1 (τ ) := −2

η(2τ ) η(3τ )
η(6τ )

.

(B.48)

Then, define H (6+3)
2B,1 by setting

H (6+3)
2B,1 (τ ) := 2H (6+3)

4B,1 (τ ) + 2
η(τ )3

η(2τ )2
. (B.49)
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For r = 3 set

H (6+3)
1A,3 (τ ) := 2H (6)

1A,3(τ ),

H (6+3)
3A,3 (τ ) := −H (6)

1A,3(τ ),

H (6+3)
2A,3 (τ ) := 2H (6)

2B,3(τ ),

H (6+3)
6A,3 (τ ) := −H (6)

2B,3(τ ),

H (6+3)
4A,3 (τ ) := 2H (6)

8AB,3(τ ),

H (6+3)
12A,3 (τ ) := −H (6)

8AB,3(τ ),

H (6+3)
5A,3 (τ ) := −2[− 9

24 ]H
(2)
15AB,1(τ ),

H (6+3)
15A,3 (τ ) := [− 9

24 ]H
(2)
15AB,1(τ ),

(B.50)

and

H (6+3)
3B,3 (τ ), H (6+3)

3C,3 (τ ), H (6+3)
2B,3 (τ ), H (6+3)

2C,3 (τ ), H (6+3)
4B,3 (τ ), H (6+3)

6B,3 (τ ), H (6+3)
6C,3 (τ ) := 0.

(B.51)

For r = 5 define H (6+3)
g,5 (τ ) := H (6+3)

g,1 (τ ) for [g] ∈ {1A, 3A, 2A, 6A, 3B, 3C, 4A, 12A,
5A, 15AB}, and set H (6+3)

g,5 (τ ) := −H (6+3)
g,1 (τ ) for the remaining cases, [g] ∈ {2B, 2C, 4B,

6B, 6C}.

B.3.7 � = 7, X = A46
We have mX = 7, so the umbral McKay–Thompson series H (7)

g = (H (7)
g,r ) associated to

g ∈ G(7) = GX � SL2(3) is a 14-vector-valued function, with components indexed by
r ∈ Z/14Z.
Define H (7)

g = (H (7)
g,r ) for g ∈ G(7) by requiring that

ψ
(7)
g (τ , z) = −χ

(7)
g μ0

7,0(τ , z) − χ̄
(7)
g μ1

7,0(τ , z) +
∑

r mod 14
H (7)
g,r (τ )θ7,r(τ , z), (B.52)

where χ
(7)
g := χ

XA
g and χ̄

(7)
g := χ̄

XA
g (cf. Table 21), and the ψ

(7)
g are meromorphic Jacobi

forms of weight 1 and index 7 given explicitly in Table 40.

ψ
(7)
3A (τ , z) := −i

θ1(τ , 4z + 1
3 )θ1(τ , z − 1

3 ) + θ1(τ , 4z − 1
3 )θ1(τ , z + 1

3 )
θ1(3τ , 3z)

η(3τ )

ψ
(7)
6A (τ , z) := −i

θ1(τ , 4z + 1
3 )θ1(τ , z − 1

6 ) − θ1(τ , 4z − 1
3 )θ1(τ , z + 1

6 )
θ2(3τ , 3z)

η(3τ )
(B.53)

For use later on we note that ψ
(7)
1A = −2�1,1ϕ

(7)
1 , where

ϕ
(7)
1 (τ , z) := θ1(τ , 4z)

θ1(τ , 2z)
. (B.54)

Table 40 Character values andmeromorphic Jacobi forms for � = 7, X = A46
[g] χ

(7)
g χ̄

(7)
g ψ

(7)
g (τ , z)

1A 4 4 2iθ1(τ , 4z)θ1(τ , z)−2η(τ )3

2A −4 4 −2iθ1(τ , 4z)θ2(τ , z)−2η(τ )3

4A 0 0 −2iθ1(τ , 4z)θ2(2τ , 2z)−1η(2τ )η(τ )

3A 1 1 cf. (B.53)

6A −1 1 cf. (B.53)
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B.3.8 � = 8, X = A27D
2
5

We have mX = 8, so the umbral McKay–Thompson series H (8)
g = (H (8)

g,r ) associated to
g ∈ G(8) is a 16-vector-valued function with components indexed by r ∈ Z/16Z. We have
H (8)
g,r = −H (8)

g,−r , so it suffices to specify the H (8)
g,r for r ∈ {1, 2, 3, 4, 5, 6, 7}.

To define H (8)
g = (H (8)

g,r ) for g = e, first define h(τ ) = (hr(τ )) by requiring that

− 2�1,1(τ , z)
(

ϕ
(8)
1 (τ , z) + 1

2
ϕ
(8)
2 (τ , z)

)
= −24μ8,0(τ , z) +

∑

r mod 16
hr(τ )θ8,r(τ , z),

(B.55)

where

ϕ
(8)
1 (τ , z) := ϕ

(3)
1 (τ , z)ϕ(6)

1 (τ , z) − 5ϕ(4)
1 (τ , z)ϕ(5)

1 (τ , z),

ϕ
(8)
2 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(5)

1 (τ , z) − ϕ
(8)
1 (τ , z).

(B.56)

[Cf. (B.27), (B.35), (B.39), (B.41).] Now define the H (8)
1A,r by setting

H (8)
1A,r(τ ) :=

1
6
hr(τ ), (B.57)

for r ∈ {1, 3, 4, 5, 7}, and

H (8)
1A,2(τ ), H

(8)
1A,6(τ ) :=

1
12

(h2(τ ) + h6(τ )) . (B.58)

Define H (8)
2A,r for 1 ≤ r ≤ 7 by requiring

H (8)
2A,r(τ ) := −(−1)rH (8)

1A,r(τ ). (B.59)

For the remaining g , recall (B.13). The H (8)
g,r for g ∈ 2B ∪ 2C ∪ 4A are defined as follows

for r ∈ {1, 3, 5, 7}, noting that H (4)
g,7 = H (4)

g,−1 = −H (4)
g,1 , &c.

H (8)
2BC,r (τ ) := [− r2

32 ]H
(4)
4C,r(τ/2)

H (8)
4A,r(τ ) := [− r2

32 ]H
(4)
4B,r(τ/2)

(B.60)

The H (8)
2BC,r and H (8)

4A,r vanish for r = 0 mod 2.

B.3.9 � = 9, X = A38
We have mX = 9, so for g ∈ G(9) the associated umbral McKay–Thompson series
H (9)
g = (H (9)

g,r ) is a 18-vector-valued function, with components indexed by r ∈ Z/18Z,
satisfying H (9)

g,r = −H (9)
g,−r , and in particular, H (9)

g,r = 0 for r = 0 mod 9. So it suffices to
specify the H (9)

g,r for r ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
Define H (9)

g = (H (9)
g,r ) for g = e by requiring that

− �1,1(τ , z)ϕ(9)
1 (τ , z) = −3μ9,0(τ , z) +

∑

r mod 18
H (9)
e,r (τ )θ9,r(τ , z), (B.61)
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where

ϕ
(9)
1 (τ , z) := ϕ

(3)
1 (τ , z)ϕ(7)

1 (τ , z) − ϕ
(5)
1 (τ , z)2. (B.62)

[Cf. (B.27), (B.39), (B.54)].
Recall (B.13). The H (9)

2B,r are defined for r ∈ {1, 2, 4, 5, 7, 8} by setting
H (9)
2B,r(τ ) := [− r2

36 ]H
(3)
6C,r(τ/3), (B.63)

where we note that H (3)
g,4 = H (3)

g,−2 = −H (3)
g,2 , &c. We determine H (9)

2B,3 and H (9)
2B,6 using

“� = 18, X = A17E7” to set

H (9)
2B,r(τ ) := H (18)

1A,r(2τ ) − H (18)
1A,18−r (2τ ) (B.64)

for r ∈ {3, 6}.
The H (9)

3A,r are defined by the explicit formulas

H (9)
3A,1(τ ) := [− 1

36 ]f
(9)
1 (τ/3),

H (9)
3A,2(τ ) := [− 4

36 ]f
(9)
2 (τ/3),

H (9)
3A,3(τ ) := −θ3,3(τ , 0),

H (9)
3A,4(τ ) := −[− 16

36 ]f
(9)
2 (τ/3),

H (9)
3A,5(τ ) := −[− 25

36 ]f
(9)
1 (τ/3),

H (9)
3A,6(τ ) := θ3,0(τ , 0),

H (9)
3A,7(τ ) := [− 13

36 ]f
(9)
1 (τ/3),

H (9)
3A,8(τ ) := [− 28

36 ]f
(9)
2 (τ/3),

(B.65)

where

f (9)1 (τ ) := −2
η(τ )η(12τ )η(18τ )2

η(6τ )η(9τ )η(36τ )
,

f (9)2 (τ ) := η(2τ )6η(12τ )η(18τ )2

η(τ )η(4τ )4η(6τ )η(9τ )η(36τ )
− η(τ )η(2τ )η(3τ )2

η(4τ )2η(9τ )
.

(B.66)

Finally, the H (9)
g,r are determined for g ∈ 2A ∪ 2C ∪ 6A by setting

H (9)
2A,r(τ ) := (−1)r+1H (9)

1A,r(τ ),

H (9)
2C,r(τ ) := (−1)r+1H (9)

2B,r(τ ), (B.67)

H (9)
6A,r(τ ) := (−1)r+1H (9)

3A,r(τ ).

B.3.10 � = 10, X = A29D6

We have mX = 10, so the umbral McKay–Thompson series H (10)
g = (H (10)

g,r ) associated
to g ∈ G(10) is a 20-vector-valued function with components indexed by r ∈ Z/20Z. We
have H (10)

g,r = −H (10)
g,−r , so it suffices to specify the H (10)

g,r for 1 ≤ r ≤ 9.
To define H (10)

g = (H (10)
g,r ) for g = e, first define h(τ ) = (hr(τ )) by requiring that

− 6�1,1(τ , z)ϕ(10)
1 (τ , z) = −24μ10,0(τ , z) +

∑

r mod 20
hr(τ )θ10,r(τ , z), (B.68)

where

ϕ
(10)
1 (τ , z) := 5ϕ(4)

1 (τ , z)ϕ(7)
1 (τ , z) − ϕ

(5)
1 (τ , z)ϕ(6)

1 (τ , z). (B.69)
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[Cf. (B.35), (B.39), (B.41), (B.54).] Now define the H (10)
1A,r for r odd by setting

H (10)
1A,1(τ ) :=

1
24

(3h1(τ ) + h9(τ )) ,

H (10)
1A,3(τ ) :=

1
24

(3h3(τ ) + h7(τ )) ,

H (10)
1A,5(τ ) :=

1
6
h5(τ ), (B.70)

H (10)
1A,3(τ ) :=

1
24

(h3(τ ) + 3h7(τ )) ,

H (10)
1A,9(τ ) :=

1
24

(h1(τ ) + 3h9(τ )) .

For r = 0 mod 2 set

H (10)
1A,r(τ ) :=

1
12

hr(τ ), (B.71)

and define H (10)
2A,r for 1 ≤ r ≤ 9 by requiring

H (10)
2A,r(τ ) := −(−1)rH (10)

1A,r(τ ). (B.72)

It remains to specify H (10)
g,r for g ∈ 4A ∪ 4B. For r = 0 mod 2 set

H (10)
4AB,r(τ ) := 0. (B.73)

For r odd, recall (B.13), and define

H (10)
4A,r(τ ) := [− r2

40 ]
1
2

(
H (2)
10A,r(τ/5) + H (5)

4CD,r(τ/2)
)
. (B.74)

B.3.11 � = 10 + 5, X = D4
6

We have mX = 10, so the umbral McKay–Thompson series H (10+5)
g = (H (10+5)

g,r ) associ-
ated to g ∈ G(10+5) is a 20-vector-valued functionwith components indexedby r ∈ Z/20Z.
We have H (10+5)

g,r = 0 for r = 0 mod 2, so it suffices to specify the H (10+5)
g,r for r odd.

Observing that H (10+5)
g,r = −H (10+5)

g,−r we may determine H (10+5)
g by requiring that

ψ
(5/2)
g (τ , z) = −2χ (5/2)

g iμ5/2,0(τ , z) +
∑

r∈Z+1/2
r mod 5

e(−r/2)H (10+5)
g,2r (τ )θ5/2,r(τ , z), (B.75)

where χ
(5/2)
g := χ̄

XD
g as in Table 25, and the ψ

(5/2)
g are the meromorphic Jacobi forms of

weight 1 and index 5/2 defined as follows (Table 41).

B.3.12 � = 12, X = A11D7E6
We havemX = 12, so the umbral McKay–Thompson seriesH (12)

g = (H (12)
g,r ) associated to

g ∈ G(12) � Z/2Z is a 24-vector-valued functionwith components indexed by r ∈ Z/24Z.
We have H (12)

g,r = −H (12)
g,−r , so it suffices to specify the H (12)

g,r for 1 ≤ r ≤ 11.

Table 41 Character values andmeromorphic jacobi forms for � = 10 + 5, X = D4
6

[g] χ̄
(5/2)
g ψ

(5/2)
g (τ , z)

1A 4 2iθ1(τ , 2z)2θ1(τ , z)−3η(τ )3

2A 0 −2iθ1(τ , 2z)2θ1(τ , z)−1θ2(τ , z)−2η(τ )3

3A 1 2iθ1(3τ , 6z)θ1(τ , 2z)−1θ1(3τ , 3z)−1η(τ )3

2B 2 2iθ1(τ , 2z)θ2(τ , 2z)θ1(τ , z)−2θ2(τ , z)−1η(τ )3

4A 0 −2iθ1(τ , 2z)θ2(τ , 2z)θ2(2τ , 2z)−1η(τ )η(2τ )
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To define H (12)
e = (H (12)

e,r ), first define h(τ ) = (hr(τ )) by requiring that

− 2�1,1(τ , z)
(
ϕ
(12)
1 (τ , z) + ϕ

(12)
2 (τ , z)

)
= −24μ12,0(τ , z) +

∑

r mod 24
hr(τ )θ12,r(τ , z),

(B.76)

where
ϕ
(12)
1 (τ , z) := 3ϕ(3)

1 (τ , z)ϕ(10)
1 (τ , z) − 8ϕ(4)

1 (τ , z)ϕ(9)
1 (τ , z) + ϕ

(5)
1 (τ , z)ϕ(8)

1 (τ , z),

ϕ
(12)
2 (τ , z) := 4ϕ(4)

1 (τ , z)ϕ(9)
1 (τ , z) − ϕ

(5)
1 (τ , z)ϕ(8)

1 (τ , z) − ϕ
(12)
1 (τ , z).

(B.77)

[Cf. (B.27), (B.35), (B.39), (B.54), (B.56), (B.62), (B.69).] Now define the H (12)
1A,r for r �= 0

mod 3 by setting

H (12)
1A,1(τ ) :=

1
24

(3h1(τ ) + h7(τ )) ,

H (12)
1A,2(τ ), H

(12)
1A,10(τ ) :=

1
24

(h2(τ ) + h10(τ )) ,

H (12)
1A,4(τ ), H

(12)
1A,8(τ ) :=

1
12

(h4(τ ) + h8(τ )) ,

H (12)
1A,5(τ ) :=

1
24

(3h5(τ ) + h11(τ )) ,

H (12)
1A,7(τ ) :=

1
24

(h1(τ ) + 3h7(τ )) ,

H (12)
1A,11(τ ) :=

1
24

(h5(τ ) + 3h11(τ )) .

(B.78)

For r = 0 mod 3 set

H (12)
1A,r(τ ) :=

1
12

hr(τ ), (B.79)

and define H (12)
2A,r by requiring

H (12)
2A,r(τ ) := −(−1)rH (12)

1A,r(τ ). (B.80)

B.3.13 � = 12 + 4, X = E46
We have mX = 12, so the umbral McKay–Thompson series H (12+4)

g = (H (12+4)
g,r ) associ-

ated to g ∈ G(12+4) is a 24-vector-valued functionwith components indexedby r ∈ Z/24Z.
In addition to the identityH (12+4)

g,r = −H (12+4)
g,−r , we haveH (12+4)

g,r = 0 for r ∈ {2, 3, 6, 9, 10},
H (12+4)
g,1 = H (12+4)

g,7 , H (12+4)
g,4 = H (12+4)

g,8 , and H (12+4)
g,5 = H (12+4)

g,11 . Thus, it suffices to specify
the H (12+4)

g,1 , H (12+4)
g,4 and H (12+4)

g,5 .
Recall (B.13). Also, set SE61 (τ ) := S12,1(τ ) + S12,7(τ ), and SE65 (τ ) := S12,5(τ ) + S12,11(τ ).

For r = 1 define

H (12+4)
1A,1 (τ ) := H (12)

1A,1(τ ) + H (12)
1A,7(τ ),

H (12+4)
2B,1 (τ ) := [− 1

48 ]
(
H (6)
8AB,1(τ/2) − H (6)

8AB,5(τ/2)
)
,

H (12+4)
4A,1 (τ ) := 1

SE61 (τ )2 − SE65 (τ )2

(
−2

η(2τ )8

η(τ )4
SE61 (τ ) + 8

η(τ )4η(4τ )4

η(2τ )4
SE65 (τ )

)
,

H (12+4)
3A,1 (τ ) := [− 1

48 ]
(
H (6)
3A,1(τ/2) − H (6)

3A,5(τ/2)
)
,

H (12+4)
8AB,1 (τ ) := 1

SE61 (τ )2−SE65 (τ )2

(
−2F (12+4)

8AB,1 (τ )SE61 (τ )+12F (12+4)
8AB,5 (τ/2)SE65 (τ )

)
.

(B.81)
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In the expression for g ∈ 8AB, we write F (12+4)
8AB,1 for the unique modular form of weight 2

for �0(32) such that

F (12+4)
8AB,1 (τ ) = 1 + 12q + 4q2 − 24q5 − 16q6 − 8q8 + O(q9), (B.82)

and write F (12+4)
8AB,5 for the unique modular form of weight 2 for �0(64) such that

F (12+4)
8AB,5 (τ ) = 3q+4q3+6q5−8q7−9q9+12q11−18q13−24q15 + O(q17). (B.83)

For r = 4 define

H (12+4)
1A,4 (τ ) := H (12)

1A,4(τ ) + H (12)
1A,8(τ ),

H (12+4)
3A,4 (τ ) := H (6)

3A,2(τ/2) + H (6)
3A,4(τ/2),

(B.84)

and set H (12+4)
g,4 (τ ) := 0 for g ∈ 2B ∪ 4A ∪ 8AB.

For r = 5 define

H (12+4)
1A,5 (τ ) := H (12)

1A,5(τ ) + H (12)
1A,11(τ ),

H (12+4)
2B,5 (τ ) := [− 25

48 ]
(
H (6)
8AB,5(τ/2) − H (6)

8AB,1(τ/2)
)
,

H (12+4)
4A,5 (τ ) := 1

SE61 (τ )2 − SE65 (τ )2

(
2
η(2τ )8

η(τ )4
SE65 (τ ) − 8

η(τ )4η(4τ )4

η(2τ )4
SE61 (τ )

)
, (B.85)

H (12+4)
3A,5 (τ ) := [− 25

48 ]
(
H (6)
3A,5(τ/2) − H (6)

3A,1(τ/2)
)
,

H (12+4)
8AB,5 (τ ) := 1

SE61 (τ )2 − SE65 (τ )2

(
2F (12+4)

8AB,1 (τ )SE65 (τ ) − 12F (12+4)
8AB,5 (τ/2)SE61 (τ )

)
.

Finally, define H (12+4)
g,r for g ∈ 2A ∪ 6A by setting

H (12+4)
2A,r (τ ) := −(−1)rH (12+4)

1A,r (τ ),

H (12+4)
6A,r (τ ) := −(−1)rH (12+4)

3A,r (τ ).
(B.86)

B.3.14 � = 13, X = A212
We have mX = 13, so the umbral McKay–Thompson series H (13)

g = (H (13)
g,r ) associated

to g ∈ G(13) = GX � Z/4Z is a 26-vector-valued function, with components indexed by
r ∈ Z/26Z (Table 39).
Define H (13)

g = (H (13)
g,r ) for g ∈ G(13) by requiring that

ψ
(13)
g (τ , z) = −χ

(13)
g μ0

13,0(τ , z) − χ̄
(13)
g μ1

13,0(τ , z) +
∑

r mod 26
H (13)
g,r (τ )θ13,r(τ , z),

(B.87)

where χ
(13)
g := χ

XA
g and χ̄

(13)
g := χ̄

XA
g (cf. Table 28), and theψ

(13)
g are meromorphic Jacobi

forms of weight 1 and index 13 given explicitly in Table 42.

ψ
(13)
4AB(τ , z) := −iθ2(τ , 6z)

θ1(τ ,z+ 1
4 )θ1(τ ,3z+ 1

4 )−θ1(τ ,z− 1
4 )θ1(τ ,3z− 1

4 )
θ2(2τ ,2z)θ2(2τ ,6z)

η(2τ )2
η(τ ) (B.88)

For use later on we note that ψ
(13)
1A = −2�1,1ϕ

(13)
1 , where

ϕ
(13)
1 (τ , z) := θ1(τ , z)θ1(τ , 6z)

θ1(τ , 2z)θ1(τ , 3z)
. (B.89)
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Table 42 Character values andmeromorphic Jacobi forms for � = 13, X = A212
[g] χ

(13)
g χ̄

(13)
g ψ

(13)
g (τ , z)

1A 2 2 2iθ1(τ , 6z)θ1(τ , z)−1θ1(τ , 3z)−1η(τ )3

2A −2 2 −2iθ1(τ , 6z)θ2(τ , z)−1θ2(τ , 3z)−1η(τ )3

4A 0 0 cf. (B.88)

B.3.15 � = 14 + 7, X = D3
8

We have mX = 14, so the umbral McKay–Thompson series H (14+7)
g = (H (14+7)

g,r ) associ-
ated to g ∈ G(14+7) is a 28-vector-valued functionwith components indexedby r ∈ Z/28Z.
We have H (14+7)

g,r = 0 for r = 0 mod 2, so it suffices to specify the H (14+7)
g,r for r odd.

Observing that H (14+7)
g,r = −H (14+7)

g,−r we may determine H (14+7)
g by requiring that

ψ
(7/2)
g (τ , z) = −2χ̄ (7/2)

g iμ7/2,0(τ , z) +
∑

r∈Z+1/2
r mod 7

e(−r/2)H (14+7)
g,2r (τ )θ7/2,r(τ , z), (B.90)

where χ̄
(7/2)
g := χ̄

XD
g is the number of fixed points of g ∈ G(14+7) � S3 in the defining

permutation representation on 3 points. The ψ
(7/2)
g are the meromorphic Jacobi forms of

weight 1 and index 7/2 defined in Table 43.

B.3.16 � = 16, X = A15D9

We havemX = 16, so the umbral McKay–Thompson seriesH (16)
g = (H (16)

g,r ) associated to
g ∈ G(16) � Z/2Z is a 32-vector-valued functionwith components indexed by r ∈ Z/32Z.
We have H (16)

g,r = −H (16)
g,−r , so it suffices to specify the H (16)

g,r for 1 ≤ r ≤ 15.
To define H (16)

g = (H (16)
g,r ) for g = e, first define h(τ ) = (hr(τ )) by requiring that

−6�1,1(τ , z)
(

ϕ
(16)
1 (τ , z) + 1

2
ϕ
(16)
2 (τ , z)

)

= −24μ16,0(τ , z) +
∑

r mod 32
hr(τ )θ16,r(τ , z), (B.91)

where

ϕ
(16)
1 (τ , z) := 8ϕ(4)

1 (τ , z)ϕ(13)
1 (τ , z) − ϕ

(5)
1 (τ , z)ϕ(12)

1 (τ , z) + ϕ
(7)
1 (τ , z)ϕ(10)

1 (τ , z),

ϕ
(16)
2 (τ , z) := 12ϕ(4)

1 (τ , z)ϕ(13)
1 (τ , z) − ϕ

(5)
1 (τ , z)ϕ(12)

1 (τ , z) − 3ϕ(16)
1 (τ , z).

(B.92)

[Cf. (B.35), (B.39), (B.54), (B.69), (B.77), (B.89).] Now define the H (16)
1A,r by setting

H (16)
1A,r(τ ) :=

1
12

hr(τ ) (B.93)

for r odd. For r even, 2 ≤ r ≤ 14, use

H (16)
1A,r(τ ) :=

1
24

(hr(τ ) + h16−r (τ )) . (B.94)

Table 43 Character values andmeromorphic Jacobi forms for � = 14 + 7, X = D3
8

[g] χ̄
(7/2)
g ψ

(7/2)
g (τ , z)

1A 3 2iθ1(τ , 3z)θ1(τ , z)−2η(τ )3

2A 1 2iθ2(τ , 3z)θ1(τ , z)−1θ2(τ , z)−1η(τ )3

3A 0 −2iθ1(τ , z)θ1(τ , 3z)θ1(3τ , 3z)−1η(3τ )
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Define H (16)
2A,r by requiring

H (16)
2A,r(τ ) := −(−1)rH (16)

1A,r(τ ). (B.95)

B.3.17 � = 18, X = A17E7
We havemX = 18, so the umbral McKay–Thompson seriesH (18)

g = (H (18)
g,r ) associated to

g ∈ G(18) � Z/2Z is a 36-vector-valued functionwith components indexed by r ∈ Z/36Z.
We have H (18)

g,r = −H (18)
g,−r , so it suffices to specify the H (18)

g,r for 1 ≤ r ≤ 17.
To define H (18)

g = (H (18)
g,r ) for g = e, first define h(τ ) = (hr(τ )) by requiring that

− 24�1,1(τ , z)φ(18)(τ , z) = −24μ18,0(τ , z) +
∑

r mod 36
hr(τ )θ18,r(τ , z), (B.96)

where

φ(18) := 1
12

(
ϕ
(18)
1 + 1

3
ϕ
(18)
3 + 4

θ121
η12

(
ϕ
(12)
1 + 2ϕ(12)

2 + 1
3
ϕ
(12)
3

))
. (B.97)

For the definition of φ(18) we require

ϕ
(9)
2 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(6)

1 (τ , z) − 4ϕ(5)
1 (τ , z)2 − 4ϕ(9)

1 (τ , z),

ϕ
(11)
1 (τ , z) := 3ϕ(5)

1 (τ , z)ϕ(7)
1 (τ , z) + 2ϕ(3)

1 (τ , z)ϕ(9)
1 (τ , z) − ϕ

(4)
1 (τ , z)ϕ(8)

1 (τ , z),

ϕ
(12)
3 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(9)

2 (τ , z),

ϕ
(14)
1 (τ , z) := 3ϕ(5)

1 (τ , z)ϕ(10)
1 (τ , z) + ϕ

(3)
1 (τ , z)ϕ(12)

1 (τ , z) − 4ϕ(4)
1 (τ , z)ϕ(11)

1 (τ , z),

ϕ
(15)
1 (τ , z) := ϕ

(5)
1 (τ , z)ϕ(11)

1 (τ , z) + 6ϕ(3)
1 (τ , z)ϕ(13)

1 (τ , z) − ϕ
(4)
1 (τ , z)ϕ(12)

1 (τ , z),

ϕ
(15)
2 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(12)

1 (τ , z) − 2ϕ(5)
1 (τ , z)ϕ(11)

1 (τ , z) − 2ϕ(15)
1 (τ , z),

ϕ
(18)
1 (τ , z) := ϕ

(5)
1 (τ , z)ϕ(14)

1 (τ , z) + 3ϕ(3)
1 (τ , z)ϕ(16)

1 (τ , z) − 4ϕ(4)
1 (τ , z)ϕ(15)

1 (τ , z),

ϕ
(18)
3 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(15)

2 (τ , z),

(B.98)

in addition to the other ϕ
(m)
k that have appeared already. Now define the H (18)

1A,r by setting

H (18)
1A,r(τ ) :=

1
24

hr(τ ) (B.99)

for r even. For r odd, use

H (18)
1A,1(τ ) :=

1
24

(2h1(τ ) + h17(τ )) ,

H (18)
1A,3(τ ) :=

1
24

(h3(τ ) + h9(τ )) ,

H (18)
1A,5(τ ) :=

1
24

(2h5(τ ) + h13(τ )) ,

H (18)
1A,7(τ ) :=

1
24

(2h7(τ ) + h11(τ )) ,

H (18)
1A,9(τ ) :=

1
24

(h3(τ ) + 2h9(τ ) + h15(τ )) ,

H (18)
1A,11(τ ) :=

1
24

(h7(τ ) + 2h11(τ )) ,

H (18)
1A,13(τ ) :=

1
24

(h5(τ ) + 2h13(τ )) ,

H (18)
1A,15(τ ) :=

1
24

(h15(τ ) + h9(τ )) ,

H (18)
1A,17(τ ) :=

1
24

(h1(τ ) + 2h17(τ )) .

(B.100)
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Define H (18)
2A,r in the usual way for root systems with a type A component, by requiring

H (18)
2A,r(τ ) := −(−1)rH (18)

1A,r(τ ). (B.101)

B.3.18 � = 18 + 9, X = D10E27
We have mX = 18, so the umbral McKay–Thompson series H (18+9)

g = (H (18+9)
g,r ) asso-

ciated to g ∈ G(18+9) � Z/2Z is a 36-vector-valued function with components indexed
by r ∈ Z/36Z. We have H (18+9)

g,r = −H (18+9)
g,−r , H (18+9)

g,r = H (18+9)
g,18−r for 1 ≤ r ≤ 17, and

H (18+9)
g,r = 0 for r = 0 mod 2, so it suffices to specify the H (18+9)

g,r for r ∈ {1, 3, 5, 7, 9}.
Define

H (18+9)
1A,r (τ ) := H (18)

1A,r(τ ) + H (18)
1A,18−r (τ ),

H (18+9)
2A,r (τ ) := H (18)

1A,r(τ ) − H (18)
1A,18−r (τ ),

(B.102)

for r ∈ {1, 3, 5, 7, 9}.

B.3.19 � = 22 + 11, X = D2
12

We have mX = 22, so the umbral McKay–Thompson series H (22+11)
g = (H (22+11)

g,r ) asso-
ciated to g ∈ G(22+11) � Z/2Z is a 44-vector-valued function with components indexed
by r ∈ Z/44Z. We have H (22+11)

g,r = −H (22+11)
g,−r and H (22+11)

g,r = 0 for r = 0 mod 2, so it
suffices to specify the H (22+11)

g,r for r odd. Observing that H (22+11)
g,r = −H (22+11)

g,−r we may
determine H (22+11)

g by requiring that

ψ
(11/2)
g (τ , z) = −2χ̄ (11/2)

g iμ11/2,0(τ , z) +
∑

r∈Z+1/2
r mod 11

e(−r/2)H (22+11)
g,2r (τ )θ11/2,r (τ , z),

(B.103)

where χ̄
(11/2)
1A := 2, χ̄

(11/2)
2A := 0, and the ψ

(11/2)
g are the meromorphic Jacobi forms of

weight 1 and index 11/2 defined as follows.

ψ
(11/2)
1A (τ , z) := 2i

θ1(τ , 4z)
θ1(τ , z)θ1(τ , 2z)

η(τ )3

ψ
(11/2)
2A (τ , z) := −2i

θ1(τ , 4z)
θ2(τ , z)θ2(τ , 2z)

η(τ )3
(B.104)

B.3.20 � = 25, X = A24
We have mX = 25, so for g ∈ G(25) � Z/2Z, the associated umbral McKay–Thompson
series H (25)

g = (H (25)
g,r ) is a 50-vector-valued function, with components indexed by r ∈

Z/50Z, satisfying H (25)
g,r = −H (25)

g,−r , and in particular, H (25)
g,r = 0 for r = 0 mod 25. So it

suffices to specify the H (25)
g,r for 1 ≤ r ≤ 24.

Define H (25)
g = (H (25)

g,r ) for g = e by requiring that

− �1,1(τ , z)ϕ(25)
1 (τ , z) = −μ25,0(τ , z) +

∑

r mod 50
H (25)
e,r (τ )θ25,r (τ , z), (B.105)

where

ϕ
(25)
1 (τ , z) := 1

2
ϕ
(5)
1 (τ , z)ϕ(21)

1 (τ , z) − ϕ
(7)
1 (τ , z)ϕ(19)

1 (τ , z) + 1
2
ϕ
(13)
1 (τ , z)2. (B.106)
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For the definition of ϕ(25)
1 we require

ϕ
(17)
1 (τ , z) := 4ϕ(5)

1 (τ , z)ϕ(13)
1 (τ , z) − ϕ

(9)
1 (τ , z)2,

ϕ
(19)
1 (τ , z) := ϕ

(4)
1 (τ , z)ϕ(16)

1 (τ , z) + 2ϕ(7)
1 (τ , z)ϕ(13)

1 (τ , z) − ϕ
(5)
1 (τ , z)ϕ(15)

1 (τ , z), (B.107)

ϕ
(21)
1 (τ , z) := ϕ

(5)
1 (τ , z)ϕ(17)

1 (τ , z) − 2ϕ(9)
1 (τ , z)ϕ(13)

1 (τ , z),

in addition to the other ϕ
(m)
k that have appeared already. Define H (25)

2A,r in the usual way
for root systems with a type A component, by requiring

H (18)
2A,r(τ ) := −(−1)rH (18)

1A,r(τ ). (B.108)

B.3.21 � = 30 + 15, X = D16E8
We have mX = 30, so the umbral McKay–Thompson series H (30+15)

g = (H (30+15)
g,r )

associated to g ∈ G(30+15) = {e} is a 60-vector-valued function with components
indexed by r ∈ Z/60Z. We have H (30+15)

e,r = −H (30+15)
e,−r , H (30+15)

e,r = H (30+15)
e,30−r for

1 ≤ r ≤ 29, and H (30+15)
e,r = 0 for r = 0 mod 2, so it suffices to specify the H (30+15)

e,r
for r ∈ {1, 3, 5, 7, 9, 11, 13, 15}.
Define

H (30+15)
1A,1 (τ ) := 1

2

(
H (30+6,10,15)
1A,1 + [− 1

120 ]H
(10+5)
3A,1 (τ/3)

)
,

H (30+15)
1A,3 (τ ) := [− 9

120 ]H
(10+5)
3A,3 (τ/3),

H (30+15)
1A,5 (τ ) := [− 25

120 ]H
(10+5)
3A,5 (τ/3),

H (30+15)
1A,7 (τ ) := 1

2

(
H (30+6,10,15)
1A,7 + [− 49

120 ]H
(10+5)
3A,3 (τ/3)

)
,

H (30+15)
1A,11 (τ ) := 1

2

(
H (30+6,10,15)
1A,1 − [− 1

120 ]H
(10+5)
3A,1 (τ/3)

)
,

H (30+15)
1A,13 (τ ) := 1

2

(
H (30+6,10,15)
1A,7 − [− 49

120 ]H
(10+5)
3A,3 (τ/3)

)
,

H (30+15)
1A,15 (τ ) := −[− 105

120 ]H
(10+5)
3A,5 (τ/3).

(B.109)

B.3.22 � = 30 + 6, 10, 15, X = E38
We have mX = 30, and G(30+6,10,15) = GX � S3. The umbral McKay–Thompson series
H (30+6,10,15) is a 60-vector-valued function with components indexed by r ∈ Z/60Z. We
have

H (30+6,10,15)
g,r (τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

±H (30+6,10,15)
g,1 if r = ±1,±11,±19,±29 mod 60,

±H (30+6,10,15)
g,7 if r = ±7,±13,±17,±27 mod 60,

0 else,

(B.110)

so it suffices to specify the H (30+6,10,15)
g,r for r = 1 and r = 7. These functions may be

defined as follows.

H (30+6,10,15)
1A,1 := −2

1
η(τ )2

⎛

⎝
∑

k,l,m≥0
+

∑

k,l,m<0

⎞

⎠ (−1)k+l+mq(k
2+l2+m2)/2+2(kl+lm+mk)+(k+l+m)/2+3/40

H (30+6,10,15)
2A,1 := −2

1
η(2τ )

⎛

⎝
∑

k,m≥0
−

∑

k,m<0

⎞

⎠ (−1)k+mq3k
2+m2/2+4km+(2k+m)/2+3/40
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H (30+6,10,15)
3A,1 := −2

η(τ )
η(3τ )

∑

k∈Z
(−1)kq15k

2/2+3k/2+3/40

H (30+6,10,15)
1A,7 = −2

1
η(τ )2

⎛

⎝
∑

k,l,m≥0
+

∑

k,l,m<0

⎞

⎠ (−1)k+l+mq(k
2+l2+m2)/2+2(kl+lm+mk)+3(k+l+m)/2+27/40

H (30+6,10,15)
2A,7 = 2

1
η(2τ )

⎛

⎝
∑

k,m≥0
−

∑

k,m<0

⎞

⎠ (−1)k+mq3k
2+m2/2+4km+3(2k+m)/2+27/40

H (30+6,10,15)
3A,7 = −2

η(τ )
η(3τ )

∑

k∈Z
(−1)kq15k

2/2+9k/2+27/40 (B.111)

B.3.23 � = 46 + 23, X = D24

We havemX = 22, andG(46+23) = {e}. The umbral McKay–Thompson seriesH (46+23)
e =

(H (46+23)
e,r ) is a 92-vector-valued function with components indexed by r ∈ Z/92Z. We

have H (46+23)
e,r = −H (46+23)

e,−r and H (46+23)
e,r = 0 for r = 0 mod 2, so it suffices to specify

the H (46+23)
e,r for r odd. Observing that H (46+23)

e,r = −H (46+23)
e,−r we may determine H (46+23)

e
by requiring that

ψ (23/2)
e (τ , z) = −2iμ23/2,0(τ , z) +

∑

r∈Z+1/2
r mod 23

e(−r/2)H (46+23)
g,2r (τ )θ23/2,r (τ , z), (B.112)

where ψ
(23/2)
e is the meromorphic Jacobi forms of weight 1 and index 23/2 defined by

setting

ψ (23/2)
e (τ , z) := 2i

θ1(τ , 6z)
θ1(τ , 2z)θ1(τ , 3z)

η(τ )3. (B.113)

B.4 Rademacher sums

Let �∞ denote the subgroup of upper-triangular matrices in SL2(Z). Given α ∈ R and
γ ∈ SL2(Z), define r[α]1/2(γ , τ ) := 1 if γ ∈ �∞. Otherwise, set

r[α]1/2(γ , τ ) := e(−α(γ τ − γ∞))
∑

k≥0

(2π iα(γ τ − γ∞))n+1/2

�(n + 3/2)
, (B.114)

where e(x) := e2π ix. Let n be a positive integer, and suppose that ν is amultiplier system for
vector-valued modular forms of weight 1/2 on � = �0(n). Assume that ν = (νij) satisfies
ν11(T ) = eπ i/2m, for some basis {ei}, for some positive integer m, where T = ( 1 1

0 1
)
. To

these data, attach the Rademacher sum

R�,ν(τ ) := lim
K→∞

∑

γ∈�∞\�K,K2

ν(γ )e
(
− γ τ

4m

)
> e1 j(γ , τ )1/2 r[−1/4m]

1/2 (γ , τ ), (B.115)

where �K,K 2 := {( a b
c d

) ∈ � | 0 ≤ c < K, |d| < K 2}, and j(γ , τ ) := (cτ + d)−1 for γ =( a b
c d

)
. If the expression (B.115) converges then it defines a mock modular form of weight

1/2 for � whose shadow is given by an explicitly identifiable Poincaré series. We refer to
[13] for a review of this, and to [53] for a more general and detailed discussion.
Convergence of (B.115) can be shown by rewriting the Fourier expansion as in [53,

Theorem2] in terms of a sum of Kloostermann sums weighted by Bessel functions. This
expression converges at w = 1/2 by the analysis discussed at the end of Sect. 3, following
the method of Hooley as adapted by Gannon. That analysis requires not only establishing
that the expressions converge, but also explicitly bounding the rates of convergence.
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For the special case that X = A3
8 we require 8-vector-valued functions ť(9)g = (ť(9)g,r ) for

g ∈ GX with order 3 or 6. For such g , define ť(9)g,r , for 0 < r < 9, by setting

ť(9)3A,r(τ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if r �= 0 mod 3,

−θ3,3(τ , 0), if r = 3,

θ3,0(τ , 0), if r = 6,

(B.116)

in the case that g has order 3, and

ť(9)6A,r(τ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if r �= 0 mod 3,

−θ3,3(τ , 0), if r = 3,

−θ3,0(τ , 0), if r = 6,

(B.117)

when o(g) = 6. Here, θm,r(τ , z) is as defined in (B.5).
The following result is proved in [17], using an analysis of representations of the meta-

plectic double cover of SL2(Z).

Theorem B.1 ([17]) Let X be a Niemeier root system and let g ∈ GX . Assume that the
Rademacher sum RX

�0(ng ),ν̌Xg
converges. If X �= A3

8, or if X = A3
8 and g ∈ GX does not

satisfy o(g) = 0 mod 3, then we have

ȞX
g (τ ) = −2RX

�0(ng ),ν̌Xg
. (B.118)

If X = A3
8 and g ∈ GX satisfies o(g) = 0 mod 3 then

ȞX
g,r(τ ) = −2RX

�0(ng ),ν̌Xg
(τ ) + ť(9)g (τ ). (B.119)

The X = A24
1 case of Theorem B.1 was proven first in [12], via different methods.
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