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Abstract

Background: Gap models are individual-based models for forests. They simulate dynamic multispecies assemblages
over multiple tree-generations and predict forest responses to altered environmental conditions. Their development
emphases designation of the significant biological and ecological processes at appropriate time/space scales.
Conceptually, they are with consistent with A.G. Tansley’s original definition of “the ecosystem”.

Results: An example microscale application inspects feedbacks among terrestrial vegetation change, air-quality
changes from the vegetation’s release of volatile organic compounds (VOC), and climate change effects on
ecosystem production of VOC’s. Gap models can allocate canopy photosynthate to the individual trees whose
leaves form the vertical leaf-area profiles. VOC release depends strongly on leaf physiology by species of these trees.
Leaf-level VOC emissions increase with climate-warming. Species composition change lowers the abundance of
VOC-emitting taxa. In interactions among ecosystem functions and biosphere/atmosphere exchanges, community
composition responses can outweigh physiological responses. This contradicts previous studies that emphasize the
warming-induced impacts on leaf function.
As a mesoscale example, the changes in climate (warming) on forests including pest-insect dynamics demonstrates
changes on the both the tree and the insect populations. This is but one of many cases that involve using a gap
model to simulate changes in spatial units typical of sampling plots and scaling these to landscape and regional
levels. As this is the typical application scale for gap models, other examples are identified. The insect/climate-
change can be scaled to regional consequences by simulating survey plots across a continental or subcontinental
zone. Forest inventories at these scales are often conducted using independent survey plots distributed across a
region. Model construction that mimics this sample design avoids the difficulties in modelling spatial interactions,
but we also discuss simulation at these scales with contagion effects.

Conclusions: At the global-scale, successful simulations to date have used functional types of plants, rather than
tree species. In a final application, the fine-scale predictions of a gap model are compared with data from
micrometeorological eddy-covariance towers and then scaled-up to produce maps of global patterns of
evapotranspiration, net primary production, gross primary production and respiration. New active-remote-sensing
instruments provide opportunities to test these global predictions.

Keywords: Pollution, Climate change, Global forest productivity, Individual-based models, Ecological scale, Forest
dynamics
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Introduction and background
In this paper, we will provide examples of different
models, all of which have are unified in their use of mod-
eling forest dynamics, but operate over different time and
space domains. These models simulate the physical struc-
ture of forests across their respective domains. Over the
time of development of these models, there has been a
parallel development of a remote-sensing capability to ob-
serve change are associated at the micro-, meso-, macro-
and mega-scales shown in Fig. 1. In this paper, we present
examples of individual-based forest models, notably “gap
models” to utilize these new data, to test models and to
generate forest-ecosystem predictions and theories.
New technologies in remote sensing (RS) are providing

rich challenges and opportunities to increase the under-
standing of forest ecosystems. These technologies can pro-
vide new observations of structural and functional traits to
examine patterns and processes of ecosystems at different
spatial and dimensional resolutions. The consequences of
the interactions between pattern and processes, which is
the yang and yin of terrestrial ecology, are at a relatively
advanced level in forest ecosystem science, but there is
still much more to learn, and results from research
employing these new technologies can speed the learning
processes. When Tansley originally coined the neologism,
“ecosystem” in 1935, he made the point of that, “These
ecosystems, as we may call them, are of the most various

kinds and sizes.” (Tansley 1935, page 299). Diagrams of
scale using panels with time-and-space scales as axes of
(1) disturbances or drivers of ecosystem change at particu-
lar time-and-space scales, (2) processes that respond to
these drivers at equivalent scales and (3) patterns in eco-
systems that arise at these scales (e.g. Delcourt et al. 1983;
Druckenbrod et al. 2019) represent the “kinds-and-sizes”
part of Tansley’s definition. The union of drivers,
processes, and patterns of responses define an ecosystem
sensu Tansley — an ecosystem is a system as defined by
its inputs, processes and outputs, all at commensurate
space- and time-scales.
For example, consider a forested watershed in a given lo-

cation as an ecosystem. Define precipitation, humidity and
temperature as the inputs, transport and evapotranspiration
as processes, and the variation in streamflow as the pattern.
A second ecosystem might be a patch of forest inside the
watershed where inputs of photosynthetically active radi-
ation (PAR) drive photosynthesis to produce daily product-
ivity patterns. While different from one another, both of
these example forest ecosystems could be collocated and
observed simultaneously. Sampling to characterize these
two forest ecosystems would involve measuring different
variables resolved across different time- and space-scales.
Often, but not always, response times of the processes in-
cluded in ecosystem formulations decrease with increasing
with spatial scale (Druckenbrod et al. 2019).

Fig. 1 (a) Environmental disturbance regimes (including climate) across space and time scales with (b) biotic responses of forests. Disturbance
events here include wildfire, wind damage, clearcut, flood, earthquake, etc. Blue shaded area is region of high predictability (sensu Wiens 1989),
matching appropriate processes to disturbances at similar scales. Although landscapes may be viewed as scale independent, they are often
viewed as a scale larger than stands in practice and encompass scales at which ecosystem processes connect forest mosaics (Lertzman and Fall
1998). (c) Classification of vegetation with scale. (d) Representative existing forest datasets by scale. Dashed lines divide conceptual scales from
local to mega, including mesoscales (in red), which bridge the responses of vegetation from gaps and forest succession to species migration.
Reprinted from Druckenbrod et al. (2019) with panels a-c adapted from original in Delcourt et al. (1983). See also Prentice (1992) for a similar
analysis as in panel d
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The multiple-scale aspect of Tansley’s ecosystem implies
a matching of the space-and-time domains of ecosystem
drivers, processes and responses in spatial pattern (Wiens
1989), as in the examples just mentioned. Druckenbrod
et al. (2019) recent review of these ecosystem concepts
adds a fourth panel representing the time- and space-
scales of available data sets (Fig. 1, also see Prentice 1992).
Air- and satellite-borne remote-sensing represent different
time-space domains from other data collections. These
data often are collected across vast spatial scales with
approximately daily-to-weekly sample-return intervals. The
cumulative period of data collection for these instruments
is at multiple decades in some cases (Fig. 1).
These remote-sensing (RS)-based data sets are an

upscaled representation of processes normally studied at
relatively small areas but not observed over areas (global-,
regional- and landscape-scales) at a resolution for which
there is no experimental comparison. Success in upscaling
in these cases is difficult to test using traditional statistical
procedures. Hence, correlation-related procedures, various
pattern recognition techniques and, notably, ecosystem
models arise as tools for the analysis of these data. Exam-
ples of earlier large-scale RS observations in addressing
ecological questions of processes are determining how
much PAR was being absorbed by a pixel on the terrestrial
surface (Tucker 1979; Tucker et al. 2005), the extent of
regional wildfires (Justice et al. 1996) and how climate
change might be altering the global phenology of vegeta-
tion (Nemani et al. 2003). Shugart et al. (2015) saw the
fusion of ecological modeling and remote sensing as a ne-
cessary synthesis needed to improve our modeling predic-
tion of the ecological responses to global change for
forests over regional and continental scales. Because the
planet is warming (IPCC 2014), the need for such a
capability could not be greater.
The United States National Aeronautics and Space Ad-

ministration (NASA), the European Space Agency (ESA),
and other national space agencies have developed and are
beginning to launch a diverse array of new RS instru-
ments. Many of these have already been tested from
ground and airborne platforms. They are capable of distin-
guishing the vertical, horizontal, and 3-D structure of for-
ests with either LiDAR (Light Detecting and Ranging)
instruments (Lefsky et al. 2002), or RaDAR (Radio Detect-
ing and Ranging) instruments (Shugart et al. 2010; Hall
et al. 2011; Le Toan et al. 2011). Hyperspectral imaging
spectroscopy can quantify leaf-and-species-level chemical
and functional traits (Asner et al. 2012). At global and
ecosystem scales, SIF (Solar-Induced Chlorophyll Flores-
cence) has been demonstrated to be linearly correlated
with GPP at the seasonal scale, and thus can potentially
serve as an optical proxy for GPP (Frankenberg et al.
2011; Joiner et al. 2014; Yang et al. 2015; Coppo et al.
2017). A wide range of microwave and optical sensors are

currently providing global observations of soil and canopy
moisture, exchanges of water through evapotranspiration,
capturing impacts of droughts on ecosystem function, tree
mortality and carbon cycling (Saatchi et al. 2013; Zhou
et al. 2014; Eswar et al. 2018; Fan et al. 2019).
The relationship between the RS observations and eco-

system models is also undergoing a paradigm shift. The
different national aerospace agencies are currently in a
major research phase of calibration and validation of the
new instruments, which should provide a continuing
string of independent tests for a priori forest model pre-
dictions, often made over large areas (Shugart et al.
2018). Many of these involve quantification of the phys-
ical structure of forests along with other attributes more
usually measured at microscales (Fig. 1).

Methods
Our intent is to identify recent developments in forest gap
models and to identify a fortuitous synergism with the
capabilities of developing remote sensing technologies to
evaluate these models. Since we are using models to com-
pare change prediction at different scales, we divide the
results section that follows to each of the ranges of time
and space scales that we study. Forest gap models are a
class of individual-based forest models (IBMs) that simu-
late the establishment, growth, and mortality of individual
trees on independent plots, or forest patches, i.e. ‘gaps’,
about the area of influence of a dominant canopy tree
(Shugart 1984; Shugart et al. 2018). They are usually ap-
plied to forest of mixed tree sizes and species (more “nat-
ural” forests). The first of these models, JABOWA (Botkin
et al. 1972) and FORET (Shugart and West 1977), were
developed for use in the eastern United States. Follow-ons
from these models are numerous and have been devel-
oped for use in the forests of China and Russia (Yan and
Shugart 2005; Shuman et al. 2017), the western US
(Bugmann 2001; Foster et al. 2017), the tropics (Huth and
Ditzer 2000; Fischer et al. 2016), Europe (Bugmann and
Solomon 2000), and boreal North America (Bonan 1989;
Foster et al. 2019). Gap models simulate vegetation-soil
interactions (Pastor and Post 1985; Bonan 1989; Foster
et al. 2019), wildfire, windthrow and insect outbreak im-
pacts on vegetation (Schumacher et al. 2006; Shuman
et al. 2017; Foster et al. 2018), and volatile organic carbon
(VOC) emissions from forests (Wang et al. 2017a).
Gap models compute individual tree growth, mortal-

ity, and regeneration through a combination of deter-
ministic processes such as species-specific optimal-
diameter-increment growth over time and individual-
tree growth response to environmental conditions,
and stochastic processes such as stress-related mortal-
ity, regeneration success, and disturbances. Each simu-
lated plot represents a single, independent forest gap
undergoing successional and gap-dynamics processes
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through time. At a single location or “site”, several
hundred of such plots are generally run with similar
starting conditions and site-wide parameters. Through
the combination of deterministic and stochastic pro-
cesses, individual plots differ from differences in mor-
tality and regeneration events. Thus, output from a
single simulated plot represents a potential outcome
arising from the incorporation of these processes and
interactions. Simulations typically are produced as
Monte Carlo simulations. The average of an array of
simulated plots represents the mean expectation of the
characteristics of a forested landscape of indetermin-
ate size, with the plots representing a dynamic mosaic
of forest gaps, each with its own dynamical history in
any given year (Shugart and Seagle 1985). The
landscape-scale output from a gap model is similar to
a random sampling of an actual landscape using forest
inventory plots. Monte Carlo simulations on average
produce properties of forest landscapes emerging over
time as forest succession, cyclical dynamics, and forest
response to shifting climate and disturbance regimes
(Shugart and Woodward 2011; Foster et al. 2015; Shu-
man et al. 2015; Shugart et al. 2018).
Typically, individual-tree growth is simulated annu-

ally. Other processes such as soil moisture and decom-
position dynamics are simulated at monthly- or daily-
time scales. Individual trees differ in their tolerance to
the ongoing environmental conditions on each plot
based on their size, species, and current growth rate
(Shugart 1984). Trees shade one another and compete
for resources, and impact the soil conditions on the
plot through changes in litter inputs and nutrient
requirements (Pastor and Post 1985; Yan and Shugart
2005). Trees may die from prolonged low growth or
by disturbances. Generally, disturbances such as fire
or windthrow occur at the plot-level and do not
spread to other plots within the same site. Regener-
ation of new trees is dependent on species-specific
seed- and seedling banks, modified according to each
species’ abundance on the plot, regeneration strategy,
and environmental tolerances (Yan and Shugart 2005).
Through explicit simulation of individual trees interact-

ing with one another and their environment, gap models
reproduce forest dynamics, compositional change, bio-
mass, and structure at a resolution comparable to forest
inventory data across a wide range of ecosystem types.
Tabulations of dozens of examples, mostly used as model
performance testing are in a sequence of reviews with pro-
gressive updates (Shugart 1984, 1998; Shugart et al. 1992;
Shugart and Woodward 2011; Larocque et al. 2016).
Through simulation at sites spanning large regions or con-
tinents, gap models can provide large-scale estimates of
forest characteristics and response to environmental
change (Shuman et al. 2015, 2017).

Results
Micro-scale (10 m2 to 106 m2) models and observations
The scaling up of production and emissions of Volatile
Organic Compounds (VOCs) from leaf to ecosystem level
needs to confront a challenge of high interspecific variabi-
lity in the emissions of these compounds. In contrast to
the primary metabolic processes of photosynthesis and
transpiration, which show shallow phylogenetic conserva-
tion, secondary metabolism of VOCs is relatively deeply
conserved (Harley et al. 1999; Monson et al. 2013). In
other words, while photosynthesis, respiration, and tran-
spiration show variability across species within a system in
the order of tens of percent, the variation in VOCs pro-
duction capability across species in a plant community is
often orders of magnitude (Lerdau and Slobodkin 2002).
This contrast in heterogeneity between primary and sec-
ondary metabolisms is globally true across biomes; both
emitter and non-emitters of VOCs co-exist in an ecosys-
tem, and among the emitters the emission capacity varies
significantly (Loreto and Fineschi 2014). For forests, from
temperate forests in the eastern United States to tropical
systems about one-third of tree species produce isoprene;
even low diversity ecosystems, such as boreal forests, con-
tain a mixture of emitting and non-emitting species (Ler-
dau 2007). This inter-specific heterogeneity in VOCs
production intrinsically requires both species-level ac-
counting and vertically explicit accounting for variation
within forest canopy, as light, operating through both dir-
ect effects and indirect effects on leaf temperature, is a
crucial factor influencing VOCs emissions. By contrast,
considering a model complexity versus efficiency tradeoff,
existing VOCs models primarily adopt the scheme of
plant functional types that is extensively used in biosphere
models (Sellers et al. 1986). Such models, notably
MEGAN (Guenther et al. 1995, 2012), have undoubtedly
made significant contributions to understanding spatial-
temporal patterns and magnitudes of VOCs emissions.
However, a representation with plant functional types
circumvents ecological complexity (in terms of both func-
tional and structural diversity) in ecosystems. Remaining
huge uncertainties in magnitude of VOCs emissions and a
lack of prognostic capability arguably suggest that they are
far from robust and should be improved.
Current state-of-the-art gap models, e.g. UVAFME,

are better positioned to tackle these problems of com-
plexity (Wang et al. 2016, 2017a, 2018). In contrast to
models based on plant-functional types, a gap model-
based VOCs emission simulator is explicit in considering
inter-specific emission variation and variation associated
with vertical light change within canopy and tree crown
(Fig. 2). Given the established forest gap modelling
framework of being functionally and structurally explicit,
the development is not challenging, especially for forest
ecosystems in the eastern US where species-specific
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VOCs emission factors are readily available (Fig. 3a and
b). With this individual-based gap model, for the first
time Tansley’s ecosystem concept is enriched with a new
dimension of secondary metabolism in terms of VOCs
emissions. Thus, the interplay of ecosystem processes
driven by primary and secondary metabolisms over time
can be scaled and examined, facilitating a more complete
elucidation of ecosystem dynamics and functioning.
The relative roles of environmental pressure versus

forest community in driving ecosystem functioning in
terms of both forest productivity and VOC emissions
have been investigated (Fig. 3) with this new micro-scale
gap model. These studies clearly indicate the consider-
able roles of community-level processes in mediating
ecosystem responses to environmental pressures (Wang
et al. 2016, 2018). For example, ozone, a secondary air
pollutant that is harmful to both human health and plant
activity, is assumed responsible for global-vegetation-
productivity decline and land-carbon-sink reduction
(Sitch et al. 2007; Wang et al. 2017b). However, long-
term simulations suggest that, over time, ozone does not
necessarily dampen forest productivity and carbon stock
(Wang et al. 2016). This system-level result emerges
from a community-level process of ozone-resistant spe-
cies replacing sensitive ones (Fig. 3c). Moreover, we
found that ozone pressure enhances isoprene emissions
by favoring isoprene-emitting species which are less
ozone sensitive (Fig. 3d), a result of a potential plant
metabolic tradeoff of resource consumption versus stress
tolerance. Besides ozone, increasing temperature is

another pressing driver faced by forest ecosystems. Con-
trary to the prevailing opinion of increasing VOCs emis-
sions under climate warming, increasing temperature
does not necessarily continuously enhance forest iso-
prene emissions because of forest compositional changes
in relative abundance of emitters versus non-emitters
(Fig. 3e). These results strongly support the role of forest
community in mediating the forest ecosystem responses
to global change agents, pointing to the deficiency of
PFT-based models in scaling up physiology directly and
to the advantage of forest gap model in incorporating
community processes (Wang et al. 2016, 2018).
These initial micro-scale explorations and findings with

a forest gap model regarding secondary metabolism-
mediated processes warrant more investigations into their
performance at differing locations and into their larger
scale implications for biosphere-atmosphere interactions
(Lerdau 2007; Wang et al. 2019). Achieving such scale-ups
of these local scale emissions to larger scales can be
inspired by the following discussions on applications to
addressing patterns of forest composition and structure at
scales from meso- to macro-scale.

Meso-scale (106 m2 to 1010 m2) models and observations
At the meso-scale, gap-models scale from dynamics at
the individual plant- and stand-scale to those of whole
landscapes. At the stand-scale, these models simulate ex-
ogenous and endogenous forest dynamics through expli-
cit tracking of individuals throughout their life cycle,
from initial regeneration following release by the death

Fig. 2 Schematic of light transmission through forest canopy and tree crown in gap model-based forest VOCs emissions model—UVAFME-VOC.
Kdt, Kt, and Kb represent the extinction coefficient for diffuse, total beam, and beam, respectively. Qsc and Qabs denote the scattered and
absorbed beam radiation, respectively. Reproduced from Wang et al. (2017a)
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Fig. 3 (See legend on next page.)
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of a canopy dominant, through their growth and re-
sponse to local-scale weather, site, and environmental
conditions, and to their mortality because of low growth
or disturbances (Shugart et al. 2018). These individuals
additionally interact with one another via shading and
competition for other resources as well as through im-
pacts on their abiotic environment (e.g. soil depth, soil
moisture, litter quality, etc.). Gap models thus capture
how individual trees and forest stands respond to and
interact with their changing environment. They are par-
ticularly useful in forest ecosystems where the disturb-
ance regime and successional dynamics within the
region lead to a heterogeneous landscape of mixed-age,
mixed-species stands. Individual trees respond differ-
ently to their environment and disturbance events based
on their size, age, species, and life history. Gap models,
which track all of these variables on an individual-scale,
potentially can more closely match actual forest re-
sponse to change over a wider domain. In particular, gap
models can aid in simulating multi-scale interactions
between vegetation, disturbances, and climate.

An example landscape-scale gap model application
Foster et al. (2018) utilized the individual-based gap
model, UVAFME, to predict interactions between vegeta-
tion, bark beetle infestation, climate change, and other
disturbances in the subalpine zone of the US Rocky
Mountains. Spruce beetles (Dendroctonus rufipennis
(Kirby)) are an aggressive bark beetle species that infests
spruce (Picea spp.) species throughout the western United
States, Alaska, and Canada (Jenkins et al. 2014). Because
spruce beetles preferentially attack older and larger spruce
trees, the post-outbreak species composition and stand
structure tend to be a mix between small (< 10 cm diam-
eter) spruce trees as well as variable-sized non-host tree
species (Veblen et al. 1991). This post-outbreak compos-
ition and structure is in contrast to the effects of stand-
replacing fire in the western US, whereby even-aged, often
even-species stands tend to arise.
Spruce beetles infest trees through “mass attacks”,

whereby pheromones released by attacking beetles draw
more and more beetles to a host tree. This strategy allows
for successful infestations of otherwise healthy trees (Raffa
et al. 2008). The success of a mass-attack is therefore pred-
icated on the size, age, and condition of the host tree, as

well as the local population size of beetles. Beetle popula-
tion size is additionally impacted by the availability of suit-
able hosts and climate impacts on survivorship and
population growth rate (Berg et al. 2006; Hansen et al.
2011, 2016; Hart et al. 2015). Through explicit simulation
of individual trees and individual stands, UVAFME cap-
tured the multi-scale factors that influenced infestation rate
under current and future climate scenarios (Foster et al.
2018). The infestation probability of a spruce tree was de-
termined by the tree-level characteristics such as size,
stress-level, and proximity to other infested trees, stand-
level characteristics such as basal area of spruce and down
woody debris, and site-wide climate characteristics. With
this methodology, the model accurately produced the shifts
in species composition and stand structure following an
outbreak seen in field studies documenting such events
(Veblen et al. 1991; Derderian et al. 2016). This ability was
in large part due to the fine-scale nature of UVAFME.
Without the representation of vegetation dynamics at their
inherent scale – individual trees – the detailed response of
forest stands to outbreaks cannot be simulated without
strong assumptions about stand structure.
Through a Monte Carlo-style aggregation of several

hundred plots, UVAFME additionally represented
landscape-level forest properties and dynamics over time
in response to spruce beetle outbreaks. At this scale the
model produced, without prescription, emergent proper-
ties of these interactions, predicting the rising and falling
of infestation rates over time (Foster et al. 2018) (Fig. 4).
This periodicity is comparable to periodicities in spruce
beetle outbreaks found in field studies (Veblen et al. 1994;
Zhang et al. 1999; Berg et al. 2006; Hart et al. 2014), and
arises as a result of the nature of the vegetation-spruce
beetle system. During an outbreak, most if not all of the
larger spruce trees are killed, leaving only trees too small
to sustain high levels of beetle populations (DeRose and
Long 2012). Beetle populations then decline, allowing the
surviving trees to grow and eventually become suitable for
infestation. Some outbreak-inciting event (e.g. drought,
windthrow, etc.) then occurs and starts the cycle anew
(O’Connor et al. 2015). This emergent property of tree-
and stand-level infestations was not prescribed within
UVAFME, yet the model was able to produce it via simu-
lation of hundreds of plots as a mosaic of forest stands
across a landscape, each undergoing separate fine-scale

(See figure on previous page.)
Fig. 3 Micro-scale simulations of forest dynamics in composition, productivity, and hydrocarbon emissions in Southeastern US using UVAFME-
VOC. (a) Contemporary forest dynamics in the Southeastern US. (b) Forests around the 1900s with American Chestnut (pre-blight). The width of
each color band represents the biomass of different species (see the color code in Wang et al. 2017a). (c) Unsuppressed forest biomass and
(d) enhanced hydrocarbon emissions driven by ozone pressure, which is implemented by imposing species-specific sensitivity on the forest
illustrated in panel a. (e) Schematic of diversity-mediated threshold of forest hydrocarbon production under warming, where ecological
suppression offsets physiological enhancement. Prior to and beyond the threshold, distinctive feedback mechanisms between climate and
atmospheric chemistry mediated by forests may occur. Figures reproduced from Wang et al. (2016, 2017a, 2018)
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vegetation-disturbance dynamics but experiencing similar
climate conditions.
This type of multi-scale modeling is crucial for captur-

ing vegetation drivers and biotic-abiotic interactions
under current and future climate scenarios. In ecosys-
tems where such feedbacks are tied to species- and tree-
size specific responses to disturbances, gap models can
simulate the potential non-linear and cascading effects
of shifting climate and disturbance regimes (Shugart and
Woodward 2011; Seidl et al. 2017). Simulations at the
stand (500 m2) and landscape scale (106 m2) can then be
applied across whole regions or continents to simulate
forest change across very large scales (Shuman et al.
2017; Foster et al. 2019).

Scaling-up to regional applications
A recent application with UVAFME in boreal Alaska
found that simulating the tight linkage at the tree- and
stand-level between vegetation demography, soil charac-
teristics, wildfire, and climate was necessary to represent
forest dynamics, structure, and composition across the
entire region (Foster et al. 2019). Vegetation interactions
along with soil characteristics and the fire regime dom-
inate the Alaskan boreal zone (Viereck et al. 1983; Cha-
pin III et al. 2006b; Johnstone et al. 2010a). In these
forests, different stable states of vegetation type arise be-
cause of species-specific vegetation-soil-fire interactions.
Black spruce (Picea mariana) is able to grow and

reproduce on deep, poor nutrient quality, moist soils
with shallow permafrost layers (Viereck et al. 1983;
Burns and Honkala 1990). The slow decay rate of black
spruce litter (Flanagan and Van Cleve 1983; Vance and
Chapin III 2001) leads to the buildup of a thick organic-
moss layer, a shallow active layer, low nutrient contents
in the soil, and the dominance of black spruce over
other tree species that do not tolerate such conditions.
In contrast, mixed white spruce (Picea glauca) and de-
ciduous stands generally occur on warmer slopes with-
out permafrost. These tree species are less tolerant of
deep soils, permafrost, and low nutrients, and the faster
decay rate of deciduous litter allows for these species’
more favorable conditions to persist (Johnstone et al.
2010a). Such self-perpetuating ecotypes additionally
interact with the fire regime, as black spruce stands are
more flammable than deciduous stands, and black
spruce depends on fire for rapid post-fire reproduction
via serotinous cones (Greene and Johnson 1999).
Foster et al. (2019) updated UVAFME to include daily

freeze/thaw and seasonal active layer depth dynamics,
which in turn impacted soil moisture dynamics, litter
decay, and individual tree growth and reproduction. Lit-
ter decayed according to site/soil conditions as well as
litter characteristics, which differed based on litter type
(e.g. leaves, branches, boles, etc.) and genus (for leaves).
Thus, the litter decay rate and litter influx were tied to
the species composition, forest structure, and

Fig. 4 (a) UVAFME-simulated species-specific biomass (t C·ha− 1) at the USDA Forest Service’s Glacier Lakes Ecosystem Site site in southern
Wyoming. Spruce beetle infestations of Engelmann spruce (Picea engelmannii) begin at simulation year 400. Cyclical dynamics can be seen over
time in the spruce biomass as a result of cycles of infestation-related mortality. (b) Spruce-beetle killed Engelmann spruce biomass (t C·ha− 1·yr− 1)
over time for the same simulation averaged across all 200 plots. The red line corresponds to a 10-year running average. Redrawn from Foster
et al. (2018)
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successional cycle of each simulated plot. The decay rate
and litter influx in turn impacted the depth and nutrient
content of the humus and litter layers, which fed back to
soil moisture and permafrost dynamics as well as tree
growth and regeneration (Foster et al. 2019). The up-
dated model additionally tied fire intensity to litter con-
tent and characteristics, with thicker, drier soils burning
at higher intensities. Fire intensity along with forest
structure and species composition impacted fire mortal-
ity and post-fire regrowth on each stand (Shuman et al.
2017; Foster et al. 2019).
With these updates to UVAFME each individual tree’s

growth, mortality, and decay influenced not only the
surrounding trees on the plot but also the environmental
conditions that those trees experience. Prior to these up-
dates, the model could not accurately reproduce forest
characteristics and dynamics within the study region
(Foster et al. 2019). Even intermediate testing between
model updates (e.g. following permafrost/soil moisture
updates but before decomposition updates) did not pro-
duce accurate results when compared to inventory data

or expected forest successional dynamics. It was only
until all biotic-abiotic feedbacks were included in
UVAFME that the model could simulate the forest
successional dynamics and resulting interactions. Such a
failure to simulate forest dynamics accurately within
boreal Alaska without the tree-level links between vege-
tation, soils, wildfire, and climate is unsurprising, given
the importance of these interactions in structuring the
mosaic of forest types and ages within the region
(Chapin III et al. 2006a, 2006b; Johnstone et al. 2010a).
The fine-scale interactions between trees and their

environment in this study scaled up to influence region-
wide changes in biomass, structure, and composition.
Foster et al. (2019) found that species- and tree size-
specific interactions drove changes in vegetation and soil
conditions under warming temperatures (Fig. 5). Over
the course of the climate change simulation, the most
important growth stressors shifted from mainly low
temperature and shade stress to drought and nutrient
stress. Additionally, at the stand-scale, changes in vege-
tation in response to climate impacted the soil and fire

Fig. 5 (a) UVAFME-simulated species-specific biomass for a site in interior Alaska under RCP 8.5 climate change scenario (+ 7 °C, + 146mm
precipitation); (b) simulated deciduous fraction (%) for the same simulation; (c) simulated organic layer depth (cm; brown) and active layer depth
(cm; gray) for the same simulation; (d) simulated plant-available nitrogen (kg N·ha− 1) for the same simulation. Red dashed lines indicate the
period of climate change. Increasing temperatures result in a shift in the species composition and biomass, impacting the soil regime, which
further influenced the changing vegetation. Redrawn from Foster et al. (2019)
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regime – with historically cold, black spruce stands
underlain by permafrost shifting to dry deciduous stands
with thin soils and a deep active layer. These results in-
dicate that along with drought stress, tree-tree competi-
tion for resources and vegetation-soil feedbacks will
become increasingly important drivers of vegetation
change. When applied across the Tanana River Basin
(~ 115,000 km2), UVAFME was also able to predict the
differential response of forests across the region to climate
change depending on site characteristics and pre-climate
change species composition and soil conditions.
Other ecosystem models investigating these biotic-

abiotic interactions have been applied within the North
American boreal region (Euskirchen et al. 2009; John-
stone et al. 2011; Genet et al. 2013; Fisher et al. 2014;
Trugman et al. 2016; Mekonnen et al. 2019). However,
most of these applications have represented vegetation
at much broader scales in term of composition (groups
of plant functional types rather than species) and struc-
ture (“big-leaf” canopies rather than individual trees), or
have used a state-transition modeling system rather
than a process-based simulation of forest dynamics.
Given the importance of fine-scale interactions within
the boreal region, as well as other forest ecosystem
types (Keane et al. 2001; Chapin III et al. 2006a; Araujo
and Luoto 2007; Purves and Pacala 2008; Shugart et al.
2018), this lack of fine-scale vegetation representation
has implications for predicting both the current and fu-
ture state of forests, worldwide.
Without representation of individual species and their

response and interaction with their environment, much of
the detail and potential for non-linear, interacting effects is
lost. Fisher et al. (2014) compared simulations of annual
carbon flux over Alaska across 40 broad-scale terrestrial
biosphere models and found high variability (both in
magnitude and in direction) across the model simulations,
citing uncertainty in NPP, plant-functional type, and soil
conditions as some of the more important factors driving
this overall uncertainty (Fisher et al. 2018). Many of these
broad-scale models represent boreal vegetation grouped
into needle-leaved evergreen (including both black and
white spruce), needle-leaved deciduous (larch), and broad-
leaved deciduous functional types (Fisher et al. 2018;
Mekonnen et al. 2019). The grouping of black and white
spruce is problematic given the species’ differential toler-
ances and resource requirements (Burns and Honkala
1990; Chapin III et al. 2006a), as well as their differential
impacts on local-scale soil conditions and the fire regime
(Johnstone et al. 2010a). Under climate change scenarios,
the compounding and non-linear vegetation, soils, and
wildfire responses may alter the existing biotic-abiotic
feedbacks (Johnstone et al. 2010b), resulting in new species
mixtures and interactions which can only be predicted if
species-specific effects are considered at a fine scale.

The representation of fine-scale forest structure is im-
portant for considering tree competition, biophysical im-
pacts on climate, as well as how trees of different sizes
respond to disturbances and their environment. Tree-
tree competition is important for determining forest re-
sponse to climate change (Purves and Pacala 2008) and
implies the use of individual-based models. Tree size im-
pacts disturbance mortality, response to environmental
stressors, and the local-scale environment that a tree ex-
periences throughout its life (Shugart 1998; Keane et al.
2001; McDowell and Allen 2015; Hood et al. 2018) (Fig.
4). Models that do not include simulation of a mixed-
age, mixed-size forest lose this detail and under scena-
rios of climate change may not be able to fully capture
how forests will respond and interact with their changing
environment.

Macro-scale (1010 m2 to 1012 m2) and mega-scale
(> 1012 m2) models and observations
Many of the applications of gap models, have simulated
landscape-scale units. Even the earliest gap models in-
cluded site variables (soil depth, water capacity of the
soil, site quality, etc.) that could vary over the simulated
landscape. As was mentioned in the section above, the
most straightforward simulations of landscapes are to
exercise the model to predict the fates of survey plots
the size of a simulated gap-model plot with these “plots”
at a spacing that reduces contagion effects to a mini-
mum. These contagion effects can be important and
several extensions of gap models have simulated and
tested against the effects of contagion. One approach to
this problem was manifested as the ZELIG code, in
which a gap-model is used as a computational “window”
to change each tree in a dynamically changing gridded
map (Urban et al. 1991). Windowing is used in other
individual-based models in other fields. For example, the
simulation of the development of galaxy geometry
arising from billions of gravitational interacting stars is
solved computing the effect of nearby stars on each
single star. This effectively converts the computation of
gravitational effect from a function of the square of the
number of stars (when all stars interact with one
another) to a function of number of stars.

Macro-scale (regional-scale) applications
Forest structure and composition at the meso- and
macro-scale impact biophysical feedbacks to climate
through changes in albedo, surface roughness, and latent
heat flux (Bonan et al. 1992; Liu et al. 2006). Thus,
changes in structure and composition have the capacity
to impact the trajectory of climate regionally and even
globally. Historically, gap models were excluded from
use in global climate models due to limits in computer
processing power (Shugart et al. 2018). Gap models have
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a rich and early history of simulating the dynamic
changes in landscapes and regions during the Quater-
nary (Solomon et al. 1980, 1981; Solomon 1986). How-
ever, modern technology now allows these fine-scale
models to be applied continentally (Sykes and Prentice
1996; Shuman et al. 2017) and provides the impetus for
continental and global-scale applications that couple
vegetation and climate.
Weishampel et al. (1992) included side-shading effects

on canopy geometry in natural Douglas-fir (Pseudotsuga
menziesii) of different ages. They tested their prediction
against semivariance patterns in canopy heterogeneity
that were independently collected using high-resolution
photogrammetry. ZELIG has subsequently been used to
predict expected forest patterns over time and spatial
resolution (van Tongeren and Prentice 1986; Huston
and Smith 1987; Smith and Urban 1988; Huston et al.
1988) and in several applications in Boreal forests
(Larocque et al. 2006, 2011). Recent simulations for the
Russian boreal forest with the SIBBORK model
(Brazhnik and Shugart 2015) have simulated contagious
effects including orographic shading — a south-facing
slope in a deep valley is compositionally and structurally
different from a south-facing slope without shading
without the north-facing opposite valley side (Brazhnik
and Shugart 2016). The SIBBORK model has also been
applied to one of the principal contagion effects in
boreal forests, wildfire (Brazhnik et al. 2017). Generally,
the inclusion of spatial effects in individual-based models
has been limited by data for parameter estimation and
not by modeling limitations.

Mega-scale (global-scale) applications
Canopy process models simulate the flux of heat, CO2

and water between plant canopies and their environment
over time scales of a few seconds to a day. They re-
present the canopy as a single- or multi-layer unit with a
fixed structure (i.e. leaf area). Photosynthesis and tran-
spiration are simulated by estimating microclimatic
variation and stomatal conductance for the canopy (or
canopy layers). The inside of a leaf and its external
environment are coupled by the stomata, microscopic
pores in the leaf surface that can change under different
environmental conditions and are controlled by the
plant. If these stomatal openings are relatively large,
resistance to molecular diffusion is low — H2O diffuses
out from the moist spaces inside the leaf and CO2

diffuses into the same internal spaces to compensate for
the CO2 taken up by the plant through photosynthesis.
As the stomatal aperture closes, the resistance to these
diffusion-based transfers increases. Thus, the balance of
CO2 and H2O are interwoven. Because the loss of water
from the leaf is evaporative, the outward flux of water
also removes heat from the leaf. In canopy process

models, formulae relating the CO2, H2O and energy
fluxes for leaves form bases for simulating the CO2, H2O
and energy fluxes of plant canopies over large areas.
For example, Woodward (1987) developed a simple

model of the energy and hydrological balance of a plant
canopy using the Penman-Monteith equation (Penman
1948; Monteith 1981) to determine canopy transpiration.
The water transpired by plant canopy of a given leaf area,
along with evaporated water, is subtracted from the water
held in the soil. If over the course of a year the soil dries
too much or the soil is unable to recharge its water, then
the leaf area is assumed too high and a lower value for leaf
area used until the maximum sustainable leaf area is
found. Provided with spatial data for the environmental
conditions needed by the model (solar radiation, precipita-
tion, temperature, etc.), the model simulates the expected
leaf area at regional and global scales.
Woodward’s model illustrates several of the general

features found in homogeneous landscape models:

� “An Appeal to Optimality” as seen in the procedure
used to determine the expected leaf area at a
location — that the vegetation will optimize its leaf
area to use the available water in a region. This
optimum balances the positive tendency for
vegetation to add leaf area when water is available
with the constraint that, if vegetation “mines” the
soil water beyond the resupply rate, then plant death
and leaf shedding will reduce leaf area. More
recently, it has become apparent that this approach
to optimization incorrectly assumes that
optimization at the vegetation-assemblage scale is
evolutionarily stable; in fact, canopy optimization is
only stable when it occurs at the individual tree
scale, which leads to an assemblage-scale canopy-
cover that is lower than possible when optimization
occurs at assemblage-scale (Anten and Hirose 2001).
Another constraint is that vegetation cannot gain
additional net leaf area once the lowest layer of
leaves is sufficiently shaded.

� “Use of Limiting Factors,” particularly for light and
water as in Woodward example. The heat balance of
the vegetation links to the water evaporated from
the vegetation by the Penman-Monteith equation.

� “An Expectation of Generality” allowing the models
to be applied to vegetation worldwide. This is often
based on physically-based heat-flux equations solved
at equilibrium (“Equilibrium Seeking Behaviour”).

Inasmuch as gap models have included metabolism
(Friend et al. 1993), they have tended to focus on photo-
synthesis, respiration, and transpiration because of the
central role these processes play in the mass and energy
balance of an ecosystem.
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Simulation of global carbon fluxes from natural
systems has traditionally involved models that scale up
ecological processes from study sites to large, assumed
homogeneous units of about ~ 0.1° to ~ 0.5° latitude ×
longitude blocks. Many of these aggregated models such
as TEM (McGuire et al. 1992), CENTURY (Parton et al.
1993), CASA (Potter et al. 1993), IBIS (Foley, 1994),
SiB2 (Sellers et al. 1996), LPJ (Sitch et al. 2003) and
ORCHIDEE (Krinner et al. 2005) have been used to pro-
ject ecosystem carbon fluxes. There are similar models
that use stand-based dynamics or even individual-based
models to include population dynamic processes such as
plant establishment, mortality and resource competition,
notably: Hybrid (Friend et al. 1997), LoTEC (King et al.
1997), LPJ-GUESS (Smith et al. 2008), TRIPLEX (Peng
et al. 2002) and INTCARB (Song and Woodcock 2003).
A direct application of a gap model to simulate global

forests is the use of the FORCCHN model to evaluate
the global forest carbon fluxes (Ma et al. 2017). The
FORCCHN model has several significant aspects. It can
produce daily estimates of gross primary production
(GPP), ecosystem respiration (ER) and net ecosystem

production (NEP), using canopy modeling approaches
we discussed in the section on micro-scale models
(above). This allows the physiological aspect of the
model to be tested against 37 forest eddy-covariance
sites, which were drawn from the daily data in the
LaThuile FluxNet free use data set (http://www.fluxdata.
org), AmeriFlux (http://ameriflux.ornl.gov), CarboEuro-
Flux (http://www.carboeurope.org), ChinaFlux (http://
www.chinaflux.org) and FFPRI FluxNet (http://www2.
ffpri.affrc.go.jp/labs/flux/index.html). Figure 6 shows
four examples using monthly data from four of these
study sites against the FORCCHN model. Across all 37
sites, the daily correlation coefficients averaged 0.72 for
GPP, 0.70 for ER and 0.53 for NEP.
After inspecting the ability of the FORCCHN model to

reproduce GPP, NEP and ER for the 37 eddy correlation
sites, the model was then applied to the problem of esti-
mation of global carbon fluxes from forests. To do so one
must develop a data set to drive the FORCCHN model:

1) The climatological forcing was from Princeton
University over the 1982~2011 period at a grid

Fig. 6 Monthly variation of observed and simulated (a) GPP, (b) ER and (c) NEP at four forest eddy correlation sites: (from top to bottom)
Changbaishan site in China (CN-Cha), Loobos site in Netherlands (NL-Loo), Collelongo-Selva Piana site in Italy (IT-Col) and Tumbarumba site in
Australia (AU-Tum). The grey histogram denotes observation and black dot denotes simulation results
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resolution of 0.5° × 0.5° (http://hydrology.princeton.
edu, Sheffield et al. 2006). Derived through a
combination of reanalysis data and observations,
these variables include the daily maximum and
minimum air temperature (°C), precipitation (mm),
relative humidity (%), wind speed (m·s− 1),
atmospheric pressure (hPa) and total solar radiation
(W·m− 2).

2) Soil parameters are soil organic matter (carbon and
nitrogen pool in units of kg C·m− 2 and kg N·m− 2,
respectively), soil physical parameters and litter
pool decomposition parameters. The soil physical
parameters are strongly dependent on the
geographical position and include the soil field
capacity (mm), wilting point (mm), bulk density
(kg·m− 3), sand content (%), silt content (%) and clay
content (%). The Global Gridded Surfaces of
Selected Soil Characteristics (Global Soil Data Task
Group 2000) coupled with Harmonized World Soil
Database (Nachtergaele et al. 2012) provide
resources for the soil organic matter and physical
parameters. The litter pool decomposition
parameters are calculated according to Kirschbaum
and Paul (2002). Moreover, to insure that the
allocation proportion of organic carbon in ten soil
pools are in equilibrium in FORCCHN, the model
is run for 300 years at each grid point and then the
new allocation proportions are used as model input
data to simulate C fluxes for the past 30 years.

3) Global forest types, used to select which tree
functional types are used, are derived from
International Geosphere Biosphere Program-Data
and Information Service (IGBP-DIS) DISCover land
cover classification system, with a spatial resolution
of 0.5° × 0.5° (Loveland et al. 2009). The 8-day 5-km
LAI of Global LAnd Surface Satellite (GLASS) in
1982 (Liang et al. 2013) is also used to drive the
model. Product developers ascribe quality control
flags based on LAI to screen and reject poor quality
data. The 8-day LAI are composited into the yearly
maximum and minimum values. Note that satellite-
derived LAI datasets are resampled to the geo-
graphic projection and spatial resolution of the
global climatological forcing.

The resultant global simulations for forest GPP and
ER (Fig. 7) are consistent with Model Tree Ensemble-
based GPP estimates (Jung et al. 2011) — except that
FORCCHN-derived GPP is about ~ 300 g C·m− 2·yr− 1

smaller in most tropical rain forest and ~ 900 g C·m− 2·yr− 1

larger in parts of south-central Africa. Over the simulated
interval (1982–2011) both GPP and ER significantly
increased (P < 0.01, see Ma et al. 2017) across all
forest types. The forest type with the greatest CO2

uptake by photosynthesis and CO2 release by ecosys-
tem respiration were evergreen broadleaf forests with
multi-year averaged values for GPP of 2631 ± 233 g
C·m− 2·yr− 1 (mean ± 1 standard deviation) and ER of
2513 ± 216 g C·m− 2·yr− 1. Deciduous broadleaf forest
(GPP of 1428 ± 183 g C·m− 2·yr− 1; ER of 1346 ± 184 g
C·m− 2·yr− 1) and mixed forest (GPP of 961 ± 84 g
C·m− 2·yr− 1; ER of 917 ± 84 g C·m− 2·yr− 1) were the
next two most important types of forests.
The role of forests as sources or sinks in global carbon

budgets is a consequence of NEP. NEP is the difference
between two relatively large numbers, GPP-ER. For glo-
bal forest ecosystems FORCCHN gave an annual total
GPP and ER of 58.83 ± 5.61 and 55.77 ± 5.18 Pg C·yr− 1

for global forest ecosystems during 1982–2011, such
value is within the range reported by other GPP models.
Global forest ecosystems as simulated by FORCCHN
contribute a substantial C sink for the same period, with
total NEP being 3.06 ± 0.67 Pg C·yr− 1. This is also com-
parable to the results from studies using observation-
base estimations of 52.61–67.54 Pg C·yr− 1 (Beer et al.
2010) and from satellite-based observations of 37.59–
59.77 Pg C·yr− 1 (Cai et al. 2014). These are initial global
results from a globally distributed forest gap model. Ma
et al. (2017) mention several improvements that would
be invaluable in the model and in the available data.
Nonetheless, the agreement between the FORCCHN re-
sults and predictions from other global models using dif-
ferent assumptions are robust convergence of outcomes.

Conclusions
In this paper, we have focused on individual-based gap
models of forests across the time and space domains of
their applications. These models draw strongly from in-
formation on the silvics, allometry and environmental
responses of individual tree species. These descriptive
parameters are usually estimated from descriptions of
the tree species and not fitted to data. For example, a
parameter for tree maximum height for a species might
have some variability in its estimate, but it could not be
estimated to be 500 m, even if this produced better
statistical fits to a data set. Other significant parts of the
models include, for example, standard biophysical
models for evapotranspiration of biogeochemical models
for nutrients released by decomposition. Here again, the
parameters are not assigned arbitrary values for best
statistical fit. What these features mean is that these
models are more likely to be tested for agreement with
data, rather than fit to data.
A new generation of satellite observation systems have

the capability to provide new observations to test exist-
ing model predictions. This class of models can effi-
ciently interact in a hypothesis–testing mode in at least
three ways:
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Fig. 7 Spatial distribution of mean (a) GPP, (b) ER and (c) NEP (g C·m− 2·yr− 1) for global forest ecosystems during 1982 to 2011 as simulated by
the FORCCHN model
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1) One can use the models for predicting the expected
patterns of variability among important ecological
variables as simulated by the models. These
predictions include a priori estimation of expected
composition of forests (Asner et al. 2012), remote
sensing observations implying physical structure of
forests and their relationships to biomass (Köhler
and Huth 2010; Le Toan et al. 2011; Saatchi et al.
2011; Lobo and Dalling 2014), productivity
(Yang et al. 2015) and VOCs (Fu et al. 2019).

2) One can use remote sensing and gap models to
predict how ecosystem processes produce patterns
across scales from micro to global. While previous
field studies typically needed to specify a spatial
scale of interest prior to sampling forests, the fine-
scale and global coverage of remote sensing prod-
ucts, along with the available computing power for
model simulations, enables the simulation of fine-
scale processes across large spatial extents, encom-
passing all of the intermediate scales along that
spectrum. While ecologists have long been inter-
ested in the relevance of scale on ecological pro-
cesses, these approaches now provide a clear means
to explicitly evaluate the impact of scale on pat-
terns, such as suggested by hierarchy theory
(O’Neill 1989).

3) Our microscale example shows how ecological
processes may also affect multiple scales. While
the canopy positions of tree species at a gap
scale affects the competitive growth rates of
individual trees, it also contributes to the
regional production of ozone at larger scales,
which in turn impacts fine-scale competitive in-
teractions by favoring ozone-resistant species.
Such scale-spanning interactions are also inherent
in studies involving forests and climate change as
we discuss in our global example. While the up-
take of carbon dioxide through photosynthesis is
ultimately dependent on leaf-level physiology, the
global scale consequences of that uptake influ-
ence climate depending on whether forests serve
as a carbon source or sink. The global summa-
tion of that physiological process returns to affect
the competitive interactions between tree species
at fine scales, as species’ competitive ability will
change along with a changing climate. Remote
sensing and model data will be needed to test
predictions on how these processes impact forest
ecosystems across scales.
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