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Abstract

aggregated into large segments.

different fertility classes.

Background: Forest inventories are increasingly based on airborne laser scanning (ALS). In Finland, the results of
these inventories are calculated for small grid cells, 16 m by 16 m in size. Use of grid data in forest planning results
in the additional requirement of aggregating management prescriptions into large enough continuous treatment
units. This can be done before the planning calculations, using various segmentation techniques, or during the
planning calculations, using spatial optimization. Forestry practice usually prefers reasonably permanent segments
created before planning. These segments are expected to be homogeneous in terms of site properties, growing
stock characteristics and treatments. Recent research has developed methods for partitioning grids of ALS inventory
results into segments that are homogeneous in terms of site and growing stock characteristics. The current study
extended previous methods so that also the similarity of treatments was considered in the segmentation process.
The study also proposed methods to deal with biases that are likely to appear in the results when grid data are

Methods: The analyses were conducted for two datasets, one from southern and the other from northern Finland.
Cellular automaton (CA) was used to aggregate the grid cells into segments using site characteristics with (1)
growing stock attributes interpreted from ALS data, (2) predicted cutting prescriptions and (3) both stand attributes
cutting prescriptions. The CA was optimized for each segmentation task. A method based on virtual stands was
used to correct systematic errors in variable estimates calculated for segments.

Results: The segmentation was rather similar in all cases. The result is not surprising since treatment prescriptions
depend on stand attributes. The use of virtual stands decreased biases in growth prediction and in the areas of

Conclusions: Automated stand delineation was not sensitive to the type of variables that were used in the process.
Virtual stands are an easy method to decrease systematic errors in calculations.

Keywords: Cellular automata, Segmentation, Stand demarcation, Particle swarm optimization

Background

The use of airborne laser scanning (ALS) is increasing
rapidly in forestry (Hyyppé et al. 2008; Vauhkonen et al.
2014). Airborne laser scanning can be done from air-
planes or unmanned aerial vehicles. The scanning pro-
duces a cloud of return pulses, which can be used to
interpret forest variables (Hyyppé et al. 2008). In a nor-
mal case, the x, y and z coordinates of the return points
are recorded, as well as the intensity of the return pulse
(Roncat et al. 2014). It is also known whether the pulse
is reflected from ground or vegetation. Differences in the
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z coordinates between ground pulses and highest vegeta-
tion pulses constitute a canopy height model, which can
be used to estimate tree locations and heights, and delin-
eate tree crowns (Koch et al. 2014).

The tree-based interpretation approach uses the canopy
height model to interpret tree locations and heights (Koch
et al. 2014; Wing et al. 2018). Crown diameters can also
be interpreted. Tree diameter can be predicted from tree
height, crown diameter and other variables calculated
from the pulse data. The pulse data can also be used to
calculate variables that describe crown shape. These vari-
ables can be used to interpret tree species (Vauhkonen
et al. 2009). The fact that small trees are often hided by
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the crowns of large trees has decreased the accuracy of
forest inventories based on individual tree detection. How-
ever, new methods and algorithms are being developed
which mitigate this problem (e.g., Kansanen et al. 2016).

The ALS data can also be interpreted with the area-
based approach (Neesset 2014). In this method, the stand
variables can be interpreted for any spatial units such as
existing stand compartments, micro segments or grid
cells. The method requires a set of field plots. The idea is
to calculate the same variables from the ALS pulse data
for the interpretation units and field plots. This makes it
possible to find the most similar field plots for every inter-
pretation unit. The measured stand variables of the most
similar field plots are used to derive stand characteristics
for the interpretation units. Also regression analysis can
be used to predict the stand characteristics (Hyyppé et al.
2008). Some of the methods developed recently, such as
distribution matching, cannot be easily classified to repre-
sent individual tree or area-based approach (Vauhkonen
and Mehtitalo 2015; Kansanen et al. 2019).

In Finland, the area-based approach has been used to in-
terpret forest variables for both existing stands and grid cells
of 16 m by 16 m (http://www.metsaan.fi/paikkatietoaineistot).
Both interpretation results cover all private forests of Finland
and are freely available for forest planning. The use of stand-
level interpretation results is straightforward and does not re-
quire new methodological development in forest planning
(Pukkala 2019a).

The situation is different for the grid data. It is pos-
sible to treat the grid cells as calculation units in forest
planning, and use spatial optimization to create continu-
ous and large enough treatment units for the implemen-
tation of prescribed treatments (Heinonen and Pukkala
2007; Packalén et al. 2011; Pukkala 2019a). The spatial
units created in this way are temporary, and the whole
forest is never systematically divided into stand compart-
ments. Due to their ephemeral nature, the treatment ag-
gregations created by spatial optimization are often
called as dynamic treatment units (Pukkala et al. 2014).

Dynamic treatment units may be a good approach when
aiming at feasible treatment units and efficient utilization
of forest resources (Heinonen et al. 2007). However, for-
estry practice often prefers fixed and reasonably perman-
ent stand delineations. The prevailing ways to store,
maintain and display forest data relies on stands (also
called stand compartments or sub-compartments). Stands
are also the basic units to simulate stand development and
implement treatments.

Traditionally, the stand boundaries are visually demar-
cated on aerial photographs (Mustonen et al. 2008;
Olofsson and Holmgren 2014). The stand boundaries
are subjective and they may also be obsolete if new com-
partment inventories do not update stand borders. Stand
variables interpreted from ALS data for grid cells offer
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possibilities to automatize, systemize and even optimize
the stand delineation. An additional reason for using the
ALS results interpreted for grid cells, instead of using
variables interpreted for existing stands, is the fact that
the results of area-based inventory are the most accurate
if the area of the interpretation unit is approximately the
same as the area of the field plots (Pascual et al. 2018).
The interpretation grid of 16 m by 16 m results in 256-
m? cells, which correspond to circular field plots of 9 m
radius.

The stand compartments should be homogeneous in
terms of site and growing stock characteristics, future
stand development and treatments (Mustonen et al.
2008). In Finland, the most relevant site characteristics
are soil type (e.g., peatland vs. mineral soil) and fertility
class. It is especially important to delineate peatland for-
ests and mineral soil forests into separate stands since
they differ significantly in terms of accessibility and
treatments. Mineral soil stands can be harvested all year
round whereas peatland forest are accessible only when
the soil is frozen. Site fertility dictates the growth rate or
trees and is therefore an important variable if the stand
delineation aims at homogeneous future development
within the stand.

In addition to the homogeneity of site, growing stock
and treatments, there are also other requirements for
stand delineation. Stand shape should be “simple”, and
irregular stand shapes are usually avoided. Stands should
not be very small, but very large stands are also prob-
lematic. Stands are often regarded as undividable units,
but too large stands might lead to the need to divide
them into two or more parts when aiming for instance
at the same harvested volume in every year.

Previous studies have developed methods to create
stands or smaller segments from grid data (Baatz and
Schidpe 2000; Mustonen et al. 2008; Wulder et al. 2008;
Koch et al. 2009; Wu et al. 2013; Olofsson and Holmgren
2014; Pukkala 2019a, b). The suggested methods have used
either various segmentation methods (e.g., Mustonen et al.
2008) or cellular automata (e.g., Pukkala 2019b). The seg-
mentation or stand delineation can be done based on the
ALS pulse data (Mustonen et al. 2008) or using variables
interpreted for cells from the pulse data (Pukkala 2019a).

Similarity of treatment prescriptions has not been used
in previous studies on automated, pre-planning stand
delineation. Previous studies (e.g. Pukkala 2018) have
shown that stand basal area and mean tree diameter cor-
relate strongly with the financial maturity of the stand
for cutting. The study of Kangas et al. (2011) suggests
that errors in mean tree diameter may cause even
greater inoptimality losses than errors in stand basal
area. Mean diameter correlates with the relative value in-
crement of trees, and therefore predicts the financial
maturity of the trees for cutting.
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Therefore, for the similarity of treatments within the
stand it seems important to use stand basal area and
mean tree diameter as the criteria of stand delineation,
in addition to soil type and site fertility. However, also
direct indicators for cutting maturity and cutting type
have been developed. For example, Pukkala (2018) devel-
oped formulas that indicate the probability that cutting
the stand immediately is the optimal decision. Other for-
mulas were developed for the probability that partial
cutting is optimal, thinning type and diameter at which
thinning intensity is 50%. The predictions of these for-
mulas can be used as additional criteria for stand delin-
eation, to improve the results in terms of similarity of
treatments.

The aim of the current study was to compare automated
stand delineations based on (1) growing stock variables,
(2) predicted treatments (3) or both, in addition to soil
type and site fertility. The method used in stand delinea-
tion was cellular automaton (von Neuman 1966; Wolfram
2002) adapted from an earlier study (Pukkala 2019a). The
data source was the ALS-based forest inventory where the
stand variables are interpreted for grid cells. The data are
available at http://www.metsaan.fi/paikkatietoaineistot.
The study also proposed a new method to use grid data to
deal with within-stand variation in planning calculations.

Materials

Site and growing stock variables interpreted for grid cells
were used as the basis of stand delineation. The data are
available at http://www.metsaan.fi/paikkatietoaineistot in
packages of 375 x 375 cells. Since the size of the cell is
16mx 16 m =256 m?, one package covers 3600ha
(375x 375x256m”  =36,000,000m> =3600ha). Two
randomly selected 3600-ha grids were downloaded from
the web site, one representing southern Finland (x and y
coordinates of the lower left corner 326,000 m and
6,756,000 m, respectively, in the GRS Transverse
Mercator system) and the other representing northern
Finland (590,000 m, 7,326,000 m).

The following variables (layers) were used for stand de-
lineation: land category, soil type, fertility class, mean
diameter, mean height, stand basal area. The growing
stock variables are available for the total growing stock (all
species combined) and separately for pine, spruce and
broadleaf species. Variables interpreted for the total grow-
ing stock were used for stand delineation in this study.

From the fertility class layer and species-specific layers
for stand basal area and mean diameter it can be con-
cluded that both areas represented typical managed
Finnish forests where. Many stands were mixtures of
two or more tree species. Finnish forests are usually
managed according to the principles of even-aged for-
estry and younger stands are often plantations. Despite
this, the stands could have large within-stand variation
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in tree diameter, due to the gradual advance regener-
ation of various species, especially spruce. In the south-
ern case study forest, mesic sites were the most
common, followed by sub-xeric sites. In the north, sub-
xeric and xeric sites covered most of the area.

The land category layer indicates whether the cell rep-
resents productive forest, stunted forest, waste land,
agricultural land, water, road, etc. This layer was used as
a mask to filter out all cells that did not represent pro-
ductive forest. The area of productive forest was 2977 ha
in the southern case study area and 2140ha in the
northern area. Lakes, nonproductive peatlands etc., frag-
mented the productive forest clearly more in the north.
All the other layers (two site variables and three growing
stock variables) were used in stand delineation. The soil
type layer indicates whether the cell belongs mineral soil
or peatland, which is subdivided into spruce mire, pine
bog and open bog (no trees). The fertility class indicates
whether the cell is mesotrophic, herb rich, mesic, sub-
xeric, xeric or barren heath site.

Methods
Treatment variables
The site and growing stock variables available for the
grid cells were used to calculate additional variables for
each cell. These variables describe the probability of cut-
ting (pCut), probability of thinning (pThin), thinning
type (tType) and diameter at which thinning intensity is
50% (d50). These additional variables were calculated
with the models of Pukkala (2018). The first model pre-
dicts the probability that cutting the stand immediately
is the optimal decision. The second model predicts the
probability that partial cutting is optimal in case of cut-
ting. The model for thinning type indicates the degree to
which the optimal partial cutting is thinning from above.
The fourth model gives the diameter class for which the
thinning intensity should be 50%. In thinning from
above, most harvested trees are larger than this diameter
whereas the opposite is true in thinning from below.
The equations for the cutting variables are as follows
(Pukkala 2018):

PO = e )

(with)

f(x) = 16.032-1.098v/G + 2.806 InD
x InG-0.573v/D x v/D + 0.000088G x TS
+ 0.00454G x R + 0.000486TS
x InR-3.878 InR-0.944FS-0.814VT
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pThin =

d50 = 11.324-0.440G-4.360 InD
40.597VG x VD + 0.000832TS
x InR+0.000170G  x TS-0.000117D
X TS 4 0.175 In Gpup-0.0126D x R

(3)

tType = (0.980 + 0.964v/D-0.000619D x G-0.0630 InD
x InG)* + 0.4232

(4)

where D is basal-area-weighted mean diameter of trees
(cm), G is stand basal area (m%ha 1), Gpup is the basal
area of pulpwood-sized trees (dbh 8—18 cm) in m*ha™ !, TS
is temperature sum (degree days > 5 °C), R is discount rate
(%), FS is indicator variable for fertile growing sites (mesic
or better) and VT is indicator variable for sub-xeric site.

The above cutting variables depend on mean tree
diameter, stand basal area, fertility class, temperature
sum and discount rate. The temperature sum of the
region was obtained from a temperature sum map
(https://ilmatieteenlaitos.fi/terminen-kasvukausi), and the
discount rate was taken as 3%. All other predictors of the
cutting models were obtained from the ALS-based inven-
tory results interpreted for the grid cells.

Cellular automaton

The cellular automaton (CA) of Pukkala (2019a) was
adapted for the purposes of the current study. The au-
tomaton was modified so that the four additional cutting
variables could also be used in stand delineation. The
used CA first divides the forest into square-shaped initial
stands (3ha in this study). Then, the “most suitable”

1+ exp[-(-12.208 + 10.103 In G-4.0041/G + 0.00731D x R + 0.856/Gpu1p—0.785FS) |

stand number is given to each cell for several iterations.
A cell gets the stand number of one of its adjacent
stands, which are eight in number (stand number of the
cell to the east, west, north and south, and four corner
cells). Figure 1 illustrates the evolution of the stand de-
lineation during a short CA run.

The stand number given to a cell depends on a score
that is calculated to its eight neighbor cells:

Sij = a181 (BU) —+ az8y (A}) + asss (Dll) (5)

where S;; is the score of assigning the number of stand j to
cell i, B; is the proportion of common border between cell
i and stand j, A; is the area of stand j, and Dj; is the differ-
ence in stand characteristics between cell i and stand j. In-
creasing stand area and common border increase the score,
and increasing difference in stand variables between the cell
and the stand decreases the score. If the weight of the dif-
ference in stand characteristics (a3) is high, the stands tend
to be small and irregular with little within-stand variation
in stand variables whereas high weight for common border
(@) results in compact and round-shaped stands.

The area of the final stands is controlled through
weight a, and function s,, which indicate the effect of
stand area on the score. If the purpose of stand delinea-
tion is to avoid both small and very large stands, a sig-
moid type of function is preferred (Fig. 2). The same
applies for function s;, which describes the effect of the
proportion of common border between cell i and stand j
on the score of stand j (Fig. 2). The “proportion of com-
mon border” is the average of the weights of the 8 neigh-
boring cells in such a way that the cell to east, west,

~

Initial stands

1stiteration

5t iteration

Fig. 1 Development of stands during five iterations of the cellular automaton used in this study. The size of the initial stands (left) is 3 ha (exactly:
3.0976 ha= 121 cells). Each cell is joined to one of its adjacent stands for several iterations
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north and south gets a weight equal to one and a corner
cell gets a weight smaller than one.

The functions that describe the effect of the propor-
tion of common border (s;) and stand area (s;) on the
score were as follows:

1
1= 1+ exp (bl (Bij—b2)> (6)
5 . ?)

- 1+ exp(cl (Aj—cz))

The difference between stand characteristics in cell i
and stand j was calculated from:

N

2
Dlj = Z Wn (qni_qnj)

n=1

(8)

where w,, is the weight of stand variable n Ew,, = 1), q,,;
is the value of standardized variable # in cell i and g, is
the mean value of the same variable in stand j.

In this study, the number of variables used to calculate the
difference (N) was 5, 6 or 9 (two site variables and 3, 4 or 7
other variables). When the delineation was based on stand
variables (case 1), the growing stock variables used to meas-
ure the similarity of the cell and an adjacent stand were
mean tree diameter, mean tree height and stand basal area.
When the delineation was based on forecasted cuttings
these variables were replaced by probability of cutting, prob-
ability of thinning, thinning type and diameter at which
thinning intensity is 50% (case 2). When the delineation was
based on both growing stock variables and treatments (case
3), all the above variables were used to measure similarity.
The two site variables used in all cases were soil type and
fertility class. All variables included in the calculations were
standardized to mean zero and standard deviation 1. This
removed the effect of different units of variables.

Functions 6 and 7 have two parameters. In Fig. 2, the red
curves show the effect of stand area and common border
with the mean values of the allowed ranges of the parame-
ters and the black curves show the effect with the most
common values when the parameters were optimized for
different stand delineation tasks. The dashed curve on the
right-hand-side diagram describes the effect of average
stand area on the objective function when the parameters of
the cellular automaton were optimized (see Eq. 10 below).

A stand might disappear completely during a CA run.
A stand may also become divided into two or more non-
connected parts. Since this was not a wanted outcome,
non-connected parts were given unique stand numbers
after every five iterations. Therefore, the number of
stands may decrease or increase during a CA run. The
total number of iterations in one CA run was 17
(Pukkala 2019a).

Optimizing the cellular automaton

The performance of the CA depends on its parameters.
The comparison of different stand delineation cases is
the most objective if the parameters of the CA are opti-
mized for each stand delineation case. The parameters
affecting the performance of the CA were as follows
(allowed ranges shown in square brackets):

Weight of the corner cell in the calculation of
common border [0, 0.3]

Weight of common border in Eq. 5 (a;) [0.4, 0.7]
Weight of stand area in Eq. 5 (a45) [0.1, 0.4]

Weight of similarity of stand variables in Eq. 5 (a3)
[0.2, 0.5]

Weights of 5, 6 or 9 stand variables in Eq. 8

Two parameters of Eq. 6 that describes the effect of
common border (s;)

Two parameters of Eq. 7 that describes the effect of
stand area (s,)
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When five or six variables were used to measure the
similarity of stand variables in the cell and an adjacent
stand, the weights of these variables (w,, in Eq. 8) were
allowed to range from 0.1 to 0.6. When similarity was
measured with nine variables, the allowed range of each
weight was 0.05-0.5. The allowed ranges of parameters
by, by, ¢; and ¢, (Egs. 6 and 7) were [- 25, - 5], [0.4, 0.8],
[- 3, - 1] and [1, 5], respectively.

The total number of CA parameters was either 13
(case 1), 14 (case 2) or 17 (case 3). Their optimal values
were found by using particle swarm optimization in the
same way as explained in detail in Pukkala (2019b). The
baseline objective variable maximized in optimization
was the average degree of variance explained by the
stand delineation. The R2 of a certain variable was calcu-
lated from:

R2 = 1-SSE/SST (9)

where SSE is the sum of squared deviations from stand
mean and SST is the sum of squared deviations from the
overall mean. However, this baseline objective variable
was modified by the mean area of the delineated stands
and the proportion of very small stands. The modified
objective function was as follows:

Max z = 0.8R2 + 0.25,(A) + 0.2Pgma (10)

where R2 is the average degree of explained variance of
the 5, 6 or 9 stand variables used in delineation, A is the
average area of the obtained stands, s, is a function that
describes the effect of A on objective function (Fig. 2,
dashed line), and Py, is the proportion of stands
smaller than 0.1 ha (i.e. smaller than 4 cells since one
cell is 0.0256 ha). The weights of the criteria were set
subjectively based on preliminary optimizations.

If the degree of explained variance (R2) is maximized
without any constraints or other objectives, the CA pro-
duces delineations consisting of a high number of small
and irregularly shaped stands. Since this kind of delinea-
tion would be hardly acceptable for forestry practice,
parameter optimization was controlled by restricting the
ranges of the parameters and adding the mean stand
area and the proportion of small stands to the objective
function (Eq. 10). The parameters of the CA were opti-
mized separately for all stand delineation tasks, i.e., six
times (cases 1, 2 and 3 for southern and northern
Finland).

Results

Optimal CA-parameters

The optimal weight of the corner cell was equal or close
to its maximum allowed value (0.3) in most optimization
cases (Table 1). Of the three criteria that determined the
stand to which a cell was joined, similarity of stand
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variables had the smallest weight in northern Finland
while stand area had the smallest weight in the south.
The weight of the proportion of common border was
often equal to its lowest allowed value (0.4) because this
variable, which contributes to round and compact stand
shape, contradicts with the criteria of the objective func-
tion that was maximized in parameter optimization (Eq.
10). In the north, much weight was given to stand area
because it was otherwise difficult to reach large mean
stand area in the fragmented forest landscape of the
northern case study area. Productive forest of the north-
ern area was more fragmented by lakes, wasteland (e.g.
unproductive peatland) etc., which made it more difficult
to create large and homogeneous stands in the north.

Of the stand variables used for segmentation, mean
height had often the lowest allowed weight, or when the
weight of mean height was high (case 3 in northern
Finland), the weight of mean diameter was low. This re-
sult suggests that it is sufficient to use either mean
diameter or mean height as a criterion in automated
stand delineation.

Of the variables that describe cutting treatments, the
thinning type variable had always the lowest allowed
weight, suggesting that this variable might not be needed
in stand delineation. This variable describes the degree
to which a partial cutting is thinning from above. The
study of Pukkala (2018) suggests that the optimal thin-
ning is usually thinning from above, implying that there
might be little variation in the optimal thinning type,
making it unnecessary to use it in stand delineation.

In northern Finland, the weights of all cutting variables
were equal to their smallest allowed values when the de-
lineation was based on both growing stock cutting vari-
ables (case 3). The result suggests that cutting variables
may not be important for stand delineation in northern
Finland when maximizing Eq. 10. The parameters of the
functions for the effect of stand area and proportion of
common border (by, by, ¢1, ¢3) were also often on the
limit of the allowed range (black curves in Fig. 2).

Degree of explained variation

The degree of explained variance of stand variables was
high, 0.777-0.953, for soil type and reasonably high
(0.695-0.893) also for fertility class (Table 2). When the
stand delineation was based on growing stock variables
(cases 1 and 3) the R2 of these variables was, with one
exception, higher than in the case (case 2) where basal
area, mean diameter and mean height were not used in
delineation. The degree of explained variance in cutting
variables was usually lower when these variables were
not used in stand delineation. The R2 of a certain vari-
able correlated positively but weakly with the weight of
the variable (w,, in Eq. 8) in stand delineation (Fig. 3),
suggesting that if the stands need to be homogeneous in
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Table 1 Optimal parameter values of the cellular automaton used for stand delineation. Similarity of cells and stands was measured
using growing stock variables (Case 1), forecasted cuttings (Case 2) or both (Case 3)

South Finland North Finland

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Weight of corner cell 0.300 0.299 0.220 0.215 0.278 0.090
a; (common border) 0.400 0514 0.480 0.400 0400 0401
a, (stand area) 0.300 0.191 0.256 0400 0.350 0.396
as (stand variables) 0.300 0.294 0.264 0.200 0.250 0.203
w; (soil type) 0.169 0.288 0.132 0.260 0.208 0.220
w; (fertility) 0.144 0.254 0.123 0.205 0.165 0.170
w3 (mean diameter) 0.296 - 0.120 0.168 - 0.122
wy (mean height) 0.095 - 0.092 0.100 - 0.197
ws (basal area) 0.296 - 0.120 0.266 - 0.091
W36 (cut probability) - 0.169 0.120 - 0.176 0.050
W7 (thin probability) - 0.101 0.120 - 0.176 0.050
Wsys (thin type) - 0.091 0.050 - 0.100 0.050
We/o (thin diameter) - 0.091 0.120 - 0.176 0.050
by (border effect) -16.946 -25.000 -25.000 -5.000 -11.716 —-5.000
b, (border effect) 0.800 0.800 0.800 0.800 0.800 0.800
¢ (area effect) —-3.000 —-3.000 —-3.000 —1.000 —3.000 —-1.000
¢, (area effect) 1.000 1.000 1.000 1.000 1.021 1.000

terms of a particular variable, this variable should have a
high weight in stand delineation.

In the southern case study area, the average R2 of all
nine stand variables was the highest when both growing
stock and cutting variables were used to measure the
similarity of a cell and an adjacent stand (Table 2). In
northern Finland, the highest overall R2 was obtained
when the stand delineation did not use growing stock
variables. However, a high degree of explained variance
was associated with small average stand area and high
proportion of small stands. If the quality of the delinea-
tion is measured with the objective function used in par-
ameter optimization (Eq. 10), it can be concluded that
the quality of delineation was the lowest when stand var-
iables (basal area, mean diameter, mean height) were not
used as criteria (case 2, lowest line in Table 2). The
other cases, namely using only growing stock variables
alone or with cutting variables resulted in rather similar
objective function values.

Similarity of stand delineations

Visual inspection of the stand boundaries reveals that
different CA runs resulted in fairly similar stand
boundaries (Figs. 4 and 5). Especially cases 1 and 3,
where the delineation employed growing stock vari-
ables with or without cutting variables, produced
stands that were often practically identical (yellow
and red borders in Figs. 4 and 5). Stand boundaries
that were based on predicted cutting variables (light

blue borders in Figs. 4 and 5) differed more from the
other delineations but also in this case many bound-
aries coincided with the boundaries of the other de-
lineations. In southern Finland, the average stand
area was clearly larger and the proportion of small
stands lower when only cutting variables were used.
The opposite was true for northern Finland.

Complications

Previous research and theoretical reasoning (Pukkala
1990; Pukkala and Kolstrom 1991) have shown that in-
creasing within-stand variation in stand density and tree
size decreases the volume increment of the stand, com-
pared to homogeneous stands with the same average
stand basal area and mean diameter. When the growing
stock is described only with the average stand balsa area
and mean diameter, it can be expected that growth pre-
dictors will be overestimated, the most in the most het-
erogeneous stands.

Another consequence of condensing the cell level infor-
mation to a single stand level record is the underestima-
tion of the areas of rare fertility classes (Pukkala 2019a). In
a normal case, the most common fertility class of the cells
that constitute a stand is given to the whole stand. Under-
estimated areas of rare sites are consequences of the fact
that these sites often occur as small spots within more
common fertility classes. If large stands are pursued, these
small spots are not demarcated as separate stands.
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Table 2 Degree of variance explained by the stand delineation (between-stand variation/total variation) and other statistics for the
stand delineation. R2 of variables used in stand delineation are in italics. The values of the criterion variables used in parameter
optimization are shown in boldface. The objective function value of the optimization is also in boldface

South Finland

North Finland

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Soil type, R2 0819 0.865 0777 0.953 0.926 0.953
Fertility class, R2 0.710 0.752 0.695 0.893 0.840 0876
Mean diameter, R2 0.682 0.516 0.633 0.553 0512 0.574
Mean height, R2 0.729 0.566 0.683 0621 0.604 0.642
Basal area, R2 0615 0.574 0.634 0.442 0.501 0.442
Cutting probability, R2 0.615 0.578 0.643 0452 0.539 0.460
Thinning probability, R2 0.565 0.590 0.666 0.354 0.569 0.388
Thinning type, R2 0499 0.535 0.576 0302 0.524 0.337
Thinning diameter, R2 0.588 0.537 0671 0357 0.574 0.399
Average R2 0.647 0.613 0.664 0.547 0.621 0.563
Minimum area (ha) 0.03 0.03 0.03 0.03 0.03 0.03
Mean area (ha) 3.51 4.36 3.44 1.95 143 1.83
Maximum area (ha) 13.98 20.71 1587 15.08 17.20 14.13
Small stands (< 0.1 ha) (%) 11.9 8.5 13.2 223 33.0 25.0
Number of stands 829 685 868 1099 1493 1168
Objective function 0.684 0.671 0.694 0.488 0.479 0.483

In the southern case study forest, the proportion of
herb rich site was underestimated by 26%, and in the
northern forest, the proportion of mesic site was underes-
timated by 9%, when compared to proportions calculated
from cells (Table 3). The “missing area” of rare fertility
classes was moved to the areas of more common adjacent
fertility classes. The overestimate of predicted volume
increment, calculated by the models of Pukkala et al.

(2013), was 2.5% for southern Finland and 2.7% for
northern Finland.

Remedies

The availability of cell level information makes it
possible to calculate improved estimates for the areas of
fertility classes, volume increment, and other variables.
A method titled “virtual stands” was developed and
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tested in the current study. In this method, additional
variables were calculated from the cell-level values and
these additional variables were used to split the delin-
eated stands into several stand records (virtual stands)
that reflected within-stand variation in site productivity
and growing stock variables. These additional variables
were: proportions of different site fertility classes, stand-
ard deviation of stand basal area, standard deviation of
mean diameter, and correlation coefficient between
stand basal area and mean diameter.

The additional variables were used to create virtual
stands as follows. First, the proportions of different fertility
classes were used to divide the stand into several sub-
stands, their areas corresponding to the areas of fertility
classes. Second, each sub-stand was partitioned into five
virtual stands that differed in basal area and mean diam-
eter. It was assumed that the two growing stock variables
were multi-normally distributed. Basal area was deviated
from its average value by one standard deviation and the
mean diameter corresponding to the deviated basal area
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was calculated using the standard deviations and the cor-
relation coefficient. Then, mean diameter was deviated in
the same way and the stand basal area was calculated for
the deviated mean diameters (Fig. 6). The mean tree
heights corresponding to deviated mean diameters were
calculated with a height model (Siipilehto 1999), which
was scaled so that the model prediction was equal to aver-
age mean height of the cells when diameter was equal to
average mean diameter of the cells.

Together with average values of mean diameter and
stand basal area the deviated values resulted in five

combinations of stand basal area and mean diameter.
The proportions of these combinations were obtained
from the probability density function of the multi-
normal distribution. The area of the sub-stand was di-
vided among the five virtual stands according to these
proportions.

Table 3 shows that the use of virtual stands removed
the biases from the proportions of different fertility clas-
ses. The bias of the growth prediction was also greatly
reduced, especially in southern Finland. In northern
Finland, the bias was reduced only about 60%. One
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Table 3 Proportions of fertility classes and predicted mean annual volume increment when calculated from the characteristics of

cells, stands or virtual stands

South Finland

North Finland

Cells Stands Virtual stands Cells Stands Virtual stands
Herb rich (%) 14.1 104 141 0.2 0.2 0.2
Mesic (%) 464 499 46.5 13.0 11.8 13.0
Sub-xeric (%) 323 332 323 57.2 583 57.3
Xeric (%) 7.1 6.4 7.0 29.5 29.7 29.6
Volume increment (m*ha™"-a™") 6.76 694 6.80 293 301 296
Bias (%) - 25 03 - 27 1.1

reason for the remaining bias might be that stand basal
area and mean tree diameter correlate with site fertility,
which was ignored in the creation of virtual stands.

Discussion
ALS grid data are available from all private forests of
Finland but this free data source is rarely used in forest
planning now (2020). The reason is the lack of method-
ologies and experience to deal with datasets that differ
from traditional data formats. The situation is similar also
in other countries: more fine-grained inventory data, com-
pared to traditional stand-level inventories, are becoming
available for forest planning with the increased use of
ALS, but forest planners are not prepared to fully utilize
the potentials of the new data formats.

The way in which ALS data were used in the current
study is only one possibility among several alternatives.

As an alternative approach, the ALS pulse data could be
used more directly for stand delineation instead of using
stand variables interpreted from pulse data for cells
(Mustonen et al. 2008; Olofsson and Holmgren 2014).
Variables that describe the pulse data at certain location
(in a very small cell or polygon) can be aggregated into
homogeneous areas, often called as micro segments
(Pascual et al. 2018). Then, the stand variables are inter-
preted for these segments instead of grid cells. This ap-
proach would eliminate the problem of mixed cells,
which are cases where different parts of the cell belong
to different stands, i.e. the cell is located at stand bound-
ary (Pascual et al. 2018).

The third approach is to interpret individual trees
from the pulse data and use the trees in planning cal-
culations (Wing et al. 2018), or calculate the stand
variables required in panning from the predicted
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characteristics of individual trees (Hyyppa et al. 2008).
All these alternative lines to use ALS data in forest
planning require further research and new methodo-
logical development.

This study alleviated the problem of lacking experience
in the use of ALS data by developing methodologies for
employing ALS-based grid data in forest planning. A cel-
lular automaton was used to aggregate grid cells into
stands that correspond to traditional stand compart-
ments. As an enhancement to previous research, also
the forecasted cuttings were used as criteria in stand de-
lineation. Another enhancement was a new method,
based on virtual stands, to deal with within-stand vari-
ation in planning calculations.

When delineating stands from the grid data, much
weight was given to the stand area criterion. The
purpose was to have stands that are large enough to
serve as treatment units in the implementation of the
plan. Large stands make it unnecessary to use spatial
optimization to  aggregate  treatments.  Spatial
optimization has been used for a long time in forest
research (e.g, Borges and Hogansson 1999; Lu and
Eriksson 2000; Bettinger et al. 2002; Jumppanen et al.
2003) but its use in practical forest planning in Finland
is very limited. Therefore, the methods developed in this
study for stand delineation are easily adaptable to the
current forest management systems.

The other methodological development, namely the
use of virtual stands, requires that a few more variables
are imported and stored in the forest database (the new
variables are standard deviation of basal area and mean
diameter, correlation coefficient between basal area and
mean diameter, and proportions of fertility classes). An-
other required modification is the generation of the vir-
tual stands as the first step of calculation, which is not a
difficult step.

Reasonably large stands and avoidance of small stands
are usually wanted in forest planning because this elimi-
nates the need to use spatial optimization in planning
calculations. However, large stand size increases within-
stand variation in stand variables and decreases the pro-
portion of variance explained by the stand delineation
(Mustonen et al. 2008). For example, in the study of
Pukkala (2019a) the R2 of mean diameter was 0.814
(within stand standard deviation, sp, 0.61 cm) when the
average stand area was as small as 0.36 ha. The R2 de-
creased to 0.692 (sp, 0.73 cm) when the average stand
area was 1.27 ha. In the current study, the R2 of mean
diameter was 0.682 (sp, 0.43 cm) in the southern case
study forest) with mean stand area of 3.51 ha, and 0.516
(sp, 0.55cm) with 4.36 ha mean stand area. Therefore,
aiming at large stands in automated stand delineation in-
creases the need to consider within-stand variation in
planning calculations.
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If within-stand variation is ignored, the use of large
stands results in overestimated growth prediction and
underestimated areas of rare site types (Pukkala 2019a).
The same problem of course exists with the traditional,
visually demarcated stands (Pukkala 1990). Sometimes,
other errors may cancel the bias. For example, the used
growth models may underestimate growth. However,
using information on within-stand variation helps to re-
move one source of error from growth predictions. The
other sources of error must be corrected using other
methods.

Within-stand variation may also affect the optimal
treatments. For example, Pukkala and Miina (2005)
found that heterogeneous stands should be thinned at
lower average basal area than homogeneous stands.
Therefore, there might be a need to use the virtual
stands also in the simulation of treatment alternatives
for stands. This would improve the predictions of stand
development, optimality of treatment prescriptions, and
estimated timber removals and incomes.

The results of this study showed that automated stand
delineation with a cellular automaton produces stand
boundaries that closely follow the borders between min-
eral soil and peat land. The degree of explained variation
is also quite high for fertility class, but a part of the
stands might be mixtures of two or more fertility classes.
Some very small stands remained in all delineations
(10%—20% of the number of stands). This outcome is
partly unavoidable since Finnish landscapes often have
small isolated patches of productive forest within agri-
cultural lands or as islands in lakes and nonproductive
peatlands.

The results also showed that the stand delineation is
not very sensitive to variables used in the cellular au-
tomaton. However, the optimal weights of the used vari-
ables suggest that stand basal area should be used,
together with either mean height or mean diameter. For
the avoidance of inoptimality losses due to non-optimal
prescriptions, mean diameter has been found to be even
more important than stand basal area (Kangas et al
2011). Of the cutting variables, the calculated probability
of cutting seems to be the most important for good
stand delineation. Thinning probability and thinning
type variables are less important, most probably because
these variables do not vary much. According to Pukkala
(2018), the optimal cutting is almost always thinning,
and the optimal type of thinning is almost always thin-
ning from above. The thinning diameter (diameter at
which thinning intensity is 50%) correlates strongly with
mean diameter, and is therefore not necessary as a sep-
arate criterion for stand demarcation. Therefore, the use
of the following variables can be recommended for auto-
mated stand delineation: soil type, fertility class, stand
basal area, mean diameter, and probability of cutting.
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The calculated probability that immediate cutting is the
optimal decision depends on mean diameter, stand basal
area, fertility class and temperature sum, in addition to
discount rate (Eq. 1). The variable can be interpreted to
describe the interactions of these variables.

Parameter optimization is not necessary in the practical
application of the cellular automaton. Based on the results
reported in this article and a few additional CA runs, the
following parameter values can be recommended: the
weights of common border, stand area and similarity of
stand variables (a;, a, and a3 in Eq. 5) may all be 0.333;
the weights of soil type, fertility class, mean diameter,
stand basal area and cutting probability (Eq. 8) should be
0.3, 0.2, 0.2, 0.2 and 0.1, respectively (the weights of the
other variables should be zero); parameters by, b,, ¢; and
¢, of Egs. 6 and 7 should be - 25, 0.8, — 3 and 1, respect-
ively; and the weight of the corner cell should be 0.3.

When the cellular automaton was optimized in this
study, only two of the three criteria that were judged
important for good stand delineation, namely small
within-stand variation and large enough stand area,
were included in the objective function that was max-
imized in particle swarm optimization. The third cri-
terion, stand shape, was pursued by constraining
some of the CA parameters within certain limits. For
example, the maximum weight of corner cell was 0.3
and the minimum weight of common border (Eq. 1)
was 0.4. The manner in which the common border
affected the probability of joining a cell to a certain
stand (Fig. 2) was also constrained. These constraints
prevented the CA from creating irregular (e.g. very
long and narrow) stands.

Future research may develop methods to include also
stand shape in the objective function. One possibility
would be to use the area-perimeter ratio or the form het-
erogeneity variables suggested by Baatz and Schépe (2000).
Other segmentation methods and spatial optimization
should also be tested in automated stand delineation. In
addition, different ways to deal with within-stand variation
in forest planning should be developed and compared.
Alternative ways to create virtual stands and use them in
forest planning also deserves further research.

Conclusions

Stand delineation with a cellular automaton produces
stand boundaries that closely follow the borders between
mineral soil and peat land. The degree of explained vari-
ation is also quite high for fertility class and growing stock
variables, but a part of the stands might be mixtures of
two or more fertility classes. Stand delineation created by
cellular automaton is not sensitive to the set of stand vari-
ables that are used in the delineation. However, use of
stand basal area and mean diameter is recommendable,
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together with soil type and fertility class. Optimization of
the parameters of cellular automaton is not necessary in
the practical use of the method. Virtual stands, suggested
in the current study, provide a means to reduce biases in
results calculated for heterogeneous segments.
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