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Abstract

Background: The negative impacts of the exotic tree, Ailanthus altissima (tree-of-heaven, stink tree), is spreading
throughout much of the Eastern United States. When forests are disturbed, it can invade and expand quickly if seed
sources are nearby.

Methods: We conducted studies at the highly dissected Tar Hollow State Forest (THSF) in southeastern Ohio USA,
where Ailanthus is widely distributed within the forest, harvests have been ongoing for decades, and prescribed fire
had been applied to about a quarter of the study area. Our intention was to develop models to evaluate the
relationship of Ailanthus presence to prescribed fire, harvesting activity, and other landscape characteristics, using
this Ohio location as a case study. Field assessments of the demography of Ailanthus and other stand attributes
(e.g., fire, harvesting, stand structure) were conducted on 267 sample plots on a 400-m grid throughout THSF,
supplemented by identification of Ailanthus seed-sources via digital aerial sketch mapping during the dormant
season. Statistical modeling tools Random Forest (RF), Classification and Regression Trees (CART), and Maxent were
used to assess relationships among attributes, then model habitats suitable for Ailanthus presence.

Results: In all, 41 variables were considered in the models, including variables related to management activities, soil
characteristics, topography, and vegetation structure (derived from LiDAR). The most important predictor of
Ailanthus presence was some measure of recent timber harvest, either mapped harvest history (CART) or LiDAR-
derived canopy height (Maxent). Importantly, neither prescribed fire or soil variables appeared as important
predictors of Ailanthus presence or absence in any of the models of the THSF.

Conclusions: These modeling techniques provide tools and methodologies for assessing landscapes for Ailanthus
invasion, as well as those areas with higher potentials for invasion should seed sources become available. Though a
case study on an Ohio forest, these tools can be modified for use anywhere Ailanthus is invading.
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Background
Throughout much of the Central Hardwoods region, the
sustainability of oak forests is threatened by poor regener-
ation and ever-increasing abundances of shade-tolerant
and/or fire-sensitive tree species (Johnson et al. 2009). In
response, the use of partial harvest and/or prescribed fire
on public lands has increased rapidly in the last decade
(Iverson et al. 2017). While these management techniques
can favor oak regeneration, their use may also increase the

risk of invasion and expansion of non-native plant species.
Ailanthus altissima (tree-of-heaven, Chinese sumac, stink
tree), native to northeastern China, was introduced into
North America as an ornamental tree to Philadelphia in
1784, again in New York in 1820, and again in California
during the Gold Rush of the mid-1880s, and its expansion
quickly followed (Hu 1979; Kasson et al. 2013). It is classi-
fied as an ‘aggressive invader’ as it prefers disturbed, early-
seral habitats, can spread readily from root spouts,
produces massive amounts of seed, and has rapid growth
(Call and Nilsen 2005). It is widely distributed in the east-
ern U.S. and is highly invasive in disturbed habitats via
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establishment from prolific wind-dispersed seed (Bory and
Clair-Maczulajtys 1980), and it can persist and expand via
clonal growth (Kowarik 1995). It also has been shown to
produce allelopathic compounds, furthering its invasive
impact (Heisey 1996). Ailanthus is most often abundant in
open sites such as roadsides but can invade disturbed
forests, e.g., after windthrow, harvesting, or fire (Knapp
and Canham 2000; Rebbeck et al. 2017). Though classi-
fied as shade-intolerant, it has been known to persist
for extensive periods under shade (up to 20 years) and
rapidly fill light niches following a disturbance event
(Kowarik 1995; Knapp and Canham 2000). Further, it is
drought tolerant and able to thrive in a host of poor
soil conditions (Evans et al. 2006). It has been present
in southern Ohio for at least 80 years and continues to
spread (Drury and Runkle 2006).
Fire has often been shown to favor the expansion of

non-native invasive species (NNIS) in the western U.S.
(Zouhar et al. 2008). In the eastern U.S., NNIS are abun-
dant and a major management concern; however, be-
cause large and high severity wildfires are infrequent and
the widespread use of prescribed burning has begun only
recently, much less in known about the effects of fire on
invasives in this region (Dibble et al. 2008). Given that
fire was an important process historically, the use of pre-
scribed fire to sustain oak ecosystems has been widely
promoted and is now being used more frequently as a
management tool (Brose et al. 2014). Many National
Forests in the eastern U.S. have adopted sustaining oak
forests as an important objective in their Forest Manage-
ment Plans (Yaussy et al. 2008), and state agencies are
also embracing the use of prescribed fire to sustain
mixed oak forests, enhance wildlife habitat, and reduce
fuel loads (e.g., Ohio Division of Forestry 2010; Ohio
Division of Wildlife 2015). A better understanding of
how Ailanthus and other NNIS respond to prescribed
fire in the eastern U.S. is important, so that proactive
control strategies can be developed and integrated into
prescribed fire and timber management programs at a
landscape level.
Limited information is available on the direct and imme-

diate effects of fire on Ailanthus. Though saplings are easily
top-killed by fire, resprouting is prolific (Lewis 2007). Man-
agers have observed increases in Ailanthus via sprouting
and seed germination immediately following fires, presum-
ably aided by top-kill, the reduced litter and increased light.
However, in landscapes with very small populations of
Ailanthus, it may not invade burned sites (e.g., Hutchinson
et al. 2005). It remains unknown whether an extensive,
post-burn Ailanthus establishment will inevitably occur
when the Ailanthus propagule pressure is high.
Disturbance by timber harvesting has often facilitated

the expansion of Ailanthus. The rapid establishment and
growth, along with ample vegetative reproduction under

relatively high light environments, make it particularly
effective at invading sites after harvest (Call and Nilsen
2003). However, Kota et al. (2007) reported that the pri-
mary window for invasion occurs in the first year after
disturbance, as suitable microsites rapidly decline as the
native vegetation regrows.
This project was initiated to help gain a better under-

standing of how the distribution of Ailanthus is related to
recent prescribed fires, harvesting activity, seed sources,
and other landscape and stand characteristics, and with
the intent to help develop prescriptions for managers to
reduce the threat of post-fire or post-harvest invasion. It is
a follow-on project of Rebbeck et al. (2017), which used
the same study area to investigate plot-level trends and
relationships to prescribed fire and harvest. This study fo-
cused on a landscape modeling approach through a series
of different tools for analysis. Multiple tools were used, in-
cluding digital aerial sketch mapping, field sampling, GIS
analysis, and statistical modeling to quantify the distribu-
tion of Ailanthus and its most suitable (or unsuitable)
habitat. The selected modeling tools included classifica-
tion and regression trees (CART), Random Forests (RF)
(Breiman 2001; Prasad et al. 2006), and maximum entropy
(Maxent, Phillips and Dudík 2008; Elith et al. 2011). From
these data and tools, we produce models and analyses of
potential and likely factors related to the presence and
abundance of Ailanthus across a forested landscape in
Ohio, near the center of the Central Hardwoods region.

Methods
Study site
The Tar Hollow State Forest (THSF; 39°21′ N; 82°46′ W)
is located within Hocking, Vinton, and Ross counties of
southern Ohio, and within the Southern Unglaciated Alle-
gheny Plateau. Occupying 6618 ha (16,354 acres), its top-
ography is highly dissected with three distinct landtypes:
dry oak (on ridges and south facing slopes); dry-mesic
mixed oak hardwood (on north-facing slopes); and rolling
bottomland mixed hardwoods (on and near valley bot-
toms) (Iverson et al. 2018). The forest had a history of
timber harvesting and farming from the time of European
settlement in the late 1700s to the 1930s when a land
utilization project funded the relocation of subsistence
farming families to more productive land, leaving manage-
ment to the state of Ohio. Reforestation of THSF was
mostly from natural regeneration. Timber management has
occurred since the 1940s and prescribed burning has been
conducted since 2001. We focused sampling and modeling
for the southern half of THSF (3884 ha, 9600 ac), which in-
cluded a known spatial history of prescribed fires and har-
vests. Tree cores from several large Ailanthus trees revealed
that it has been present at THSF since at least the 1920s (J.
Rebbeck unpublished). It is also present throughout south-
eastern Ohio, though its abundance is variable. In a 5-
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county area that includes THSH, Ailanthus was shown to
be present in 5% of Forest Inventory and Analysis plots
from the period 2006 to 2011 (Dyer and Hutchinson 2019).
An abundant establishment of Ailanthus from seed

occurred following a thinning and prescribed fire treat-
ment installed at THSF (Hutchinson et al. 2004). The
combination of a seed source from a relatively small popu-
lation of adult female trees in the stand along with forest
floor and canopy disturbance during treatment appeared to
be responsible for precipitating the increase in Ailanthus
seedlings. An inventory on two adjacent treatment units
(thin only or burn only) also revealed that on sites with only
a few adult trees, the post-treatment increases in Ailanthus
were much reduced (Hutchinson et al. 2004). The rapid ex-
pansion of Ailanthus after thinning and burning treatments
prompted the Ohio Department of Natural Resources
(ODNR) Division of Forestry and the Wayne National For-
est to place more emphasis on NNIS management. Though
an aggressive prescribed fire program, including multiple

fire years can promote oak regeneration (Hutchinson et al.
2012), efforts must be made to minimize the expansion of
NNIS such as Ailanthus. The THSF thus provides an ideal
location to study the interactions of Ailanthus, harvesting,
and fire.

Ailanthus mapping and field sampling
To provide a spatial representation of the presence of
Ailanthus, seed-producing female Ailanthus trees were
aerially mapped within the study area; male trees are not
possible to map in this way (Rebbeck et al. 2015). Prom-
inent seed clusters, often > 800 per tree (Illick and
Brouse 1926) persist through the winter and were easily
identifiable in aerial surveys conducted in December 2008.
Ground checks of 66 of the 96 aerially-identified female Ai-
lanthus (seed-bearing) trees occurred in January–February
2009. These mapped trees (Fig. 1) were used to help train
and assess the Maxent model and assess the CART model
(see below). Although annual seed production of individual

Fig. 1 Study area at Tar Hollow State Forest. Shown are female Ailanthus trees identified during helicopter surveys and 400m× 400m grid of presence/
absence of Ailanthus on sample plots. Polygons represent areas harvested over 80 years along with prescribed fire history from 2001–2008
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Ailanthus trees can vary substantially, seed production has
been shown to generally increase with tree diameter (Wick-
ert et al. 2017).
A systematic grid of geo-referenced sample points

(n = 267, 400m spacing between plots) was established
in late winter 2009 throughout the study area (Fig. 1),
from which a series of data were collected on 40 m ra-
dius plots (Additional File 1). In summer 2009, we sam-
pled woody vegetation on all plots using nested plots to
estimate several size classes of Ailanthus (e.g., trees ≥10
cm dbh, large saplings ≥3–9.9 cm dbh, small saplings
1.4 m height to < 3 cm dbh, seedlings < 1.4 m height),
which included individual stems as well as root suckers
and basal sprouts (see detailed sampling protocols in
Rebbeck et al. 2017). In addition, if Ailanthus was not
recorded in the nested plots, then we searched the entire
40 m radius plot to determine whether it was present in
any size class. Notably, for this study, all Ailanthus
plants, regardless of size, were collapsed to presence/ab-
sence on the plot to be the target variable and to in-
crease sample size for modeling of the landscape-related
variables in their relation (or not) to Ailanthus presence
(or absence). A host of other vegetation variables were
obtained from within 20 m radius plots at each grid
point, including tree form, distance to skid road, dis-
tance to ridge top, percent sun via ceptometer, presence
of canopy gaps, and evidence of past prescribed burn
(see also Rebbeck et al. 2017, Additional File 1).

GIS variables
Because this was an exploratory effort to assess potential
landscape-level influences on Ailanthus, a large number of
GIS variables were collected and analyzed to search for
relationships. As such, we present only those variables fi-
nally selected for models in the text, with descriptions of
each in Additional File 1.

Silvicultural history
The Ohio Department of Natural Resources (ODNR, For-
estry) provided digital GIS records of management history
from 2005 through 2009, and access to earlier paper re-
cords of timber management history going back to the
1940s. Paper maps were digitally scanned and polygons of
harvested areas were manually created within GIS soft-
ware. A polygon database of harvest history was created
which included the following attributes: harvest year,
management unit, area harvested, volume removed, and
silvicultural code related to harvest intensity (uncut, select,
thin, multiple select cuts, or clearcut). For 30 unresolved
gridpoints and their surrounding areas, ground surveys
were conducted to estimate harvest history. Similarly,
ODNR provided spatial data on the prescribed fire history
and intensity (estimated as none, very low, low, medium,
and high intensity) for the THSF. Prescribed fires between

2001 and 2008 covered approximately 25% of the area
within 10 units, and ranging in size from 8–323 ha (20 to
800 acres).

Terrain-derived variables
A 10-m Digital Elevation Model (DEM) obtained from
the Ohio Environmental Protection Agency, Division of
Emergency and Remedial Response, was used to gener-
ate a series of variables, potentially useful in modeling
Ailanthus habitat (Table 1, Additional File 1). These in-
clude the Integrated Moisture Index (IMI), a moisture
regime index derived from curvature, flow accumulation,
hillshade, and soil water holding capacity (Iverson et al.
1997; Peters et al. 2010). Flow direction and accumula-
tion were created using an infinite directional algorithm
(TauDEM v4.0, Tarboton 1997) which more accurately
depicts the influence of terrain on soil moisture and
overland flow. TauDEM was also used to generate the
downslope influence and upslope dependence grids for
each grid point and female trees individually.
Also created from the DEM were multiple terrain-

related features using Land Facet Corridor Designer tools
from Jenness et al. (2011) that provides information re-
lated to position of a cell relative to the surrounding cells
of 50, 150, 300 and 600m. This topographic position
index thus gives an indication of whether a cell is situated
above or below the general landscape. Similarly, the slope
position determined at radii of 50 and 300m indicates, at
two scales, topographic position at six positions ranging
from valley bottom to ridgetop. These variables provide
information relative to moisture retention.
Another series of variables provide information on solar

radiation based on landscape position. These include hill-
shade (mentioned above), a Beer’s transformation of as-
pect (Beers et al. 1966), an estimate of total solar radiation
and an index of solar illumination (cumulative and relative
proportion for each 2 h block of the day), and the relative
solar radiation at 4 pm.

Canopy height
Light detection and ranging (LiDAR) data was used as a
surrogate for harvest in the Maxent model. It can reflect
canopy heights so that it will detect those locations with
low tree height initially following harvest, followed by re-
growth in the years following harvest. LiDAR was ob-
tained from the State of Ohio (OSIP_I 2017) which had
been collected between March–May (leaf-off) in 2008
with a mean point distance of 1.7 m (5.6 ft). The data
contained first and last return heights and was classified
into four categories (Default - cars, buildings, parts of
vegetation, possible ground; Ground – bare earth points;
Non-ground - vegetation returns or points identified to
not be on the ground surface; and Low points – below
ground surface). The ground points were used to create
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a DEM from the minimum height of first and last returns
within a 10-m grid, and where grids did not contain data,
a 3 × 3 focal mean was used to fill gaps. Surface points (de-
fault and vegetation) were used to create a Digital Surface
Model (DSM) from the maximum height of first and last
returns. Canopy height was estimated by subtracting an
adjusted DSM, where grids with null values were replaced
with DEM values. Midstory is the minimum returns of
vegetation that were then estimated by subtracting the
DEM.

Distance variables
Distance from each grid point to several features on the
landscape were calculated and included in the models.
These included the distance to nearest bridle and hiking
trail, road, and ridge line. The ArcHydro module (ESRI
2009) was used to develop drainage and ridge lines, from

which each grid point was assayed for distance to nearest
stream and ridge. Digital Line Graphs of road networks were
obtained from the State (OGRIP) with a spatial resolution of
1:24,000 for the four 7.5min quadrangles that encompass
the study area (Hallsville, Laurelville, Londonderry, and
Ratcliffburg).

Data analysis and model development
To determine the relationships of Ailanthus presence and
abundance to distance from seed-producing trees, fire,
timber harvest, and other landscape attributes, data ana-
lysis and modeling included several GIS and statistical
techniques. Statistical relationships among variables were
used to determine the possible drivers of Ailanthus pres-
ence and potential expansion within this landscape. The
response variable related to Ailanthus used in the land-
scape models was the presence or absence of Ailanthus, of

Table 1 Variables used in RF, CART, and Maxent models. NI-Not included. NC-Not Contributing to model. Description and statistics
of variables are presented in Additional file 1

Variable RF rank CART rank Maxent Rank Description

Yrs_since_last_harvest 1 1 NI years since last harvest

Near_Roads 2 NI NC distance from roads

TPI600 3 3 NC TPI with 600 m buffer

RelSun4pm 4 2 6 relative solar radiation
at 4 pm

Near_Hike_Bridle 5 NI NC distance from trails

UpCanHt 6 NI 4 height of upper canopy

Harvest_Yrs_cl 7 NI NI years since harvest, class

Fire_Int_cl 8 NC NC Intensity of fire

TPI300 9 6 2 TPI with 300 m buffer

Elevation 10 NI 1 Elevation (m)

MidCanHt 11 NI NC height of mid-canopy

Asp_beer 12 NC 3 Beers aspect

Near_Ridges_vec 13 NI NC distance from ridges

Slope_deg 14 4 9 degree slope

TAU_SCA 15 7 7 specific catchment
area

TPI50 16 5 NC TPI with 50 m buffer

IMI 17 NC 10 integrated moisture
index

Percent_sun 18 NI NC percent sun at plot

TotalSolar 19 NI NC total solar radiation

Harvest_Int_cl 20 NI NI harvest intensity, class

Hillshade 21 NC 12 hillshade

TPI150 22 NC NC TPI with150 m buffer

Curvature 23 NC 13 curvature

LandFm50.300 m 24 NC 14 landforms derived from
TPI

Area_Sol_Rad 25 NI 5 annual solar radiation
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any size, on the plots. These were used in conjunction
with attributes listed in Table 1 and Additional files 1 and
2 for mapping habitat affinities. In all, 41 variables were
considered in the models, including variables related to
management activities, soil characteristics, derived topo-
graphic measures, and vegetation structure characters (de-
rived from LiDAR). Statistical tools included classical
statistics, classification and regression trees (CART), Ran-
dom Forests (RF) (Breiman 2001; Prasad et al. 2006), and
maximum entropy (Maxent, Elith et al. 2011; Phillips and
Dudík 2008), the latter three for modeling of suitable habi-
tat affinity for Ailanthus. RF and CART use a similar stat-
istical approach and have been used extensively to
nonparametrically discern relationships in ecology, and to
apply those relationships to predict for every cell across a
raster map. These tools have the capacity to derive rela-
tionships among multiple variables, using out-of-bag
randomization of subsets of data to limit concern for mul-
ticollinearity (Prasad et al. 2006). Similarly, Maxent has
also been widely used, especially in prediction based on
presence-only data. Though 41 variables were considered,
the analyses quickly constrained variables to only a few
non-correlated variables for model outputs. Because, from
Rebbeck et al. (2017), we already knew that years since
harvest was a primary predictor variable, we wished to
pursue models with (CART and RF) and without (Max-
ent) this variable, as it is extremely difficult if not impos-
sible to attain these spatial data across large public/private
landscapes. We therefore used the CART model with the
digitized polygons for THSF harvest history, and the Max-
ent model with the surrogate for harvest history, the
LiDAR data. We chose to use both methods to investigate
similarities, differences, and accuracy in the spatial predic-
tions, including the value of the surrogate for harvest.
Model development was conducted in R (R Core Team

2012) for Random Forest (RF), linear logistic regression,
and CART and in Maxent software for Maxent. To select
predictor variables most parsimonious for modeling, RF
was run to assess variable importance and deviance ex-
plained. Linear logistic regression was used to evaluate in-
dividual variable relationships to presence/absence of
Ailanthus across the plots. CART and Maxent outputs
were used to generate maps of predicted presence/absence
(CART) and probability of occurrence (Maxent). Model
evaluation consisted of the pseudo R2 for linear logistic re-
gression, pseudo R2 and Gini importance for RF, confu-
sion matrix (Fielding and Bell 1997; Fawcett 2006) for
CART and Maxent, and area under the receiver operating
characteristic (AUC, Fielding and Bell 1997) for Maxent.
The Gini importance ranks variable importance within RF
and can be used as a general indicator of feature relevance;
it measure how well a potential split is separating the sam-
ples of two classes within a particular node (Menze et al.
2009). Confusion matrices assess type I (false positives)

and type II (false negatives) model errors. Values of AUC
provide information about a model’s sensitivity and speci-
ficity to classify data compared to random (AUC ≤ 0.5).

Results
Aerial survey and field sampling
The helicopter survey allowed the mapping of 96 seed-
bearing Ailanthus females and 42 patches (up to 13.4 ha
in size) containing Ailanthus within a 3884 ha THSF
area (Rebbeck et al. 2015). Of the aerially mapped trees,
75 were ground-truthed, with only two trees incorrectly
identified from the air. Further, 93% of the female Ailan-
thus trees identified were located within harvested areas
within the THSF. When plotted, these Ailanthus trees
were distributed across the study area, with the excep-
tion of the northeast portion (Fig. 1).
Among the 267 systematic plots (400 m grid) assessed

across the landscape, Ailanthus seedlings were present
on 22.5% of the plots and Ailanthus trees on 17% of
plots. Ailanthus tree densities were either zero or less
than 10 stems∙ha− 1 in 86% of the plots; maximum tree
density was 2193 trees∙ha− 1 on one plot. Seedlings dens-
ity across all plots averaged 282 stems∙ha− 1, but skewed
by one plot which had 21,285 stems∙ha− 1. In areas with
a harvest history within the past 40 years, 30% of the
plots had Ailanthus seedlings and 21% of the plots had
Ailanthus trees; overall, 39% of these plots had some Ai-
lanthus. Medium to high densities (> 100 ha− 1) of Ailan-
thus seedlings were found on 42% of plots within more
recent (< 20 yr) harvests, 3.7 times as frequently as on
plots harvested 21–80 years prior (Rebbeck et al. 2017).
Of the 267 plots, 55 (20.6%) showed no evidence of

harvest in the past 80 years, 23 (8.6%) had been clearcut,
mostly > 20 years prior to this study, and 189 (70.1%)
had some form of selection harvest. Additionally,
roughly 25% of the study area had dormant season pre-
scribed fires between 2001 and 2008, four in the fall and
8 in the early spring (Fig. 1). Sampling of plots indicated
that Ailanthus was present in 38 of the 80 plots (48%)
within the 890 ha (2200 ac) that were burned. However,
all but 9 of these burned plots (79%) were also harvested
within the last 40 years.

Landscape modeling
Linear logistic regression/Random forest/CART modeling
Linear logistic regression yielded a model with years since
last harvest as the key influence on the presence of Ailan-
thus. It alone created a model reaching a pseudo R2 of
0.30. The more recent the harvest, the greater chance of
finding Ailanthus. Of the 97 plot locations with Ailanthus
present, 84 (87%) had been harvested within the past 40
years. Variables also significant in model iterations using
subsets of the data included, in decreasing order, relative
sunlight intensity at 4 pm, topographic position index at
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600m, and integrated moisture index. These last three
variables reveal the following tendencies for Ailanthus
presence: 1) it tends to occur where the relative sun inten-
sity in late afternoon is not intense (< 0.26) especially on
sites with recent harvests; 2) it tends to occur higher than
most of the surrounding landscape within a radius of 600
m; and 3) it tends to occur where soil moisture is moder-
ate according to IMI: > 35 but mostly less than 48 (Iverson
et al. 1997). A visual inspection of a map with IMI and lo-
cations of Ailanthus presence reveals a tendency for pres-
ence on relatively moist slopes but not the valley bottoms
(Fig. 2).
Of the 41 variables assessed with Random Forest, 25

achieved a mean decrease in Gini importance > 1.5.
These are presented in decreasing rank order in Table 1,
with the full list in Additional File 2. By far, the most im-
portant predictor of Ailanthus presence/absence was the
years since last harvest. After that, distance to roads or
trails, terrain-related variables (relative sunlight intensity
at 4 pm, topographic position index at 600 and 300 m,

integrated moisture index), and LiDAR-derived variables
(heights of mid- and upper canopy) appeared as import-
ant. The only fire-related variable that made this list of 25
was fire intensity class. The variables used in the CART
and Maxent models used variables from this reduced set
of 25 variables. The process of iterative modeling within
CART or Maxent allowed us to parsimoniously further re-
duce the variable set, which also resulted in differing final
data sets for CART vs. Maxent. A large exception to this
approach was the elimination of ‘years since harvest’ from
the Maxent data set (the most important variable in
CART), with replacement with LIDAR-derived heights of
upper and middle canopy; as discussed below, this was to
test the potential for the LIDAR surrogates for years since
harvest within Maxent.
Following RF, the CART model considered a reduced

set of variables, in that we intended for the model to be
more parsimonious and largely dependent on GIS-derived
terrain-dependent variables along with years since harvest.
As such, the final CART model presented here uses only

Fig. 2 Distribution of Ailanthus across Tar Hollow State Forest and integrated soil moisture index (IMI). Dark areas represent moist conditions
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the years since harvest and six terrain-related variables
(Table 1, Additional File 3). The primary root split is years
since harvest; the output shows Ailanthus was absent
from 87% of the plots with no harvest in the past 65 years
(Table 1, Additional File 3). Within the harvested areas,
the model suggests that Ailanthus prefers aspects where
the sun is less intense in the afternoon (RelSun4pm <
0.28). On harvested sites with less intense afternoon sun,
Ailanthus is more common on the upper, steeper slopes,
i.e., when the overall, broad terrain (topographic position
index, or TPI, with a 600m radius) is higher in elevation
than the mean 600m plane and if the slope angle is rela-
tively steep (> 42 degrees). But other paths in the tree dia-
gram show Ailanthus not specific to those upper, steeper
slopes, as TPI at 150m and TAU_SCA (flow accumula-
tion of water downslope) indicate that Ailanthus presence
can occur in much lower slope positions as well (Add-
itional File 3).
The models also suggest conditions where Ailanthus

presence would not be likely (Table 1, Additional File 3).
Primarily, if the area was not recently harvested, Ailan-
thus is likely to be absent. But also locations with high
intensity of afternoon sun are less likely for presence,
whether the area was harvested or not.
It is also informative to mention the variables that did

not factor in the models for presence or absence. Im-
portantly, recent prescribed fire was not a significant
predictor of Ailanthus presence or absence in any of the
models. In addition, soil chemistry or texture variables
were not significant in any of the models, nor were the

variables associated with the downslope or downwind
analyses.
When the CART model was applied via the significant

predictors to the THSF landscape, a map of potential
presence vs. absence was generated (Fig. 3). The map
shows approximately 20.9% of the area as ‘present’ and
79.1% as ‘absent’ for Ailanthus. The ‘present’ locations
can be interpreted as locations with a higher probability
of being suitable for or at risk of invasion from Ailan-
thus, not that it is currently present.
This model had an overall accuracy on predicting plots

as present or absent of 76.4%, when using the training
data for accuracy assessment as well: it correctly pre-
dicted presence on 75 of 94 ‘present’ plots, and absence
on 129 of 173 ‘absent’ plots (Table 2). When evaluated
using the females located via the aerial sketch mapping
(Rebbeck et al. 2015), and not used in model develop-
ment, it accurately predicted 46 of the 59 actual loca-
tions for 78% (Table 2).

Maximum entropy modeling
A maximum entropy (Maxent) model was calculated from
the known locations of female Ailanthus trees and grid
points where Ailanthus was present. In contrast to CART,
it does not use known absences in its formulation. Not-
ably, years since last harvest was not used as a potential
predictor variable so as to create a model not depending
on that variable. Since years since last harvest is usually
not available, or at least hugely time-consuming to acquire
and digitize data back for 50+ years, we set out to derive

Fig. 3 CART and Maxent modeled presence, or probability of occurrence, of Ailanthus
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models without that variable. However, the LiDAR-based
upper canopy height, which was included, can be consid-
ered somewhat a surrogate for the years since last harvest,
as tree height would increase with years following harvest.
A suite of 38 predictor variables were used to build and
test (via set aside records) a Maxent model, with 10 itera-
tions resulting in an AUC of 0.879 and which identified
elevation, TPI300, aspect, canopy height, and solar radi-
ation as the top five predictors, respectively, for the pres-
ence of Ailanthus (Table 1). Similar to the CART model,
this Maxent model therefore uses recent harvest along
with variables describing moderate levels of solar radiation
and moisture to select the most suitable sites. Classifying
the probability of occurrence into least, low, moderate,
and high (0–20%, 21%–35%, 36%–50%, and 51%–100%)
placed 1650 ha (4077 ac) (35%) of the study area in moder-
ate to high probability of occurrence. Among the known
locations of Ailanthus (female trees and plots with Ailan-
thus present), 5.3%, 21.7%, 42.8%, and 30.3% were pre-
dicted among the four categories respectively (Fig. 3,
Additional File 4).
For purposes of validation, we combined moderate

and high probability (36%–100% probability) to predict
‘present’. The moderate and high classes contained 97%
of the female trees (57 of 59) and 94% of the 40-m plots
(87 of 93) where Ailanthus was present (Table 2).
Similar to the CART model, the probability values pro-

duced by Maxent can also be used to identify areas where
Ailanthus is least likely to occur. The area associated with
the four classes accounted for 26%, 39%, 27%, and 8%
(least to high, respectively) of THSF (Additional File 4);
these probabilities can help in planning field surveys and
treatments to manage Ailanthus across the THSF and sur-
rounding landscape. However, as previously mentioned,
areas with a higher probability of occurrence may not

currently have Ailanthus present. For example, we found
that 44% of the absence plots were modeled to have a
moderate to high probability of occurrence; they could be
suitable for Ailanthus invasion but no establishment has
occurred on those locations. This high proportion of mod-
eled presence (e.g., moderate or high probability of occur-
rence) on plots with no Ailanthus results in the relatively
low overall accuracy of 51% (Table 2). Knowing the likeli-
hood of these false positives, local knowledge should be
used to help interpret the Maxent output and make deci-
sions related to management.

Model evaluation/Comparison
The two models, representing a CART estimation of Ai-
lanthus presence vs absence, and a Maxent estimation of
four classes of probability of occurrence show many
similarities and some differences (Fig. 3). When compar-
ing presence on CART vs. the high and moderate classes
of Maxent, they match well, but with Maxent predicting
a greater proportion of suitable habitat (21% of the land-
scape with CART vs. 35% with Maxent). As such, the
Maxent model correctly predicts a greater share of the
gridded plots with Ailanthus presence (93.5%) as com-
pared to the CART model (79.8%) (Table 2). However,
absences are consequentially better predicted by the
CART model (74.6% correctly predicted) as compared to
the ‘least’ class of Maxent model (28.7%). Combining the
‘low’ and ‘least’ probability classes correctly predict 56%
of the absences (Additional File 4).
It is important to note that the Maxent model does

not use years since last harvest variable, which was the
most important factor in the CART model. This was to
assess whether a useful model can be built and applied
in areas without long-term harvest records. However, it

Table 2 Accuracy assessment for 267 plots and 59 female Ailanthus trees for the Maxent and CART models

Plots

Maxent model CART 30m model

Field Total Present Absent Total Present Absent

Present 93 87 6 94 75 19

Absent 174 124 50 173 44 129

267 211 56 267 119 148

overall accuracy 51.3% overall accuracy 76.4%

Female Trees

Maxent model CART 30m model

Field Total Present Absent Total Present Absent

Present 59 57 2 59 46 13

Absent 0 0 0 0 0 0

59 57 2 59 46 13

overall accuracy 96.6% overall accuracy 78.0%
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does use an estimate of canopy height as deduced from
LiDAR analysis. This variable can capture recent har-
vests and is likely a surrogate for the years since harvest
variable. Though this measure of canopy height is not
available outside THSF at this time, it does provide the
potential for such modeling in future.

Discussion
This study is part of an overall effort to better understand
Ailanthus demography, its habitat preferences across the
landscape, and here, its relationship to its position in the
landscape. Because the Tar Hollow State Forest has been
under state management for many decades, records on
harvest and prescribed fire were available and either
already digital or digitized by us, going back to the 1930s.
Prior to 1930s, THSF had a long history of subsistence
farming and timber harvests; these disturbances likely
facilitated the establishment of Ailanthus and thus the
source for the present-day populations within the THSF.
Because seed can persist on the trees throughout the fall
and into winter, we hypothesized that wind dispersal and
even seed clusters sliding downslope on snow in winter
could aid in dispersal of the seed, as reported by Kowarik
and Saumel (2007). However, these variables were not
significantly important in our models. These data seem to
indicate, for this study area, that establishment onto rela-
tively suitable sites is of greater importance than spreading
from adjacent upslope or upwind sites. Nonetheless, seed
sources need to be available and adjacency and spread
must also factor in. Landenberger et al. (2007) did find Ai-
lanthus to be an effective disperser which can spread rap-
idly in fragmented landscapes where edges and other high
light environments occur. Wickert et al. (2017) found a
significant relationship between seed production and tree
diameter and estimated cumulative seed production in
individual Ailanthus can reach ca. 10 million seeds over a
40-year period.
At the time of sampling, 36% of the systematic plots had

Ailanthus present, and 87% of those had been harvested
within the last 40 years. Ailanthus seed germination and
seedling establishment have been shown to be greater in
recently harvested forests (clearcut and partial cut) than in
undisturbed forests (Kota et al. 2007). Timber harvest
operations disturb the forest floor and create high light
conditions that stimulate the germination of seed-banking
species like Ailanthus (e.g., Pickett and McDonnell 1989).
All our statistics emphasized the close relationship be-
tween years since harvest and Ailanthus presence. Because
the more recent harvests are shown to be more likely to
have Ailanthus present, the weight of evidence for this
site, and likely in many places elsewhere, is that the prob-
lem of Ailanthus invasion is growing: ample available
seeds and clonal propagation continues and harvest

disturbance provides a network for rapid spread of the
species. Similar to other studies on invasive plants, dis-
turbance facilitated invasion by Ailanthus, provided a seed
source was present (Runkle 1985). Once established, the
propagule pressure can drive the subsequent spread of the
species (Rouget and Richardson 2003).
Aerial and ground surveys in various locations in south-

ern Ohio also point to an ever-increasing prominence of
Ailanthus (Rebbeck et al. 2015), also documented by den-
drochronological studies and floristic surveys in Pennsyl-
vania (Kasson et al. 2013), which correspond with global
trends for the species (Kowarik and Saumel 2007).
Because of society’s need for wood products as well as the
silvicultural requirements for sustaining oak and creating
early successional wildlife habitat, timber harvesting will
continue to occur. Thus, the expansion of Ailanthus is
likely unless care and treatment are included in the man-
agement. Given the changing climatological conditions in
the past decades and predicted into the future (Matthews
et al. 2018), invasives in general, and perhaps Ailanthus in
particular, may benefit at the expense of native species
(Alba et al. 2017; Dukes et al. 2009). Similarly, distur-
bances from insect and disease pests, like the emerald ash
borer (Gandhi and Herms 2010), gypsy moth, and hem-
lock woolly adelgid (Kasson et al. 2013), may provide
openings and microsites for increasing Ailanthus.
This study augments the findings of Rebbeck et al.

(2017), who found from plot data that prescribed fire does
not appear to be a major factor in the presence/absence of
Ailanthus, but that harvest history is the dominant driver.
We do admit, however, that fire cannot be entirely dis-
missed as a factor by this study because it cannot be wholly
separated from the impacts of harvest – interactions with
harvest are likely. It did show up as the eighth most import-
ant factor in the RF analysis. However, by incorporating
wall-to-wall analysis of multiple variables, we confirm those
results but also uncover several other attributes related to
the presence of Ailanthus. The overwhelming influence of
harvest and the underwhelming influence of fire were ap-
parent in both approaches. Only one of the top 25 variables
identified through Random Forest in this study were fire
related. Very little is known about the effects of fire on
Ailanthus. Lewis (2007) found that saplings are easily top-
killed by fire immediately followed by prolific resprouting.
However, the longevity of those Ailanthus stems be-
yond one year was not assessed. In a separate study at
THSF, we assessed the direct impacts of prescribed burning
on Ailanthus populations; by four years post-burning,
Ailanthus germinants and sprouts were poor competi-
tors with faster-growing woody regeneration, primarily
Rubus spp. (Rebbeck et al. 2019). Kuppinger et al.
(2010) reported that the non-native invasive princess
tree (Paulownia tomentosa) increased dramatically im-
mediately following wildfires in Southern Appalachian
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forests, but six years later only persisted on xeric and
exposed topographic positions that had high intensity
burning.
Our analyses adds to the work of Rebbeck et al. (2017)

by pointing to the influence of terrain variables on Ai-
lanthus presence. These have not been assessed in a wall-
to-wall modeling context in any study previously, and
were found to be important so that managers can reduce
the area under consideration when attacking this invasive
tree. The integrated moisture index, the relative sun inten-
sity at 4 pm, and the topographic position index at 600m
all indicate Ailanthus is more likely to occur on hillslopes
with medium moisture and solar intensity regimes. Can-
opy shading is also important. Newly germinated Ailan-
thus seedlings have been shown to decline in highly
shaded environments (Kowarik 1995), although they may
survive in low light for up to 7 years (Knüsel et al. 2017)
and clonal saplings can survive in shaded forest conditions
for > 20 years until a disturbance gap is created (Knapp
and Canham 2000). Similarly, in high light environments,
Ailanthus was unable to compete well against the native
yellow-poplar (Liriodendron tulipifera) which depends on
rapid growth to canopy height during a single period of
release (Kota et al. 2007). Our results indicating a prefer-
ence for moderate moisture levels also is corroborated by
other studies. Huebner and Tobin (2006) found greater in-
vasion of exotics on the more mesic, northeast-facing
slopes in West Virginia, USA, as did Knüsel et al. (2017)
in abandoned chestnut orchards and coppice forests in
southern Switzerland. Huebner et al. (2018) found little
difference in first-year survival of Ailanthus seedling trans-
plants based on aspect (northeast- vs. southwest-facing),
or management regime (single or repeated-burn sites were
not different from control, shelterwood or diameter limit
cut). In our models, the driest sites also were less likely to
have Ailanthus present, likely because forest floor condi-
tions and soil moisture are not as good for Ailanthus ger-
mination and establishment in those settings; perhaps also
several native oaks and hickories are more competitive in
those situations (Iverson et al. 2017; Iverson et al. 2018).
The modeling via CART and Maxent show promising

results towards identifying sites more (or less) suitable for
Ailanthus invasion. Inspection of maps and verification
data show reasonable prediction capabilities by either
model so that field personnel could reduce their inspec-
tion time should they wish to remove Ailanthus before it
becomes a major problem. Each of the models, however,
currently have data limitations related to extrapolating the
results outside the THSF. Applying the CART or Maxent
models to other landscapes requires adequate GIS data for
environmental predictions to be made. In the case of the
CART, some prior mapping of harvested areas is neces-
sary, while for Maxent, a LiDAR-estimated canopy height
variable is necessary. LiDAR is available, readily

obtainable, or soon available for large area assessments, so
that it can be used as a surrogate for mapping harvest
data. Harvest records are either nonexistent or widely dis-
persed when considering large areas of a mix of public
and private lands. Another recent possibility, not explored
here, is to use the Landsat archive, dating back as far as
the late 1970s or early 1980s, with the Google Earth En-
gine and its capacity for harmonic regression classification,
to identify harvest locations and times over large areas
(Adams et al. 2019). Provided suitable data are available,
the models could then be used to predict values into the
new landscapes based on the training data set used for
THSF. Regardless, the models show, via statistics and
maps, the types of places and terrains most likely harbor-
ing Ailanthus, and can be a starting place for inquires and
assessments elsewhere. In general, those places will have
had some recent (< 40 yrs) harvest, and will more likely
occur on mesic, mid-slopes that are ‘not too dry, not too
wet, not too sunny, and not too shady’. When combined
with aerial forays for identification of seed producing fe-
males (Rebbeck et al. 2015), identifying Ailanthus loca-
tions on the ground with tools those presented here can
lead to more effective combat (e.g., inoculating with the
biological control Ailanthus wilt, Rebbeck et al. 2013; Kas-
son et al. 2014) against this aggressive invasive tree.

Conclusions
Ailanthus altissima is spreading throughout much of the
Eastern United States. When forests are disturbed, it can
invade and expand quickly if seed sources are nearby.
This study evaluated the relationship of Ailanthus pres-
ence to harvesting activity, prescribed fire, and other
landscape characteristics related to management activ-
ities, soil characteristics, topography, and vegetation
structure. Field assessments of the demography of Ailan-
thus and other stand attributes (e.g., fire, harvesting,
stand structure) were conducted on 267 sample plots on
a 400-m grid throughout the Forest, supplemented by
identification of Ailanthus seed-sources via digital aerial
sketch mapping during the dormant season. Statistical
modeling tools Random Forest, Classification and Re-
gression Trees, and Maxent were used to assess relation-
ships among attributes, then model habitat suitability for
Ailanthus presence. A most important predictor of Ai-
lanthus presence was some measure of recent timber
harvest, either mapped harvest history (CART) or
LiDAR-derived canopy height (Maxent). Importantly,
the addition of landscape variables added significant in-
formation in predicting the presence/absence of Ailan-
thus. These landscape analyses provide tools and
methodologies for assessing landscapes for Ailanthus in-
vasion, as well as those areas with higher potentials for
invasion should seed sources become available.
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Additional file 1: Variable list for analysis, including mean values and
1st and 3rd quartiles. List of variables used in the analysis, along with
statistical quartiles. (DOCX 18 kb)

Additional file 2: Rank order, by Mean Decrease in Gini, of variables in
RF model. A listing of variables used in the Random Forest model,
presented in decreasing order of importance in the model. (DOCX 17 kb)

Additional file 3: CART tree diagram showing influence of variables on
presence (= 1) or absence (= 0) of Ailanthus. Tree diagram according to
Classification and Regression Trees (CART) output, which shows influence of
variables for presence of absence of Ailanthus. (DOCX 15 kb) (EPS 1374 kb)

Additional file 4: Maxent model statistics showing variable importance,
and an evaluation with inventories. These tables show the ranked
importance of variables within the Maxent model, along with the
evaluation of model outputs against inventory data for presence and
absence of Ailanthus within the grid points. (DOCX 15 kb)
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