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Abstract 

Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understand‑
ing of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered 
high‑penetrance BC genes. In non‑carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small 
number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity‑specific moderate‑ and/or 
low‑penetrance genes. In Central and South American populations, studied have focused on analyzing the distribu‑
tion and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as com‑
pared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of 
knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive 
review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting 
the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. 
The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a 
combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central 
and South American populations have been reported in the literature. Pathogenic mutations or variants that increase 
BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, 
MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.

Keywords: Hereditary and early onset breast cancer, Susceptibility genes, Pathogenic point mutations, Large 
genomic rearrangements, Ethnic composition
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Background
Breast cancer (BC) is the most common malignancy 
among women worldwide. Each year, 1.15 million new 
cases are diagnosed, representing 23% of all cancer diag-
noses among women [1, 2], and one in eight women will 
develop BC during their lives [3]. The greatest challenge 
currently facing clinical researchers, therefore, is identi-
fying prevention strategies that would reduce the mor-
bidity and mortality associated with the disease.

Breast cancer (BC) is a complex disease, with both 
sporadic and familial presentations, as in most cancers. 
Inherited genetic risk factors contribute to BC suscepti-
bility in both familial and sporadic BC.

The discovery of tumor suppressor genes BRCA1 
(MIM 113705) and BRCA2 (MIM 600185) [4, 5] was a 
major advance in elucidating the genetic etiology of BC. 
A mutation that inactivates the BRCA proteins increases 
the risk for breast, ovarian, and other cancers. These 
genes are now considered high-penetrance dominant 
autosomal genes for BC susceptibility. Germline muta-
tions in BRCA1 and BRCA2 are responsible for about 
25% of the risk for familial BC [6–8] and therefore 5–10% 
of all BC cases [9]. Retrospective studies [10–19], suggest 
an estimated cumulative risk of breast cancer to 70 years 
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of age of 40–87% for BRCA1 carriers and 27–84% for 
BRCA2 carriers. The corresponding ovarian cancer risks 
are 16–68% for BRCA1 carriers and 11–30% for BRCA2 
carriers. Disease-causing mutations are distributed 
throughout the entire coding regions of both genes. Since 
the identification of BRCA1/2 as the principal genes 
responsible for inherited BC [5, 20], over 3781 distinct 
DNA sequence variants have been added to the BIC data-
base (http://research.nhgri.nih.gov/bic/). Of these, 3079 
are classified as pathogenic, including 1598 truncating 
mutations (1197 frameshift and 387 nonsense) and 14 
splicing alterations. The frequency of BRCA1/2 muta-
tions varies significantly according to geographic region 
and ethnicity.

There is a consensus that mutations in genes BRCA1/2 
and TP53 are responsible for on average 16–20% of the 
risk for familial BC [6, 7]. Genome-wide linkage analyses 
using large samples of BRCA1/2-negative families have 
not mapped any other high-penetrance susceptibility loci 
to date [21]. Therefore, a large part of the genetic compo-
nent remains unidentified. How can the remaining ~ 80% 
of familial BC risk be explained? Ford et al. [15] proposed 
that other susceptibility alleles, called moderate- or low-
penetrance, could be responsible for a significant per-
centage of BC in BRCA1/2-negative families. Currently, 
BC risk variants can be classified into three categories 
of penetrance (high, moderate, and low) that reflect the 
probability of developing the disease [22]. Therefore, in 
non-carriers of BRCA1/2 mutations, disease susceptibil-
ity may be explained by mutations in other high-, mod-
erate- or low-penetrance genes, interactions between 
alleles involved in the same pathways, or environmen-
tal factors. Sporadic BC is the result of serial stepwise 
accumulation of acquired and uncorrected mutations in 
somatic genes that are yet to be identified [23]. Never-
theless, in cases without a family history of BC (sporadic 
BC), certain combinations of low-penetrance alleles that 
are associated with a high polygenic risk score (PRS) have 
been shown to contribute to BC susceptibility [22].

Screening for BRCA1 and BRCA2 mutations pro-
vides potentially significant health benefits. Armed 
with genetic results, physicians may offer risk-reducing 
options for mutation carriers who have, thus far, not 
developed cancer, such as prophylactic mastectomy and 
oophorectomy, prophylactic tamoxifen, or surveillance 
[24–28].

Research evaluating the distribution and prevalence of 
BRCA1/2 mutations in Central and South American pop-
ulations has been quite limited as compared to the num-
ber of studies in North America, Europe, Australia and 
Israel. Moreover, some of the studies performed in Latin 
America have analyzed hereditary BC, while others have 
evaluated early-onset BC or cohorts unselected for family 

history. Furthermore, because Central and South Ameri-
can populations are of mixed ethnic origin, the distribu-
tions of recurrent mutations vary by region and country. 
Published data regarding other BC susceptibility genes is 
even scarcer than data on BRCA1/2 mutations. There-
fore, the aim of this review is to provide a report on the 
current state of knowledge regarding pathogenic point 
mutations and large genomic rearrangements (LGRs) 
in BRCA1 and BRCA2, as well as mutations in other 
BC susceptibility genes, in Central and South American 
populations.

Methods
PubMed, EBSCO, and SciELO databases were searched 
for all studies involving BRCA1 and BRCA2 mutations 
in Central and South American individuals with breast 
cancer. Moreover, we searched for pathogenic muta-
tions or variants in other susceptibility genes in the 
same populations. The search terms included “heredi-
tary breast cancer;” “South America,” “Latin Amer-
ica,” and other terms associated with Central or South 
American countries; and “BRCA1 and BRCA2″ and 
“genes and breast cancer risk.” Manuscripts published 
through February 28, 2017 were considered. Only 
papers published in English or Spanish were reviewed. 
Non-human studies, in  vitro or in  vivo studies, and 
studies focused on topics other than breast/ovarian 
cancer were excluded.

The inclusion criteria varied significantly among the 
selected studies; therefore, we classified the articles into 
three categories: cohorts that included cases with heredi-
tary BC (cohort A), cases with early-onset (≤  40  years) 
BC (cohort B), and cases unselected for family history of 
BC (cohort C). We classified a cohort as hereditary BC 
(cohort A) if the inclusion criteria met one or more of the 
following criteria, as established in the literature: (1) At 
least two first-degree relatives with BC and/or ovarian 
cancer diagnosed at any age; (2) at least two first- or sec-
ond-degree relatives with BC diagnosed before the age of 
50 years; (3) at least three first- or second-degree relatives 
with BC with at least one diagnosed before the age of 40; 
(4) at least one relative with BC diagnosed before the age 
of 50 and at least one relative with ovarian cancer diag-
nosed at any age; (5) at least one male relative with BC 
diagnosed at any age and at least one female relative diag-
nosed with BC at any age; (6) at least one relative diag-
nosed with BC before the age of 30 and one other first- or 
second-degree relative diagnosed with BC at any age; and 
(7) at least one relative with bilateral BC and one other 
first- or second-degree relative with BC. A cohort was 
classified as early-onset BC (cohort B) if the cohort was 
made up entirely of BC patients diagnosed at or before 
40 years of age. We classified a cohort as unselected for 
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family history (cohort C) if none of the criteria for hered-
itary BC were applied in the case selection.

Pathogenic mutations are base substitutions, dele-
tions, or duplications that inactivate the BRCA proteins. 
“Recurrent” refers to mutations present in several cases 
in at least one cohort.

The scope of BRCA1 and BRCA2 mutations in Central 
and South American countries
We conducted a literature review of reports on BRCA1 
and BRCA2 pathogenic point mutations and LGRs 
in 12 Central and South American countries (Argen-
tina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecua-
dor, Mexico, Paraguay, Peru, Uruguay and Venezuela). 
Between January 2002 and February 2017, there were 
28 published reports on BRCA mutations in these coun-
tries. Figure 1 shows that studies were performed in nine 
countries: Argentina, Brazil, Colombia, Costa Rica, Chile, 
Mexico, Peru, Uruguay and Venezuela. There were no 
reports on BRCA mutations in Bolivia, Ecuador or Para-
guay. Collectively, the 28 studies screened 5956 individu-
als and identified 190 different pathogenic mutations 
(Additional file 1: Table S1; Tables 1, 2).

Additional file  1: Table S1; Tables  1 and 2 show the 
cohort size, inclusion criteria, and BRCA pathogenic 
point mutations, LGR(s) and recurrent mutations 
detected in cohorts A, B and C, respectively. Additional 
file 1: Table S1 show that in hereditary BC, 118 different 
BRCA point mutations were detected in 9 countries (68 
in BRCA1 and 50 in BRCA2). Recurrent mutations were 
detected in Argentina, Chile, Brazil, Colombia and Costa 
Rica. Table  1 shows that in early-onset BC, 21 different 

BRCA mutations were detected in Brazil and Mexico (13 
in BRCA1 and 8 in BRCA2). The c.5266dupC and c.548-
?_4185+?del mutations were recurrent in Brazil and 
Mexico, respectively. Table 2 shows that in cohorts unse-
lected for family history, 51 different BRCA mutations 
(29 in BRCA1 and 22 in BRCA2) were detected in Brazil, 
Colombia, Mexico and Peru. Large genomic rearrange-
ments were reported in Argentina, Brazil, Chile, Mexico 
and Peru.

When the results were analyzed separately for each 
country, we found that 57 different BRCA mutations were 
detected in Argentina (32 in BRCA1 and 25 in BRCA2), 
all in hereditary BC cohorts (n = 40), including 4 recur-
rent mutations (2 in BRCA1 and 2 in BRCA2). Four LGRs 
were reported in BRCA1 but none in BRCA2 [29].

In Brazil, 6 studies that collectively screened 1151 indi-
viduals with hereditary BC reported 34 different BRCA 
mutations (24 in BRCA1 and 10 in BRCA2) [30–35], 
including 7 recurrent mutations (5 in BRCA1 and 2 
in BRCA2) (Additional file  1: Table S1). In cohort B, a 
study by Carraro et al. [36] (n = 54) detected another 5 
mutations (2 in BRCA1 and 3 in BRCA2), including the 
recurrent mutation c.5266dupC (3.7%), which was also 
a recurrent mutation in hereditary BC (Additional file 1: 
Table S1). Another 3 mutations not seen in cohorts A 
or B were detected in cohort C (n =  402) (1 in BRCA1 
and 2 in BRCA2), including the recurrent mutation 
c.6405_6409delCTTAA (0.5%) [37]. Therefore, 42 differ-
ent pathogenic point mutations in BRCA were described 
in the cohorts A, B and C in Brazil. All patients positive 
for BRCA mutations had a family history of BC (Addi-
tional file  1: Table S1; Tables  1, 2). Four different LGRs 

Fig. 1 The scope of BRCA1 and BRCA2 mutations in Central and South American countries. In total 12 countries were evaluated. No BRCA mutation 
studies were found in Bolivia, Paraguay and Ecuador (the latter only with other susceptibility alleles)
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(3 in BRCA1 and 1 in BRCA2) were also reported, all in 
hereditary BC, one of which was recurrent (Additional 
file 1: Table S1).

In Chile, 19 BRCA mutations were reported (9 in 
BRCA1 and 10 in BRCA2), all in hereditary BC. Of these, 
9 were recurrent (4 in BRCA1 and 5 in BRCA2) (Addi-
tional file 1: Table S1) [38, 39]. Furthermore, 2 LGRs were 
detected in cohort A [40]. No BRCA mutations were 
reported in cohorts B or C.

The only study on patients with hereditary BC in 
Colombia (n =  53) described 6 BRCA mutations (2 in 
BRCA1 and 4 in BRCA2), 2 of which were recurrent in 
BRCA1 (c.3331_3334delCAAG and c.5123C>A) and one 
of which was recurrent in BRCA2 (c.2808_2811delACAA) 
(Additional file 1: Table S1) [41]. Another 3 studies that 
collectively screened 1106 patients unselected for family 
history described another 4 mutations (1 in BRCA1 and 
3 in BRCA2) [42–44]. Table 3 shows the mutations that 
were reported in more than one cohort. No LGR studies 
were performed in Colombia. Therefore, in the Colom-
bian population, 10 different pathogenic point mutations 
in BRCA were detected, 3 of which were recurrent (Addi-
tional file 1: Table S1 and Table 2), and no LGR studies 
were available.

Only one study reported on BRCA mutations in Costa 
Rica. This study described 4 mutations (1 in BRCA1 and 
3 in BRCA2) in a heredity BC cohort (n = 111), including 
the recurrent mutation c.5303_5304delTT (1.8%) [45].

In Mexico, 17 different BRCA mutations were reported 
in hereditary BC (10 in BRCA1 and 7 in BRCA2). Three 
LGRs were also described. The authors did not report 
recurrent mutations [46, 47]. In cohort B, 11 mutations 
were described (7 in BRCA1 and 4 in BRCA2) [48–50]. 
Of these, 4 mutations in BRCA1 (c.548-?_4185+?del, 
c.2296-2297delAG, c.3598C>T and c.4327C>T) and 3 in 
BRCA2 (c.519+5_519+8delGTAA, c.1796-1800delTT-
TAT and c.4111C>T) were present in women with early-
onset BC and no family history of the disease [48, 50]. In 
the Mexican patients unselected for family history, 36 
different BRCA mutations were described (20 in BRCA1 
and 16 in BRCA2) [50, 51]. Of these, 12 were also pre-
sent in cohorts A or B (Table  3). In cohort C, 6 point 
mutations were recurrent (4 in BRCA1 and 2 in BRCA2), 
including c.548-?_4185+?del, which was also a recurrent 
mutation in early-onset BC patients with no family his-
tory of the disease. In cohort C, 3 recurrent LGRs were 
reported. The LGR exon 9-12del had a frequency of 6.9%, 
making it one of the most frequent BRCA mutations 
described in the Mexican population.

Three studies were available for Peru. Two studies with 
cohorts unselected for family history of BC reported 
12 different mutations (9 in BRCA1 and 3 in BRCA2). 
The mutations c68_69delAG, c.1961_1962delA and 

c.2808_2811delACAA were recurrent, and 2 LGRs were 
also detected (Table  2) [52, 53]. The third publication 
tested for LGRs in 16 hereditary BC patients but did not 
test for pathogenic point mutations. The authors detected 
only one LGR, in BRCA1 (exon 7 amplification) [54].

In Uruguay, only one study described BRCA mutations, 
in a cohort of 53 patients with heredity BC. Seven muta-
tions were detected (2 in BRCA1 and 5 in BRCA2), and 
no LGR testing was performed [55].

In Venezuela, only one study reported BRCA muta-
tions, again in patients with hereditary BC (n = 51). The 
authors described 6 different mutations (3 in BRCA1 and 
3 in BRCA2). No recurrent mutations were reported, and 
no LGR testing was performed [56].

Table  4 shows BRCA1/2 mutations common in 
more than one Central or South American coun-
try, including a total of 21 mutations (14 in BRCA1 
and 7 in BRCA2). The most common mutations were 
found in exons 2, 5, 11, 13, 18 and 20 in BRCA1 and in 
exons 3 and 11 in BRCA2. Seven mutations were pre-
sent in 3 or more countries: c.68_69delAG, c.211A>G, 
c.3331_3334delCAAG and c.5123C>G in BRCA1 and 
c.145G>T, c.2808_2811delACAA and c.5946delT in 
BRCA2. The c.68_69delAG mutation, also known as 
185delAG (BRCA1 exon 2), was described in Argen-
tina, Brazil, Chile, Mexico and Peru and was reported 
as a recurrent mutation in Brazil (0.3%), Chile (0.6%) 
and Peru (2.6%). The mutation c.211A>G (BRCA1 exon 
5) was detected in Argentina, Brazil, Mexico and Peru 
and was reported as a recurrent mutation in hereditary 
BC in Argentina (1.17%). The c.3331_3334delCAAG was 
present in BC patients from Brazil, Chile and Colombia 
and was a recurrent mutation in Chile (0.9%) and Colom-
bia (9.4%). The mutation c.5123C>A (BRCA1 exon 18) 
was detected in Argentina (cohort A), Brazil (Cohort 
A), Colombia (cohort A and C) and Mexico (cohort A, B 
and C) and was a recurrent mutation in Colombia (5.7%) 
and Mexico (0.5%). In BRCA2, 6 mutations in exon 11 
(c.2808_2811delACAA, c.3264dupT, c.4740_4741insTG, 
c.535dupA, c.5946delT and c.6024dupG) and one in 
exon 3 (c.145G>T) were detected in more than one coun-
try; c.2808_2811delACAA was a recurrent mutation in 
Argentina (0.64%), Colombia (3.8%) and Peru (0.75%), 
and c.145G>T was a recurrent mutation in Chile (2.6%).

Other BC susceptibility mutations in Central and South 
American countries
There is a consensus that BC risk is attributable to sus-
ceptibility alleles in many different genes. In patients 
negative for BRCA1/2 mutations, inherited variations in 
other genes explain up to 20% of familial BC [8]. How-
ever, 51% of breast cancer families do not show mutations 
in BRCA1/2 or other known susceptibility genes and 
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are therefore classified as BRCAX families. These fami-
lies may carry a mutation in a moderate-penetrance BC 
gene yet to be identified. Alternatively, a truly polygenic 
model may underlie these cases, with susceptibility con-
ferred by the collective actions of several low-penetrance 
loci [57–60]. We carried out a literature review of reports 
on pathogenic mutations or variants in other susceptibil-
ity genes in Central and South American countries and 
found 19 publications between January 2002 and Febru-
ary 2017 in 5 Central or South American countries: Bra-
zil, Chile, Ecuador, Mexico and Peru (Fig. 1). Pathogenic 
mutations or variants that increase BC risk were reported 
in the following genes or genomic regions: ATM, BARD1, 
CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, 
RAD51, TOX3, TP53, XRCC1 and 2q35.

ATM is frequently implicated in hereditary BC as a 
low-penetrance susceptibility gene. The ATM kinase has 
an essential role maintaining genomic integrity, as a key 
activator of cellular responses to DNA double-strand 
breaks [61]. In Chile and Mexico, association studies were 
performed to evaluate the relationship between com-
mon ATM variants and familial BC [62, 63]. The same 
variants were studied in both countries: IVS24-9delT and 

IVS38-8T>C. Both reports concluded that these vari-
ants are associated with increased risk of BC (Table  5). 
In Chile, the authors studied the variant 5557G>A, which 
was also found to increase BC risk [62].

Germline and somatic mutations in the BARD1 gene 
are reportedly associated with susceptibility to a subset 
of breast and ovarian cancers [64]. BARD1 participates 
in important cellular processes such as DNA repair, 
RNA processing, transcription, cell cycle regulation and 
apoptosis [65]. Studies on BARD1 were performed in 
Chile and Peru (Table 5) [53, 66]. Gonzalez-Hormazabal 
et  al. [66] reported that in Chilean women negative for 
BRCA1/2 mutations, BARD1 Cys557Ser was associated 
with increased risk of BC. In Peru, one pathogenic muta-
tion (c.334C>T) was reported in one of the triple-nega-
tive BC patients studied (0.95%).

CHEK2 is a gene involved in DNA damage and repli-
cation checkpoint responses and has been suggested 
as a BC susceptibility gene. The CHEK2 1100delC vari-
ant, which is associated with increased BC susceptibility 
among familial BC cases not attributable to mutations 
in BRCA1/2 [67], was studied in Brazilian (n = 120) [31] 
and Chilean (n = 196) patients with hereditary BC [67]. 

Table 3 Mutations present in more than one cohort

BC breast cancer

✔ = Mutation present
a Recurrent mutation

Country Mutation Exon Hereditary BC Early-onset BC Unselected BC

BRCA1

 Brazil c.5266dupC 20 ✔a ✔a ✔a

 Brazil c.560+2T>A 7 ✔ ✔
 Brazil c.3331_3334delCAAG 11 ✔ ✔
 Brazil c.5251C>T 20 ✔ ✔
 Colombia c.3331_3334delCAAG 11 ✔a ✔a

 Colombia c.5123C>A 18 ✔a ✔a

 Mexico c.548?_4185?del 9_12 ✔ ✔
 Mexico c.4065_4068delTCAA 11 ✔ ✔
 Mexico c.2296‑2297delAG 11 ✔ ✔
 Mexico c.2433delC 11 ✔ ✔ ✔
 Mexico c.3598C>T 11 ✔ ✔
 Mexico c.4327C>T 13 ✔ ✔
 Mexico c.5123C>A 18 ✔ ✔ ✔
 Mexico c.211 A>G 5 ✔ ✔
 Mexico c.3759_3760delTA 11 ✔ ✔

BRCA2

 Brazil c.2808_2811delACAA 11 ✔ ✔
 Colombia c.2808_2811delACAA 11 ✔a ✔a

 Mexico c.2808_2811delACAA 11 ✔ ✔
 Mexico c.1796‑1800delTTTAT 10 ✔ ✔a

 Mexico c.4111C>T 11 ✔ ✔
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Only one of the Brazilian patients carried this mutation 
(0.83%), and it was not present is any of the Chilean cases 
(n = 196). Therefore, this variant is not a common muta-
tion in these two populations (Table 5).

Glutathione S-transferases (GSTs) play an important 
role in carcinogen detoxification and metabolism of vari-
ous bioactive compounds [68]. The GST family is com-
posed of six classes of isoenzymes, including GSTM1 
[69]. The GSTM1 gene is polymorphic in humans and has 
three known alleles: GSTM1*A, GSTM1*B and GSTM1O 
(null), which is the most common variant. The null vari-
ant results in undetectable expression of the gene prod-
uct [70], leading to excessive accumulation of reactive 
oxygen species and consequently higher susceptibility 
to carcinogenic events due to DNA damage [71]. Three 
studies in Mexican and Brazilian populations evaluated 
the association between the null genotype and BC risk. 
Two reports concluded that GSTM1O is associated with 
BC risk in patients from northeastern Mexico [72] and 
Guadalajara [69]. In Brazil, a study by Possuelo et al. [73] 
also reported an association between the null GSTM1 
genotype and BC risk.

The MTHFR enzyme, encoded by the MTHFR gene, 
is responsible for catalyzing the irreversible conversion 
of 5,-0-methylenetetrahydrofolate to 5-methylenetet-
rahydrofolate. The latter molecule is involved in DNA 
methylation, an important mechanism in regulation 
of gene expression. Alterations in DNA methylation 
due to MTHFR polymorphisms may be associated with 
the development of cancer [74–76]. Association stud-
ies on MTHR C677T polymorphisms and BC risk were 
performed in Brazil [77] and Ecuador [78] (Table  5). In 
both reports, the authors found a significant association 
between this SNP and BC risk.

RAD51 is a gene that plays a key role in repairing DNA 
double-strand breaks through homologous DNA recom-
bination, forming complexes with other proteins involved 
in DNA repair such as BRCA2 [79, 80]. Variants or path-
ogenic mutations in this gene were studied in Chile [81] 
and Peru [53]. In Chile, no mutations were detected in 
the exon or splice-boundaries regions of the RAD51 gene. 
The same study also evaluated the RAD51 5′UTR variant 
135 G>C, which is associated with an increased risk of 
familial BC in BRCA1/2-negative women and early-onset 
BC (age < 50 years at diagnosis). In Peru, the pathogenic 
mutation c.694C>T was detected in triple-negative BC 
patients (n = 105), with a frequency of 0.95% (Table 5).

Mutations in the TP53 tumor suppressor gene also play 
a significant role in cancer risk, as impaired p53 func-
tion may contribute to the multistep process of carcino-
genesis [82]. The p53 protein is important in cell-cycle 
regulation and maintenance of genome stability. The 

most notable property of p53 is its action as a transcrip-
tion factor [83]. We found three articles that studied vari-
ations in TP53, all in Brazilian populations [31, 84, 85]. 
These articles studied the c.1010G>A (p.R337H) muta-
tion, which occurs at a high frequency in southern and 
southeastern Brazil [86–90]. Silva et  al. [31] reported a 
frequency of 2.5% for this variant and suggested that all 
BRCA-negative female BC patients with clinical criteria 
for hereditary breast-ovarian cancer should be tested for 
the c.1010G>A variant. Giacomazzi et  al. [84] reported 
that the prevalence of p.R337H was higher in women 
diagnosed with BC at or before 45  years of age (12.1%) 
than in those diagnosed at 55 or older (5.1%). An arti-
cle by Andrade et  al. [85] suggested that screening for 
the germline TP53 p.R337H mutation should be recom-
mended for young females with no family history of can-
cers associated with Li-Fraumeni syndrome. The three 
authors agree that inheritance of the c.1010G>A variant 
may significantly contribute to the high incidence of BC 
in Brazil.

The XRCC1 gene encodes a protein involved in DNA 
base excision repair. Therefore, mutations or polymor-
phisms in this gene may be involved in the genetic eti-
ology of BC. The only study on the association between 
the XRCC1 gene and BC risk was performed in a Mexi-
can population [91]. Macias-Gomez et  al. [91] stud-
ied Arg1945Trip and Ag399Gln, reporting a significant 
association between BC risk and the 399Gln polymor-
phism but no significant association with the Arg194Trip 
polymorphism.

Variations in the FGFR2 gene were studied in Chile 
[92] and Mexico [93]. The genes or genomic regions in 
MAP3K, TOX3, PALB2, 2q35 and 8q24 were studied only 
in Chile (Table 5) [92, 94, 95].

Fibroblast Growth Factor Receptor 2 (FGFR2) and 
mitogen-activated protein kinase-kinase-kinase 1 
(MAP3K1) have been proposed as low-penetrance BC 
susceptibility genes [57]. A study by Jara et al. [92] used 
a case–control design to evaluate the association of 
BC with the FGFR2 SNPs rs2981582, rs2420946 and 
rs121648 and the MAP3K1 SNP rs889312 in BRCA1/2-
negative Chilean BC cases. All of the SNPs studied were 
significantly associated with increased BC risk in familial 
BC and non-familial early-onset BC, in a dose-depend-
ent manner. In Mexico, a study by Murillo-Zamora et al. 
[93] reported that rs2981582 was associated with BC risk 
(p = 0.007) (Table 5).

In the TOX3/LOG643714 (also known as TNRC9) 
locus, several SNPs associated with BC risk were iden-
tified. Among these, rs380362 is the most strongly cor-
related with disease [57]. The SNPs rs13387042 (2q35) 
and rs13281615 (8q24), located in non-coding regions, 
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Table 4 Common BRCA ½ mutation found in multiple Central and South American countries

Mutation in BRCA 1 Frequency of recurrent mutation (%)

Exon Mutation Country Hereditary Early-onset BC Unselected BC Hereditary BC Early-onset BC Unselected 
BC

2 c.68_69delAG Argentina ✔
Brazil ✔ 0.33%

Chile ✔ 0.6%

Mexico ✔
Peru ✔ 2.6%

5 c.181T>G Argentina ✔ 0.64%

Brazil ✔
Chile ✔

5 c.211A>G Argentina ✔ 1.17%

Brazil ✔
Mexico ✔ ✔
Peru ✔

11 c. 798_799delTT Argentina ✔
Mexico ✔

11 c.815_824dupAGCCATGTGG Mexico ✔
Peru ✔

11 c.2568T>G Argentina ✔
Uruguay ✔

11 c.3228_3229delAG Argentina ✔
Brazil ✔

11 c. 3331_3334delCAAG Brazil ✔
Chile ✔ 0.9%

Colombia ✔ ✔ 9.4% 1.6%/11.4%a

11 c. 3858_3861delTGAG Mexico ✔ ✔
Peru ✔

11 c. 3858_3861delTGAG Chile ✔
Mexico ✔

11 c. 4065_4068delTCAA Mexico ✔
Peru ✔

13 c.4327>T Argentina ✔
Mexico ✔ ✔ 0.25%

18 c. 5123C>A Argentina ✔
Brazil ✔
Colombia ✔ ✔ 5.7% 1.3%

Mexico ✔ ✔ ✔ 0.5%

20 c.5266up C Argentina ✔
Brazil ✔ ✔ ✔ 2.5%/0.65%/5%a 3.7% 1.2%

Mutation in BRCA 2

 3 c.145G>T Argentina ✔
Chile ✔ 3.7%

Mexico ✔
 11 c.2808_2811 delACAA Argentina ✔ 0.64%

Brazil ✔ ✔
Colombia ✔ ✔ 3.8% 1.3%

Mexico ✔ ✔
Peru ✔ 0.75%

Venezuela ✔
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were also associated with BC risk [57, 60]. In a Chilean 
population, Elematore et  al. [94] evaluated the associa-
tion between rs380362 (TOX3), rs13387042 (2q35) and 
rs13281615 (8q24) and BC risk in 344 BRCA1/2-nega-
tive BC cases and 801 controls. Two SNPs, rs380362 and 
rs13387042, were significantly associated with increased 
BC risk in familial BC and non-familial early-onset BC. 
The risk of BC increased in a dose-dependent manner 
with the number of risk alleles (p-trend  <  0.0001 and 
0.0091, respectively). Other studies reported an addi-
tive effect of the rs380362 and 2q35 rs1387042 alleles on 
BC risk. There was no association between rs13281615 
(8q24) and BC risk (Table 5).

The PALB2 (partner and localizer of BRCA2) pro-
tein interacts with BRCA2, stabilizing the intracel-
lular accumulation of the BRCA2 protein at sites of 
DNA damage [96]. PALB2 is also recruited by BRCA1 
in response to DNA damage and serves as a linker 
between BRCA1 and BRCA2 and is necessary for 
BRCA2-mediated homologous-recombination repair 
[97, 98]. Thus, BRCA1, BRCA2 and PALB2 are key BC 
susceptibility genes that work together in the same 
DNA damage response pathway [99, 100]. Leyton et  al. 
[95] studied 100 BRCA1/2-negative Chilean cases with 
familial BC, identifying 3 PALB2 variants. Using a case–
control design, the authors evaluated the association 
of the identified variants with BC risk. Two of the vari-
ants, PALB2 c.1676A>G(rs152451A>G) and c.2993C>T 
(rs45551636C>T), were significantly associated with 
increased BC risk only in cases with a strong family his-
tory of BC (Table 5).

The relationship of BRCA1/2 mutations and other BC 
susceptibility variants to the demographic composition 
of Central and South American countries
Genetic factors play an important role in the develop-
ment of BC. The most widely-accepted model of BC 
oncogenesis, known as the polygenic model, attributes 
BC susceptibility to a small number ethnicity-specific 
mutations in high-penetrance genes (BRCA1, BRCA2 
and TP53) and a much larger number of variants in mod-
erate- or low-penetrance genes [7, 101], as well as inter-
actions among these genetic variants and exposure to 
environmental factors [102]. Both BRCA1 and BRCA2 
confer susceptibility to breast and ovarian cancer. About 
5–7% of all BC diagnosed are associated with germline 
mutations in BRCA1 and BRCA2 [8, 15], and an even 
larger proportion of familial BC cases are associated with 
BRCA1 and BRCA2 variations; collectively, germline 
mutations in the two major susceptibility genes BRCA1 
and BRCA2 account for ~  20% of familial BC cases [8, 
103]. The spectrum of mutations in BRCA1 and BRCA2 
genes and other susceptibility alleles varies considerably 
by ethnic group and geographic region.

South America has a complex demographic history 
shaped by multiple migration and admixture events 
in pre- and post-colonial times [104], including settle-
ment by Native Americans, European colonization and 
the African slave trade [104]. Moreover, the continental 
ancestry of the admixed populations in South America 
is not homogenous. For example, the Argentine popula-
tion is a mixture of European (0.673), Native American 
(0.277), West African (0.036) and East Asian (0.014) 

Table 4 continued

Mutation in BRCA 1 Frequency of recurrent mutation (%)

Exon Mutation Country Hereditary Early-onset BC Unselected BC Hereditary BC Early-onset BC Unselected 
BC

 11 c.3264d up T Argentina ✔
Mexico ✔

 11 c.4740_4741insTG Argentina ✔
Chile ✔ 0.6%

 11 c.5351dup A Argentina ✔
Uruguay ✔

 11 c. 5946delT Argentina ✔
Brazil ✔
Chile ✔
Costa Rica ✔

 11 c.6024dup G Argentina ✔
Colombia ✔
Mexico ✔

BC breast cancer

✔ = Mutation present
a Values obtained in different publication
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components, while the proportions in the Peruvian pop-
ulation are European (0.26), Native American (0.683), 
West African (0.032) and East Asian (0.025) [104]. Uru-
guay is unique among South American countries in that 
it has almost no communities of Native American or 
African descent [105]. Therefore, South American coun-
tries should not be analyzed as a monolithic group with-
out regard for specific regional genetic ancestry, as the 
ethnic differences between South American populations 
suggests that medically-relevant genetic variations may 
differ according to population and region.

Mexico and Costa Rica were the only Central Ameri-
can populations with data on BRCA mutations. Cen-
tral America was included in this review as it was also 
colonized by Spaniards. The Costa Rica population is a 
mixture of European (0.61), Native American (0.31) and 
African (0.06) components, with variations by region 
[106]. For example, a recent study on the genetic and 
population substructure in Guanacaste, Costa Rica, 
which is heavily admixed, reported a mixture of predomi-
nantly European (0.425), Native American (0.383) and 
African (0.152) ancestry, although the authors could not 
exclude an Asian component (0.04) [107].

The Mexican population also harbors great ethnic 
diversity [108] as confirmed by numerous studies on the 
admixture in Mexico. Amerindian ancestry is the largest 
component (0.51–0.56) in the general population, fol-
lowed by European (0.40–0.45), while the African com-
ponent is small (0.02–0.05). When analyzed by region, 
however, there is significant variation. For example, Euro-
pean is the largest component in the north (at 0.5 in Chi-
huahua, 0.62 in Sonora and 0.55 in Nueva Leon) [105].

An overview of the literature indicates a marked Amer-
indian influence in Mexican and Peruvian populations, 
while European ancestry is more prevalent in Costa Rica, 
Argentina and Uruguay. The proportions of European, 
Amerindian and African components are roughly equal 
in Venezuela. In Colombia and Brazil, there is significant 
interpopulation variability. The ethnic distribution in 
Brazil follows a geographical pattern, with the European 
influence more prevalent in the southeast and south, 
African in northeast and Amerindian in the north. In 
Chile, the Amerindian and European components are 0.6 
and 0.4, respectively [105].

Genetic testing for breast cancer
Genetic testing for BRCA1 and BRCA2 mutations may 
provide significant public health benefits for cancer 
patients and high-risk individuals, who could be offered 
targeted treatment and prevention strategies [109]. The 
feasibility of providing widespread genetic screening 
for BRCA1/2 mutations in Central and South America 

depends on knowledge of mutations present in these 
regions, given the varied ethnic composition of the popu-
lations. To develop a test that might be useful through-
out the region and therefore sufficiently cost-effective, 
it is first necessary to determine which BRCA1/2 muta-
tions are common in multiple countries. Public insurance 
coverage for genetic testing is also crucial. Finally, it is 
important to identify pathogenic mutations or variants in 
other moderate- or low-penetrance susceptibility genes 
that increase BC risk, as the use of panel testing is grow-
ing more common.

Conclusions
The BRCA1/2 gene mutation spectrum varies widely 
throughout different Central and South American pop-
ulations, likely due to the patterns of ethnic diversity in 
these countries. These complex ethnic patterns are asso-
ciated with various migration and settlement events. 
Even populations within a given country are not neces-
sarily homogeneous, and each subgroup may have a dis-
tinct ethnic composition and genetic structure. Because 
the same genetic composition cannot be extrapolated 
across diverse sub-populations, genetic screening tests 
for breast cancer in these regions should not be based on 
a single genetic test with a defined gene variant panel to 
detect mutational events. This guideline is even more cat-
egorical for screening approaches designed to test more 
than one population in Central and or South American 
countries.

A significant percentage of high-risk families with 
hereditary breast cancer are negative for mutations in 
BRCA1/2 genes. The genetic etiology of BC in these sub-
jects may be attributable to variations in other moderate- 
or low-penetrance susceptibility alleles and/or variations 
in specific chromosomal regions. Data on variants in 
these genes and/or chromosomal regions in Central and 
South American populations are even scarcer than stud-
ies involving high-penetrance alleles. Given the impor-
tance of these variants in the etiology of hereditary BC, 
elucidating the distribution of these mutations and vari-
ations is crucial for advancing population studies and 
screening approaches in high-risk families with a heredi-
tary breast cancer profile.

Appropriate inclusion criteria are also of vital impor-
tance when conducting these studies, given the consider-
able variability observed in the reported studies.

Additional file

Additional file 1: Table S1. Cohort characteristics and pathogenic 
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