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Introduction and literature review
The basic Vehicle Routing Problem (VRP) aims to design the least cost routes from a single 
depot to a set of geographically distributed customers such that each customer is visited 
exactly once by one vehicle. The VRP was first introduced by Dantzig and Ramser in 1959 
[1], and was proved NP-hard by Lenstra and Kan in 1981 [2]. For 60 years, the VRP has 
been one of the most extensively studied problems in operations research with various vari-
ants deriving from real-world applications [3–6]. We study in this paper a variant of VRP 
named Distance-Constrained VRP (DVRP). An upper bound Dmax is, thus, imposed on the 
length of any route. This restriction is relevant in many practical situations: school bus must 
go to pick up their students and come back to the school before its starting time, postal vans 
used to empty post boxes must return to the post office within a prescribed time [7], etc. 
When the distance from customer i to customer j differs from that of customer i to cus-
tomer j, we call the problem the Asymmetric Distance Constrained VRP (ADVRP). Other-
wise, it is defined as the Symmetric DVRP. Surprisingly, the literature is rich for Symmetric 
VRPs and poor for Asymmetric VRPs, although the Symmetric VRPs are considered as a 
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special case of Asymmetric VRP. In Asymmetric VRPs, the real distance will depend upon 
the specific location of the nodes in the territory and also on the structure of the road net-
work that communicates them. Moreover, when considering oriented networks, real dis-
tances might not have to be symmetric.

To the best of our knowledge, the ADVRP has not been addressed well in the literature 
before. There are a few papers which proposed exact algorithms [8, 7] that could solve large 
instances. However, it could not always find a feasible solution due to the lack of memory. 
Moreover, when distance constraint is tight, solving the problem becomes harder, and these 
exact methods were stopped before it could find any feasible solution. For these reasons, 
developing metaheuristics to find a good feasible solution in a short computation time is a 
suitable approach. However, there exists only a metaheuristic [8] reported in the literature 
for ADVRP. The algorithm is based on the principles of Randomized Variable Neighbor-
hood Search (RVNS). Unfortunately, it can be trapped into cycles as it returns to the points 
previously explored in the solution space. In this case, the algorithm gets stuck into local 
optima. Therefore, in this paper, we propose a hybrid metaheuristic combining RVNS and 
tabu search to overcome all these issues.

Besides ADVRP, we use algorithm to address also the Asymmetric Capacitated VRP 
(ACVRP) and Multiple Traveling Repairman Problem With Distance Constraints (MTRPD) 
to demonstrate its performance. Extensive numerical experiments on benchmark instances 
of ADVRP show that our algorithm could be comparable with the previous state-of-the-art 
algorithms in terms of solution quality and running time. Interestingly, in many cases, our 
proposed method is able to improve the best-known solutions available from the literature.

The remainder of the paper is structured as follows. We define the ADVRP in next sec-
tion. Our proposed metaheuristic and its components are presented next, followed by the 
section dedicated to the experimental results, and the conclusion.

Problem description
The ADVRP is a generalization of the VRP, it is, thus, also a NP-hard problem. The ADVRP 
is defined on a complete graph Kn with the vertex set V = {v1, v2, ..., vn} , an asymmetric 
distance matrix C = {c(vi, vj) | i, j = 1, 2, ..., n} , where c(vi, vj) is the distance between two 
vertices vi and vj , (c(vi, vj)  = c(vj , vi)) . A fleet of k identical vehicles is based at the depot 
v1 . Suppose that the tour T = {R1, ...,Rl , ...,Rk} is a set of k routes obtained from these k 
vehicles, respectively. The route performed by the vehicle lth ( 1 ≤ l ≤ k ) is defined as 
Rl = {v1, ..., vh, ..., vm, v1}, (1 < m ≤ n) , made up of a sequence of vertices, starting and 
ending at the depot v1 . The length of the route Rl is defined as the total traveled distances of 
the vehicle lth and its length cannot exceed the predetermined limit Dmax:
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The length of the tour T is the sum of its all k vehicles’ total traveled distances:

The ADVRP aims to determine the tour T with minimal length.

The proposed hybrid metaheuristic
The efficient hybrid metaheuristic we proposed brings together the components of 
Greedy Randomized Adaptive Search Procedures (GRASP) [9], Tabu search (TS) [10] 
and Randomized VNS [11]. It, thus, consists of two phases performed iteratively: (1) the 
first phase uses the GRASP combining with k-means [12] to generate initial solutions; 
(2) the second phase then enhances solutions consecutively by means of an RVNS with 
multiple neighborhoods combined with a short-term memory mechanism in the spirit 
of TS.

An outline of our proposed algorithm (HVT algorithm) is shown in Algorithm 1. In 
Step 1, the initial solution is generated using the cluster first–route second scheme. This 
initial solution is then enhanced in Step 2. We use the idea of RVNS based on the prin-
ciple of systematically exploring several different neighborhoods. Moreover, to avoid 
cycling, we use tabu lists of the recent types of moves in the solution space to prohibit 
reversing these moves. Thus, at each iteration of the algorithm, one neighborhood is 
selected randomly, then the selected neighborhood is explored, and the best move is 
chosen. This move must not be tabu unless it improves the current best solution T ∗ . In 
Step 3, the new solution that has just been created from Step 2 is then added to a prom-
ising solution set P if its fitness value is not worse more than 10% to that of the T ∗ . Step 
2 is executed for a number of times to find good promising solutions to insert to the set 
P. Step 4 uses elite solutions in P to exploiting the current solution space, thus enhances 
the solution quality. To explore more solution space, a diversification phase is added in 
Step 5. The search then restarts from the perturbed solution produced in Step 5. The 
search is stopped after maxITER number of iterations without improvement on the cur-
rent best solution T ∗.

(1)L(Rl) =

m−1∑

i=1

c(vi, vi+1)+ c(vm, v1),

(2)L(Rl) ≤Dmax.

(3)L(T ) =

k∑

l=1

L(Rl).
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In the following, the main components of our proposed algorithm (Algorithm 1) will 
be detailed. The search space is first presented in "Search space" section. The way to gen-
erate initial solution in Step 1 is then displayed in "The initial solution", "Neighborhoods 
of RVNS", "Tabu lists and tabu durations" section dedicate to explain the implementa-
tion of Step 2. They, thus, 
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describe the set of eight neighborhood structures used for RVNS and the tabu mecha-
nism for each neighborhood, respectively. We detail in "Intensification and diversifica-
tion" section the intensification (Step 4) and diversification (Step 5) phases. 
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Search space

For a given solution T, let L(T) denote the total length of its routes and let V(T) denote the 
total violation of vehicle length. The total vehicle-length violation V(T) is computed on a 
route basis with respect to the value Dmax , thus is equal to 

∑
Rl∈T

max{Dmax − L(Rl), 0}.
Solutions are then evaluated according to the weighted fitness function 

L′(T ) = L(T )+ ρ ∗ V (T ) , where ρ is the penalty parameter.

The initial solution

At Step 1 of Algorithm  1, we generate intial solution using the GRASP with cluster-
ing. The detail is described in Algorithm 2. The k-means [12] is first used to cluster the 
ADVRP problem to k smaller ADVRP problems. Specifically, the Kn is converted into 
k smaller complete graphs K 1

n ,K
2
n , ...,K

k
n  . Routing is then performed iteratively on each 

cluster Kl
n(1 ≤ l ≤ k) to build a correspond route Rl . All routes are initialized with the 

main depot v1 . Each vertex of the Kn is then added to the routes by using its Restricted 
Candidate List (RCL). The RCL of a vertex includes a number of vertices which are clos-
est to it. At an iteration, assuming vertex ve be the current last vertex of the route Rl , an 
unvisited vertex v is picked randomly from its RCL to add to Rl such that this addition 
does not make the constraint violation. If there does not exist any such vertex v, we then 
accept the infeasibility. Thus, a not-yet-routed vertex v′ is picked up randomly to add 
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to the last position of the route Rl . A solution is generated when all vertices of Kn are 
routed.

The procedure then returns the feasible solution if any. Otherwise, for added random-
ness in routing, it tries to generate n solutions, then the one with the minimum fitness 
value will be returned.

Neighborhoods of RVNS

The RVNS in Step 2 of Algorithm  1 exploits eight neighborhoods including different 
intra- and inter-route moves as following:

Five intra-route neighborhoods:

–	 Remove–insert move each vertex is shifted from its current location to the last posi-
tion of the same route.

–	 Swap-adjacent move two adjacent vertices in the same route are exchanged.
–	 Swap move two vertices in the same route are exchanged.
–	 2-opt move for each pair of vertices vi, vj in the same route, the edges emanating 

from them ( vi, v′i ), ( vj , v
′
j ) are removed, two edges ( vi, vj ), ( v′i, v

′
j ) are added.

–	 3-opt: for each three vertices vi, vj , vk in the same route, the edges emanating from 
them ( vi, v′i ), ( vj , v′j ), ( vk , v′k ) are removed, three adges ( vi, v′j ), ( vj , v′k ), ( vk , v′i ) are 
added.

Three inter-route neighborhoods:

–	 Exchange-route move the two vertices of two different routes are exchanged.
–	 Insert-route move a vertex is shifted from its current position to another position of 

the other route.
–	 Cross-route move two segments {vi, vk} and {vj , vl} on two different routes are 

exchanged.

Tabu lists and tabu durations

The tabu lists for the eight moves described above are included in our algorithm. The 
solution elements receiving a tabu status following an intra-route move are:

–	 Remove–insert move the position of vertex vi just moved at the end of the route can-
not be changed by the same type of move while it is tabu;

–	 Swap-adjacent, swap move vertices vi and vj just swapped cannot be swapped again 
while they are tabu;

–	 2-opt move a 2-opt move applied to vertices vi and vj cannot be applied again to the 
same vertices.

–	 3-opt a 3-opt move applied to vertices vi, vj and vk cannot be applied again to the 
same vertices.



Page 8 of 19Ban and Nguyen ﻿Comput Soc Netw             (2021) 8:3 

while for inter-route moves:

–	 Exchange-route move vertices vi in route Rl and vj in route Rh cannot be swapped 
again by the same type of move while they are tabu.

–	 Insert-route move the position of vertex vi in the route Rl just inserted to the position 
jth of the route Rh cannot be changed by the same type of move while it is tabu.

–	 Cross-route move two segments {vi, vk} on Rl and {vj , vl} on Rh cannot be swapped 
again by the same type of move while they are tabu.

A tabu status is assigned to an element for θ iterations, where θ is randomly selected from 
an uniform interval [13, 14]. At each iteration, a neighborhood is selected to explore. Its 
best neighbor T ′ is then accepted as the next starting solution if the corresponding move 
is non-tabu and T ′ is better than the current starting solution T. Otherwise, T ′ must be 
better than the current best solution T ∗.

Intensification and diversification

We use a promising solution set P as a pool of high-quality solutions found during the 
algorithm. This set is initialized empty and limited in size. Each solution T produced 
by the RVNS+TS in Step 2 of Algorithm 1 is inserted into the set P if its fitness is not 
worse more than 10% to that of the current best solution T ∗ . Step 2 is thus executed for 
a number of times to find such solutions T for inserting them into the set P. Once the set 
P is full, the intensification phase (Step 4 of the Algorithm 1) will be triggered to enhance 
the quality of the solutions in P. Specifically, only the RVNS of Step 2 is applied to each 
solution in P. Without the tabu list restriction, the RVNS starts by applying a neighbor-
hood selected randomly in the set NL of eight neighborhoods described in the "Neigh-
borhoods of RVNS" section. The selected neighborhood is then searched on all possible 
moves, and the best neighbor is returned. The current solution will be modified if it is 
worse than its best neighbor. Otherwise, this selected neighborhood is removed from 
the set NL as it does not produce any improvement. The process is repeated until the set 
NL is empty. The best solution T̄  produced by this intensification process will be served 
as the input for the diversification phase (Step 5 of the Algorithm 1).

Using only intensification, the search could get stuck in the local optima. Thus, diver-
sification then proceeds to perturb the search that starts from the solution T̄  by per-
forming a combined shakings of the solution (see Algorithm 3). Creating a new working 
solution from the T̄  helps to conserve the best solution characteristics encountered so 
far. On the other hand, implementing shaking process to perturb a new working solu-
tion provides a certain level of diversity to the search. In this work, there are two shaking 
mechanisms used to diversify the solution:

–	 Shaking intra-route: We use the shaking mechanism, called double-bridge, was origi-
nally developed by [15]. The structure of the double-bridge move derives from a spe-
cial 4-opt neighborhood where edges added and dropped need not be successively 
adjacent. This mechanism can also be seen as a permutation of two disjoint segments 
of a route. The double-bridge shaking is described in the Algorithm 4.
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–	 Shaking inter-route: We randomly choose two routes Rx and Ry in the solution, then 
exchange a number of vertices between them. The detailed description of the imple-
mentation is given in the Algorithm 5.

Evaluation
Our proposed algorithm is implemented in C++. Experiments are conducted on an Intel 
Pentium core i7 duo 2.10 Ghz CPU, 8 GB RAM. The performance of the proposed algo-
rithm is evaluated through comparison with published results on the instances provided in 
the literature of ADVRP, ACVRP, MTRPD. Through preliminary experiments, we observed 
that the values α = 5 , num = 5 , ρ = 100 , |E| = 5 , and maxITER = 100 resulted in a good 
trade-off between solution quality and running time.

Comparison with ADVRP’s algorithms

The performance of our proposed algorithm (HVT) is evaluated through comparison with 
published results on the Group 1 instances of ADVRP provided in [16]. These instances 
are divided into three sets, denoted as Dmax(1) , Dmax(2) , Dmax(3) , in descending order of the 
upper bound value Dmax . The number of customers is in the range of [40, 1000]. All pub-
lished results used for competing are taken from:

–	 M5SBB : The exact method (Multi Start Branch and Bound) of [16].
–	 VNS: The metaheuristic is developed on VNS framework of [16].

We report our best results over 10 runs. For concision sake, only aggregated results are pro-
vided in this section. A detailed comparison, instance by instance, may be found in Tables 4, 
5, 6 of the Annex. Table 1 sums up comparison over all three sets. As the results of VNS for 
the Dmax(3) set have not been published, we use the hyphen “-” to indicate its unavailable in 
Table 1. The first two rows respectively show for each competing algorithm, the percent-
age of times that algorithm could obtain the optimal solutions (%opt) and could not find 
feasible solutions (% of no feasible). Note that all current published optimal solutions and 
best known solutions (BKS) are produced by M5SBB [16]. The row Gap1[%] indicates the 
average gaps of best solutions obtained by each algorithm with repect to the optimal solu-
tions (OPT) for instances whose optimal solutions have been published. Similarly, the row 
Gap2[%] displays the average gaps relative to BKS for instances whose the optimal solutions 
have not been found yet. More specifically, Gap1[%] and Gap2[%] in percentage on each 
instance are calculated as follows:

Table 1  Performance comparison for the ADVRP on 131 instances

Dmax(1) Dmax(2) Dmax(3)

VNS HVT VNS HVT VNS HVT

%opt 0 49.2 0 19.0 0 6.9

% of no feasible 0 0 14.29 0 – 0

Gap1[%] 12.84 3.90 9.11 4.29 – 4.52

Gap2[%] 0 3.1 0 23.8 0 17.24
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One observes that only our algorithm could find feasible solutions in all cases. Indeed, 
for the easiest Dmax(1) set with the largest value of upper bound Dmax , all algorithms 
could find feasible solutions. However, for Dmax(2) set with smaller value of Dmax , 
the problem becomes harder to solve. As the result, the number of instances that the 
M5SBB could not find feasible solutions is three, and this value is even up to 19 (14.29%) 
for the VNS metaheuristic (see Table 5). On the hardest Dmax(3) instances, the M5SBB 
could not find feasible solutions for three cases, while the results for the VNS has not 
been published due to its worse results on the Dmax(2) . Especially, there are 11 intances, 
though the M5SBB cannot reach the optimal solutions due to lack of memory, the HVT 
obtains better solutions (see Table 6).

Experimental results illustrated clearly the superior performance of our HVT algo-
rithm compared to the VNS metaheuristic of [16]. Table 1 shows that the HVT provides 
high-quality solutions, with an average gap of 4.24% to the optimal solutions, compared 
to 10.97% of the VNS on the Dmax(1) , and Dmax(2) dataset. Overall 131 instances, the 
HVT produces 124 better solutions than those of VNS, and 41 optimal solutions while 
the VNS could not find any. The VNS was executed on intel Core(TM) 2 CPU 6600 
2.4GHz with 3.24 GB of RAM which has different characteristics than our machine; 
therefore, comparing the running time between two algorithms is evaluated relatively. 
As reported in [16], our running time is comparable with that of the VNS.

Comparison with ACVRP’s algorithms

In this section, we present the performance comparison between our HVT algorithm 
and published results on the ACVRP instances provided by Pessoa et  al. in [17]. The 
ACVRP is the Capacitated VRP in which the matrix cost is asymmetric. Table 2 displays 
the comparison between the best solutions obtained by our HVT algorithm and those 
obtained by two other algorithms:

(4)Gap1[%] =
Best.Sol−OPT

OPT
× 100%,

(5)Gap2[%] =
Best.Sol− BKS

BKS
× 100%.

Table 2  Experimental results for ACVRP instances

Instances #vertices #vehicles OPT AS VL HVT

Best.Sol Best.Sol Best.Sol Aver.Sol Gap1 Time

A034-02f 34 2 1406 1406 1406 1406 1406.00 0.00 0.27

A036-03f 36 3 1644 1644 1644 1644 1644.00 0.00 0.31

A039-03f 39 3 1654 1654 1654 1654 1654.00 0.00 0.44

A045-03f 45 3 1740 1740 1740 1740 1740.00 0.00 0.52

A048-03f 48 3 1891 1891 1891 1891 1891.51 0.00 0.59

A056-03f 56 3 1739 1739 1739 1739 1739.00 0.00 0.63

A065-03f 65 3 1974 1974 1974 1976 1976.21 0.10 2.61

A071-03f 71 3 2054 2054 2121 2054 2054.51 0.00 2.80
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–	 VL: a metaheuristic combines some heuristic concepts with compact mixed-inte-
ger linear programming (MILP) formulation, proposed by Valeria Leggieria and 
Mohamed Haouari in [18].

–	 AS: a column generation approach uses metaheuristic to generate columns and a 
sequence of set partitioning models for the Mixed-Integer Programming solver, pro-
posed by A. Subramanian et al. in [19].

for each instance of the ACVRP.
The first three columns give the instance name, the number of vertices and vehicles, 

respectively. The column OPT indicates the optimal solutions reported by [20, 6]. We 
report for each algorithm the best solutions (Best.Sol column) found. The last three col-
umns give our average results over 10 runs, the gap between our best found solution and 
the optimal solution, and our running time in seconds, respectively. One could observe that 
our HVT algorithm is comparable with the others in terms of solution quality and running 
time. It produces very near-optimal solutions, with an average gap of 0.01% to the optimal 
solutions.

Comparison with MTRPD’s algorithms

In the MTRPD, a fleet of homogeneous vehicles is dispatched to serve a set of customers. 
Each customer is serviced exactly once by a vehicle. Each vehicle which starts from and 
ends at the depot is not allowed to travel a distance longer than a predetermined limit. The 
objective is to minimize the total waiting time of all customers after the vehicles leave the 
depot. Our algorithm runs on the MTRPD dataset inherited several instances in [20]. The 
optimal solutions for these instances are found using the exact algorithms in [20, 21]. The 
dataset includes six TSP instances from the TSPLIB such as brd14051, d15112, d18512, 
fnl4461, nrw1379, and pr1002. For each TSP instance, ten MTRPD instances are gen-
erated by randomly selecting ten subsets of n vertices, where n = 30, 40, 50, 60, 70, and 
80. Let (dmax) be the distance to the farthest vertices from the depot. The distance con-
straint gets the values 2× dmax, 2.5× dmax , and 3× dmax . The exact algorithms for these 
instances are extracted from [5, 15]. Therefore, in total, 900 MTRPD instances are used in 
our experiment.

For small instances of size 30–50 vertices, we compare our results to optimal solutions 
produced by [15]. However, for large instances with more than 50 vertices, there does not 
exist published optimal solutions. We thus compare our results to the lower bounds of the 
MTRPD which is the optimal solutions of the MTRP obtained in [12]. Table 3 displays our 
aggregated results over 900 instances in terms of CPU time (in seconds), gap to the optimal 
solution on small instances and gap to lower bound on large instances. Each row represents 
to a set of 10 instances. As shown in Table 3, our HVT algorithm is capable of finding the 
optimal solutions for all small instances in a reasonable amount of time (0.52 seconds on 
average). It is, thus, better than those obtained by GRASP+VNS in [13] which fails to find 
the optimal solutions for all instances with 50 vertices. Moreover, for most instances con-
sisting of 60–80 vertices, our solutions fall into the range of 0.30–0.32% of the lower bound. 
Consequently, our HVT algorithm could produce much better results compared to that of 
[13] which ranges from 2.73 to 4.75%.



Page 12 of 19Ban and Nguyen ﻿Comput Soc Netw             (2021) 8:3 

Conclusion
We have proposed a new effective metaheuristic algorithm for the ADVRP, which 
combines GRASP with clustering, tabu search and RVNS. Extensive computational 
experiments and comparisons with published algorithms on all benchmark instances 
show that the proposed algorithm is highly competitive. It could provide not only new 
best solutions but also first published feasible solutions for some instances with tight 
value of Dmax . Additionally, our algorithm provides better solutions than the state-of-
the-art metaheuristic algorithm for 124 out of 131 cases. However, the efficiency and 

Table 3  The average experimental results for MTRPD instances

Instances MD = 2× dmax MD = 2.5× dmax MD = 3× dmax

Gap1 Time Gap1 Time Gap1 Time

pr1002_30_x 0.00 0.25 0.00 0.23 0.00 0.24

brd14051_30_x 0.00 0.25 0.00 0.24 0.00 0.25

fnl4461_30_x 0.00 0.22 0.00 0.22 0.00 0.24

d15112_30_x 0.00 0.25 0.00 0.23 0.00 0.21

nrw1379_30_x 0.00 0.25 0.00 0.25 0.00 0.24

pr1002_40_x 0.00 0.45 0.00 0.44 0.00 0.41

brd14051_40_x 0.00 0.44 0.00 0.42 0.00 0.41

fnl4461_40_x 0.00 0.44 0.00 0.44 0.00 0.44

d15112_40_x 0.00 0.44 0.00 0.41 0.00 0.44

nrw1379_40_x 0.00 0.43 0.00 0.42 0.00 0.42

pr1002_50_x 0.00 0.85 0.00 0.84 0.00 0.82

brd14051_50_x 0.00 0.81 0.00 0.82 0.00 0.81

fnl4461_50_x 0.00 0.83 0.00 0.83 0.00 0.83

d15112_50_x 0.00 0.83 0.00 0.83 0.00 0.85

nrw1379_50_x 0.00 0.84 0.00 0.84 0.00 0.82

pr1002_60_x 0.55 1.12 0.48 1.45 0.34 1.45

brd14051_60_x 0.67 1.13 0.46 1.45 0.54 1.45

fnl4461_60_x 0.48 1.12 0.39 1.45 0.29 1.45

d15112_60_x 0.57 1.11 0.39 1.46 0.31 1.46

nrw1379_60_x 0.64 1.12 0.71 1.45 0.76 1.45

pr1002_70_x 0.89 1.48 0.83 1.97 0.93 1.97

brd14051_70_x 0.51 1.49 0.54 1.84 0.51 1.84

fnl4461_70_x 0.63 1.46 0.60 1.94 0.67 1.94

d15112_70_x 0.70 1.51 0.74 1.85 0.76 1.85

nrw1379_70_x 0.65 1.44 0.73 1.95 0.62 1.95

pr1002_80_x 0.69 3.58 0.74 4.66 0.66 4.66

brd14051_80_x 0.58 3.56 0.63 4.62 0.57 4.62

fnl4461_80_x 0.74 3.59 0.80 4.63 0.73 4.63

d15112_80_x 0.41 3.57 0.39 4.65 0.43 4.65

nrw1379_80_x 0.96 3.53 0.86 4.67 0.82 4.67

Average 0.32 – 0.30 – 0.30 –
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running time for the large instances with up to 1000 vertices need to be improved. It 
is our aim for future research.
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Annex
Tables 4, 5, 6 report the detailed comparisons, intance by intance, on the ADVRP prob-
lem between our HVT algorithm and two other algorithms:

–	 M5SBB : The exact method (Multi Start Branch and Bound) of [16].
–	 VNS: The metaheuristic is developed on VNS framework of [16].

Instances for experiments are provided in [16] where the customer range is [40, 1000]. 
All algorithms were run 10 times per instance. Our best results (Best.Sol column), aver-
age results (Aver.Sol column), gap between our best results and the optimal values ( Gap1 
column), gap of our best results with respect to those of VNS (GAP Best-to-Best col-
umn), and computation time in seconds (Time column) are reported. Note that all opti-
mal values (OPT column) are produced by M5SBB in [8, 16]. In cases M5SBB could not 
find optimal solutions, only best solutions produced by it are provided. We therefore put 
these values in parentheses in the OPT column. The value “inf” indicates that the algo-
rithm could not find feasible solution.
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